ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Heats of formation of the acetyl halides and of the acetyl radical

Cite this: J. Phys. Chem. 1969, 73, 8, 2644–2648
Publication Date (Print):August 1, 1969
https://doi.org/10.1021/j100842a031
    ACS Legacy Archive

    Article Views

    160

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 38 publications.

    1. Jan Troß, Kevin Carter-Fenk, Neil C. Cole-Filipiak, Paul Schrader, Mi’Kayla Word, Laura M. McCaslin, Martin Head-Gordon, Krupa Ramasesha. Excited-State Dynamics during Primary C–I Homolysis in Acetyl Iodide Revealed by Ultrafast Core-Level Spectroscopy. The Journal of Physical Chemistry A 2023, 127 (18) , 4103-4114. https://doi.org/10.1021/acs.jpca.3c01414
    2. Eric J. Bylaska,, David A. Dixon, and, Andrew R. Felmy, , Edoardo Aprà and, Theresa L. Windus, , Chang-Guo Zhan, , Paul G. Tratnyek. The Energetics of the Hydrogenolysis, Dehydrohalogenation, and Hydrolysis of 4,4‘-Dichloro-diphenyl-trichloroethane from ab Initio Electronic Structure Theory. The Journal of Physical Chemistry A 2004, 108 (27) , 5883-5893. https://doi.org/10.1021/jp0312316
    3. Li Zhu and, Joseph W. Bozzelli. Structures, Rotational Barriers, and Thermochemical Properties of Chlorinated Aldehydes and the Corresponding Acetyl (CC•O) and Formyl Methyl Radicals (C•CO) and Additivity Groups. The Journal of Physical Chemistry A 2002, 106 (2) , 345-355. https://doi.org/10.1021/jp0131424
    4. Paul R. Winter,, Brad Rowland,, Wayne P. Hess,, Juliusz G. Radziszewski,, Mark. R. Nimlos, and, G. Barney Ellison. UV Photodissociation of Matrix-Isolated Propionyl Chloride. The Journal of Physical Chemistry A 1998, 102 (19) , 3238-3248. https://doi.org/10.1021/jp980286i
    5. E. Arunan. The C−C Bond Is Stronger than the C−Cl Bond in CH3COCl. The Journal of Physical Chemistry A 1997, 101 (27) , 4838-4839. https://doi.org/10.1021/jp970576j
    6. Rudolf Naef, William E. Acree. Calculation of the Vapour Pressure of Organic Molecules by Means of a Group-Additivity Method and Their Resultant Gibbs Free Energy and Entropy of Vaporization at 298.15 K. Molecules 2021, 26 (4) , 1045. https://doi.org/10.3390/molecules26041045
    7. Danielle L. Stolley, Anna Colleen Crouch, Aliçan Özkan, Erin H. Seeley, Elizabeth M. Whitley, Marissa Nichole Rylander, Erik N. K. Cressman. Combining Chemistry and Engineering for Hepatocellular Carcinoma: Nano-Scale and Smaller Therapies. Pharmaceutics 2020, 12 (12) , 1243. https://doi.org/10.3390/pharmaceutics12121243
    8. Erik N. K. Cressman, Chunxiao Guo. First In Vivo Test of Thermoembolization: Turning Tissue Against Itself Using Transcatheter Chemistry in a Porcine Model. CardioVascular and Interventional Radiology 2018, 41 (10) , 1611-1617. https://doi.org/10.1007/s00270-018-2003-3
    9. Erik N. K. Cressman, Chunxiao Guo, Niloofar Karbasian, . Image-guided chemistry altering biology: An in vivo study of thermoembolization. PLOS ONE 2018, 13 (7) , e0200471. https://doi.org/10.1371/journal.pone.0200471
    10. Erik N K Cressman, Chunxiao Guo. Feasibility study using tissue as reagent for cancer therapy: endovascular ablation via thermochemistry. Convergent Science Physical Oncology 2018, 4 (2) , 025003. https://doi.org/10.1088/2057-1739/aab905
    11. Ya Li, Ci Chen, Wen-Peng Wu, Li Wang. Mechanism of reaction CH3COCl with HNO: A theoretical study. Computational and Theoretical Chemistry 2016, 1096 , 40-44. https://doi.org/10.1016/j.comptc.2016.08.022
    12. William Acree, James S. Chickos. Phase Transition Enthalpy Measurements of Organic and Organometallic Compounds. Sublimation, Vaporization and Fusion Enthalpies From 1880 to 2015. Part 1. C 1 − C 10. Journal of Physical and Chemical Reference Data 2016, 45 (3) , 033101. https://doi.org/10.1063/1.4948363
    13. Erik N.K. Cressman, David A. Jahangir. Dual mode single agent thermochemical ablation by simultaneous release of heat energy and acid: Hydrolysis of electrophiles. International Journal of Hyperthermia 2013, 29 (1) , 71-78. https://doi.org/10.3109/02656736.2012.756124
    14. Kenneth O. Patten, Victor G. Khamaganov, Vladimir L. Orkin, Steven L. Baughcum, Donald J. Wuebbles. OH reaction rate constant, IR absorption spectrum, ozone depletion potentials and global warming potentials of 2-bromo-3,3,3-trifluoropropene. Journal of Geophysical Research: Atmospheres 2011, 116 (D24) , n/a-n/a. https://doi.org/10.1029/2011JD016518
    15. R. Shankar, P. Kolandaivel, K. Senthilkumar. A theoretical study on decomposition and rearrangement reaction mechanism of trichloroacetyl chloride (CCl 3 COCl). International Journal of Quantum Chemistry 2011, 111 (14) , 3482-3496. https://doi.org/10.1002/qua.22790
    16. Sierra Rayne, Kaya Forest. Survey of main group compounds (HBr) at the Gaussian-4 level of theory: Adiabatic ionization energies and enthalpies of formation. Computational and Theoretical Chemistry 2011, 974 (1-3) , 163-179. https://doi.org/10.1016/j.comptc.2011.07.033
    17. V. Khamaganov, J. N. Crowley. Rate coefficients for the reactions CH 3 + Br 2 (224–358 K), CH 3 CO + Br 2 (228 and 298 K), and Cl + Br 2 (228 and 298 K). International Journal of Chemical Kinetics 2010, 42 (9) , 575-585. https://doi.org/10.1002/kin.20505
    18. Frank S. Wagner. Acetyl Chloride. 2002https://doi.org/10.1002/0471238961.0103052023010714.a04.pub2
    19. Frank S. Wagner. Acetyl Chloride. 2000https://doi.org/10.1002/0471238961.0103052023010714.a04
    20. Joseph S. Francisco, John A. Montgomery. Theoretical Studies of the Energetics of Radicals. 1996, 110-149. https://doi.org/10.1007/978-94-009-0099-8_4
    21. Jeffrey Aubé, Belgin Gülgeze, Xin Peng. Synthesis of cis-δ-phenylmethyl-d-proline using a nitrogen-centered radical derived from a chiral oxaziridine. Bioorganic & Medicinal Chemistry Letters 1994, 4 (20) , 2461-2464. https://doi.org/10.1016/S0960-894X(01)80410-8
    22. R. Sumathi, A.K. Chandra. Dissociation dynamics of acetyl chloride and cis-trans isomerisation of methoxychloro carbene and chlorohydroxymetyl carbene. Chemical Physics 1994, 181 (1-2) , 73-84. https://doi.org/10.1016/0301-0104(94)85016-X
    23. Gabriela C. G. Waschewsky, Phillip W. Kash, Tanya L. Myers, David C. Kitchen, Laurie J. Butler. What Woodward and Hoffmann didn't tell us: the failure of the Born–Oppenheimer approximation in competing reaction pathways. J. Chem. Soc., Faraday Trans. 1994, 90 (12) , 1581-1598. https://doi.org/10.1039/FT9949001581
    24. R. Sumathi, A. K. Chandra. Photodecomposition of acetyl chloride on the excited singlet state surface. The Journal of Chemical Physics 1993, 99 (9) , 6531-6536. https://doi.org/10.1063/1.465844
    25. M. D. Person, P. W. Kash, L. J. Butler. Nonadiabaticity and the competition between alpha and beta bond fission upon 1[ n ,π*(C=O)] excitation in acetyl- and bromoacetyl chloride. The Journal of Chemical Physics 1992, 97 (1) , 355-373. https://doi.org/10.1063/1.463580
    26. J.S. Francisco, N.J. Abersold. An examination of the heats of formation for CH3CO and CF3CO radicals. Chemical Physics Letters 1991, 187 (4) , 354-359. https://doi.org/10.1016/0009-2614(91)80265-Y
    27. W.B. Tzeng, S. Wei, A.W. Castleman. Protonated acetaldehyde clusters: Stability, structure and metastable unimolecular decomposition. Chemical Physics Letters 1990, 168 (1) , 30-36. https://doi.org/10.1016/0009-2614(90)85097-V
    28. Otto Exner, Drahomír Hnyk, Václav Všetečka. Dipole moments and electron distribution of acyl chlorides and acyl bromides. Journal of Physical Organic Chemistry 1989, 2 (6) , 476-483. https://doi.org/10.1002/poc.610020606
    29. J. F. Chaney, V. Ramdas, C. R. Rodriguez, M. H. Wu. Bibliography. 1982, 311-577. https://doi.org/10.1007/978-1-4757-1484-5_3
    30. J.M. Dyke, N.B.H. Jonathan, A. Morris, M.J. Winter. The first ionization potential of the formyl radical, HCO( X 2 A ′), studied using photoelectron spectroscopy. Molecular Physics 1980, 39 (3) , 629-636. https://doi.org/10.1080/00268978000100521
    31. Peter M. Krogerb), Stephen J. Riley. Dynamics of three-body half collisions. II. Instantaneous three-body decomposition in the photodissociation of trifluoroacetyl iodidea). The Journal of Chemical Physics 1979, 70 (8) , 3863-3870. https://doi.org/10.1063/1.437937
    32. Peter M. Kroger, Stephen J. Riley. Dynamics of three-body half collisions. I. Secondary product decomposition in the photodissociation of acetyl iodide. The Journal of Chemical Physics 1977, 67 (10) , 4483-4490. https://doi.org/10.1063/1.434589
    33. Irene R. Slagle, David Gutman, James R. Gilbert. Direct identification of products and measurement of branching ratios for the reactions of oxygen atoms with vinylfluoride, vinylchloride, and vinylbromide. Symposium (International) on Combustion 1975, 15 (1) , 785-793. https://doi.org/10.1016/S0082-0784(75)80347-X
    34. K. W. Watkins, William W. Word. Addition of methyl radicals to carbon monoxide: Chemically and thermally activated decomposition of acetyl radicals. International Journal of Chemical Kinetics 1974, 6 (6) , 855-873. https://doi.org/10.1002/kin.550060608
    35. R. Kräßig, D. Reinke, H. Baumgärtel. Photoreaktionen kleiner organischer Moleküle II. Die Photoionenspektren der Isomeren Propylen‐Cyclopropan und Acetaldehyd‐Äthylenoxyd. Berichte der Bunsengesellschaft für physikalische Chemie 1974, 78 (5) , 425-436. https://doi.org/10.1002/bbpc.19740780502
    36. Kurt W. Egger, Alan T. Cocks. Homopolar‐ and Heteropolar Bond Dissociation Energies and Heats of Formation of Radicals and Ions in the Gas Phase. I. Data on organic molecules. Helvetica Chimica Acta 1973, 56 (5) , 1516-1536. https://doi.org/10.1002/hlca.19730560509
    37. J. Dykyj, J. Svoboda, R. C. Wilhoit, M. Frenkel, K. R. Hall. Organic Compounds, C1 to C57. Part 1. , 14-110. https://doi.org/10.1007/10688583_3
    38. J. Dykyj, J. Svoboda, R. C. Wilhoit, M. Frenkel, K. R. Hall. References for 2. , 209-222. https://doi.org/10.1007/10688583_6

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect