ACS Publications. Most Trusted. Most Cited. Most Read
Carbon Formation from Carbon Monoxide-Hydrogen Mixtures over Iron Catalysts.I. Properties of Carbon Formed
My Activity

    article

    Carbon Formation from Carbon Monoxide-Hydrogen Mixtures over Iron Catalysts.I. Properties of Carbon Formed
    Click to copy article linkArticle link copied!

    ACS Legacy Archive
    Other Access Options

    The Journal of Physical Chemistry

    Cite this: J. Phys. Chem. 1959, 63, 2, 133–140
    Click to copy citationCitation copied!
    https://doi.org/10.1021/j150572a002
    Published February 1, 1959

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 116 publications.

    1. Shailesh Pathak, Eric McFarland. Iron Catalyzed Methane Pyrolysis in a Stratified Fluidized Bed Reactor. Energy & Fuels 2024, 38 (14) , 12576-12585. https://doi.org/10.1021/acs.energyfuels.4c01484
    2. John M. H. Lo and, Tom Ziegler. Density Functional Theory and Kinetic Studies of Methanation on Iron Surface. The Journal of Physical Chemistry C 2007, 111 (29) , 11012-11025. https://doi.org/10.1021/jp0722206
    3. Omid Ramezani Azqandi, Asadollah Kalantarian, Masoud Mollaee, Ehsan Sabeghenia. Growth of Vertical Forest-like Arrangement Carbon Nanotube Using CVD Technique. International Journal of Nanoscience 2025, 7 https://doi.org/10.1142/S0219581X25500012
    4. Aswin Thacharodi, Saqib Hassan, Ramu Meenatchi, Mansoor Ahmad Bhat, Naseer Hussain, Jesu Arockiaraj, Huu Hao Ngo, Ashutosh Sharma, H.T. Nguyen, Arivalagan Pugazhendhi. Mitigating microplastic pollution: A critical review on the effects, remediation, and utilization strategies of microplastics. Journal of Environmental Management 2024, 351 , 119988. https://doi.org/10.1016/j.jenvman.2023.119988
    5. Ruchi Bharti, Priya Kaushik, Shivani Naik, Ajay Thakur, Monika Verma, Renu Sharma. Low Temperature Synthesis of Carbon Nanostructures. 2024, 1-45. https://doi.org/10.1007/978-3-031-14955-9_24-1
    6. Ruchi Bharti, Priya Kaushik, Shivani Naik, Ajay Thakur, Monika Verma, Renu Sharma. Low Temperature Synthesis of Carbon Nanostructures. 2024, 823-867. https://doi.org/10.1007/978-3-031-32150-4_24
    7. B. Mamatha, V. Uma, S. Mahendra Kumar. Functionalization of Carbon Nanotubes and Polymer Nanocomposites and Synthesis of Multiwall Carbon Nanotubes via Chemical Vapor Deposition for Wearable Sensor Applications. 2024, 373-410. https://doi.org/10.1007/978-981-97-6329-0_15
    8. Girma Gonfa. Carbon nanotube synthesis from CO2. 2024, 489-514. https://doi.org/10.1016/B978-0-443-19235-7.00021-X
    9. Omar Dagdag, Rajesh Haldhar, Seong‐Cheol Kim, Elyor Berdimurodov, Sheerin Masroor, Ekemini D. Akpan, Eno E. Ebenso. Preparation of Carbon Allotropes Using Different Methods. 2023, 1-15. https://doi.org/10.1002/9781394167913.ch1
    10. Neelam Sharma, Shubhra Pareek, Rahul Shrivastava, Debasis Behera. Functionalized Carbon Nanotubes. 2023, 21-47. https://doi.org/10.1002/9781119905080.ch2
    11. Faiza Asghar, Babar Murtaza, Bushra Shakoor, Nabtahil Iqbal, Maria Shafique, Rafia Murtaza, Ian Sydney Butler. Properties, assembly and characterization of carbon nanotubes: their application in water purification, environmental pollution control and biomedicines—a comprehensive review. Carbon Letters 2023, 33 (2) , 275-306. https://doi.org/10.1007/s42823-022-00432-9
    12. Priyannth Ramasami Sundharbaabu, Junhyuck Chang, Jung Heon Lee. Carbon Nanotubes and Nucleic Acids. 2023, 1797-1834. https://doi.org/10.1007/978-981-19-9776-1_63
    13. Masanobu Kubota, Ryosuke Komoda, Yuki Nakamura. Improvement of fretting fatigue strength by carbon monoxide and catalyst activation under chemomechanical effects of fretting. Theoretical and Applied Fracture Mechanics 2022, 121 , 103460. https://doi.org/10.1016/j.tafmec.2022.103460
    14. R. D. Hunter, J. Ramírez-Rico, Z. Schnepp. Iron-catalyzed graphitization for the synthesis of nanostructured graphitic carbons. Journal of Materials Chemistry A 2022, 10 (9) , 4489-4516. https://doi.org/10.1039/D1TA09654K
    15. Priyannth Ramasami Sundharbaabu, Junhyuck Chang, Jung Heon Lee. Carbon Nanotubes and Nucleic Acids. 2022, 1-38. https://doi.org/10.1007/978-981-16-1313-5_63-1
    16. Krzysztof Jankowski, Agnes Ostafin, Mikołaj Tomasik, Tebello Nyokong, Jonathan Britton. Growth of centimeter scale carbon wires using in-liquid AC arc discharge. SN Applied Sciences 2020, 2 (6) https://doi.org/10.1007/s42452-020-2881-2
    17. Nikita Gupta, Shipra Mital Gupta, S. K. Sharma. Carbon nanotubes: synthesis, properties and engineering applications. Carbon Letters 2019, 29 (5) , 419-447. https://doi.org/10.1007/s42823-019-00068-2
    18. Feng Lu, Liangying Wen, Yangxin Chen, Hong Zhong, Jian Xu, Shengfu Zhang, Zhongqing Yang. Carbon formation on the surface during the reduction of iron oxide particles by CO and CO/H2 mixtures. Chemical Engineering Science 2019, 205 , 238-247. https://doi.org/10.1016/j.ces.2019.04.046
    19. Joris Kadok, Nicolas Bost, Antoine Coulon, Mohamed-Ramzi Ammar, Séverine Brassamin, Cécile Genevois, Auriane Etienne, Aurélien Canizarès, Jacques Poirier. Inhibiting the sp2 carbon deposition by adjunction of sulphurous species in refractory ceramics subjected to CO and H2 reducing atmosphere. Journal of the European Ceramic Society 2019, 39 (9) , 2960-2972. https://doi.org/10.1016/j.jeurceramsoc.2019.03.008
    20. Vadahanambi Sridhar, Hyun Park. Zeolitic imidazolate frameworks as novel precursors for microwave synthesis of carbon nanotubes. Journal of Alloys and Compounds 2019, 781 , 166-173. https://doi.org/10.1016/j.jallcom.2018.12.123
    21. Claudir Gabriel Kaufmann, Juliano Schorne-Pinto. CNT Sponges for Environmental Applications. 2019, 1-13. https://doi.org/10.1007/978-3-030-26810-7_1
    22. Falah H. Hussein, Firas H. Abdulrazzak, Ayad F. Alkaim. Synthesis, Characterization and General Properties of Carbon Nanotubes. 2018, 1-59. https://doi.org/10.1002/9781119370383.ch1
    23. Falah H. Hussein, Firas H. Abdulrazzak. Synthesis of Carbon Nanotubes by Chemical Vapor Deposition. 2018, 105-132. https://doi.org/10.1002/9781119370383.ch4
    24. J. Lehman, C. Yung, N. Tomlin, D. Conklin, M. Stephens. Carbon nanotube-based black coatings. Applied Physics Reviews 2018, 5 (1) https://doi.org/10.1063/1.5009190
    25. Ali Ghavamian, Maksym Rybachuk, Andreas Öchsner. Defects in carbon nanotubes. 2018, 87-136. https://doi.org/10.1016/B978-0-08-102053-1.00004-1
    26. . Material Separations by Other Membrane Processes. 2017, 735-767. https://doi.org/10.1002/9781118932551.ch26
    27. Khurshed A. Shah, Bilal A. Tali. Synthesis of carbon nanotubes by catalytic chemical vapour deposition: A review on carbon sources, catalysts and substrates. Materials Science in Semiconductor Processing 2016, 41 , 67-82. https://doi.org/10.1016/j.mssp.2015.08.013
    28. Revathi R. Bacsa, Ignacio Cameán, Alberto Ramos, Ana B. Garcia, Victoria Tishkova, Wolfgang S. Bacsa, James R. Gallagher, Jeffrey T. Miller, Hugo Navas, Vincent Jourdain, Maria Girleanu, Ovidiu Ersen, Philippe Serp. Few layer graphene synthesis on transition metal ferrite catalysts. Carbon 2015, 89 , 350-360. https://doi.org/10.1016/j.carbon.2015.03.054
    29. Raghavan Prasanth, Sindhu Ammini, Liehui Ge, Manju Thakur, Vijay Thakur. Carbon Allotropes and Fascinated Nanostructures: The High-Impact Engineering Materials of the Millennium. 2015, 2-27. https://doi.org/10.1201/b18724-3
    30. Mohd Asyadi Azam, Nor Najihah Zulkapli, Zulhilmi Mohamed Nawi, Nik Mohamad Azren. Systematic review of catalyst nanoparticles synthesized by solution process: towards efficient carbon nanotube growth. Journal of Sol-Gel Science and Technology 2015, 73 (2) , 484-500. https://doi.org/10.1007/s10971-014-3600-5
    31. A J Page, F Ding, S Irle, K Morokuma. Insights into carbon nanotube and graphene formation mechanisms from molecular simulations: a review. Reports on Progress in Physics 2015, 78 (3) , 036501. https://doi.org/10.1088/0034-4885/78/3/036501
    32. Matthew T. Cole, Mark Mann, Kenneth B.K. Teo, William I. Milne. Engineered carbon nanotube field emission devices. 2015, 125-186. https://doi.org/10.1016/B978-0-323-28990-0.00005-1
    33. Khaled A. Alnefaie. Strength and modulus of carbon nanotubes under a tensile load. Journal of the Mechanical Behavior of Materials 2014, 23 (1-2) , 15-19. https://doi.org/10.1515/jmbm-2014-0002
    34. Tao Zhang, Chao Lei, Qingshan Zhu. Reduction of fine iron ore via a two-step fluidized bed direct reduction process. Powder Technology 2014, 254 , 1-11. https://doi.org/10.1016/j.powtec.2014.01.004
    35. Svetlana Dimovski, Yury Gogotsi. Graphite Whiskers, Cones, and Polyhedral Crystals. 2013, 89-114. https://doi.org/10.1201/b15591-4
    36. . Commercial-Scale Production of Nanoparticles. 2013, 139-169. https://doi.org/10.1201/b15777-5
    37. Catherine Journet, Matthieu Picher, Vincent Jourdain. Carbon nanotube synthesis: from large-scale production to atom-by-atom growth. Nanotechnology 2012, 23 (14) , 142001. https://doi.org/10.1088/0957-4484/23/14/142001
    38. Wojciech Kiciński, Joanna Lasota. Carbon Xerogel-supported Iron as a Catalyst in Combustion Synthesis of Carbon Fibrous Nanostructures. Journal of Materials Science & Technology 2012, 28 (4) , 294-302. https://doi.org/10.1016/S1005-0302(12)60057-7
    39. Zhifeng Ren, Yucheng Lan, Yang Wang. Growth Techniques of Carbon Nanotubes. 2012, 45-66. https://doi.org/10.1007/978-3-642-30490-3_3
    40. Yucheng Lan, Yang Wang, Z. F. Ren. Physics and applications of aligned carbon nanotubes. Advances in Physics 2011, 60 (4) , 553-678. https://doi.org/10.1080/00018732.2011.599963
    41. Nguyen Hoang Luong, Nguyen Hoang Hai, Nguyen Dang Phu, D A MacLaren. Co–Pt nanoparticles encapsulated in carbon cages prepared by sonoelectrodeposition. Nanotechnology 2011, 22 (28) , 285603. https://doi.org/10.1088/0957-4484/22/28/285603
    42. Bernd Dittert, Iris Bergmair, Roland Haubner, Rainer Schöftner. Micro fluid contact printing of sol–gel-derived in-situ formed catalysts for the structured growth of carbon nanotubes. Surface and Coatings Technology 2010, 204 (21-22) , 3647-3651. https://doi.org/10.1016/j.surfcoat.2010.04.045
    43. Blanca González, Carlos López de Laorden, Montserrat Colilla, Maria Vallet-Regí. Dendritic Macromolecules: New Possibilities for Advanced Bioceramics. Key Engineering Materials 2010, 441 , 235-267. https://doi.org/10.4028/www.scientific.net/KEM.441.235
    44. Ranimol Stephen, Sabu Thomas. Nanocomposites: State of the Art, New Challenges and Opportunities. 2010, 1-19. https://doi.org/10.1002/9780470823477.ch1
    45. Krzysztof Koziol, Bojan Obrad Boskovic, Noorhana Yahya. Synthesis of Carbon Nanostructures by CVD Method. 2010, 23-49. https://doi.org/10.1007/8611_2010_12
    46. M. Mann, B. Milne, K. Teo. Engineering the Synthesis of Carbon Nanotubes to Fabricate Novel Nanostructures. 2010, 131-158. https://doi.org/10.1016/B978-0-8155-1583-8.00005-3
    47. Paul E. Anderson. A method for characterization and quantification of platelet graphite nanofiber edge crystal structure. Carbon 2006, 44 (11) , 2184-2190. https://doi.org/10.1016/j.carbon.2006.03.005
    48. Yury Gogotsi, Svetlana Dimovski. Graphite Whiskers, Cones, and Polyhedral Crystals. 2006, 149-174. https://doi.org/10.1201/9781420009378.ch4
    49. Yury Gogotsi, Svetlana Dimovski. Graphite Whiskers, Cones, and Polyhedral Crystals. 2006, 109-134. https://doi.org/10.1201/9781420009385.ch3
    50. Svetlana Dimovski, Yury Gogotsi. Graphite Whiskers, Cones, and Polyhedral Crystals. 2006https://doi.org/10.1201/9781420004014.ch6
    51. Arben Merkoçi. Carbon Nanotubes in Analytical Sciences. Microchimica Acta 2006, 152 (3-4) , 157-174. https://doi.org/10.1007/s00604-005-0439-z
    52. Arben Merkoçi, Martin Pumera, Xavier Llopis, Briza Pérez, Manel del Valle, Salvador Alegret. New materials for electrochemical sensing VI: Carbon nanotubes. TrAC Trends in Analytical Chemistry 2005, 24 (9) , 826-838. https://doi.org/10.1016/j.trac.2005.03.019
    53. Arthur P. Ramirez. Carbon nanotubes for science and technology. Bell Labs Technical Journal 2005, 10 (3) , 171-185. https://doi.org/10.1002/bltj.20112
    54. Yoshinori Ando, Xinluo Zhao, Toshiki Sugai, Mukul Kumar. Growing carbon nanotubes. Materials Today 2004, 7 (10) , 22-29. https://doi.org/10.1016/S1369-7021(04)00446-8
    55. Christopher T. Kingston, Benoit Simard. Fabrication of Carbon Nanotubes. Analytical Letters 2003, 36 (15) , 3119-3145. https://doi.org/10.1081/AL-120026564
    56. Jean-Marc Bonard, Mirko Croci, Christian Klinke, Ralph Kurt, Olivier Noury, Nicolas Weiss. Carbon nanotube films as electron field emitters. Carbon 2002, 40 (10) , 1715-1728. https://doi.org/10.1016/S0008-6223(02)00011-8
    57. Aleksandr V. Eletskii. Carbon nanotubes and their emission properties. Uspekhi Fizicheskih Nauk 2002, 172 (4) , 401. https://doi.org/10.3367/UFNr.0172.200204b.0401
    58. G.E. Gadd, M. Collela, M. Blackford, A. Dixon, P.J. Evans, D. McCulloch, S. Bulcock, D. Cockayne. The encapsulation of Ni in graphitic layers using C60 as a precursor. Carbon 2001, 39 (12) , 1769-1787. https://doi.org/10.1016/S0008-6223(00)00321-3
    59. Marina A Ermakova, Dmitry Yu Ermakov, Andrey L Chuvilin, Gennady G Kuvshinov. Decomposition of Methane over Iron Catalysts at the Range of Moderate Temperatures: The Influence of Structure of the Catalytic Systems and the Reaction Conditions on the Yield of Carbon and Morphology of Carbon Filaments. Journal of Catalysis 2001, 201 (2) , 183-197. https://doi.org/10.1006/jcat.2001.3243
    60. Jean-Marc Bonard, Hannes Kind, Thomas Stöckli, Lars-Ola Nilsson. Field emission from carbon nanotubes: the first five years. Solid-State Electronics 2001, 45 (6) , 893-914. https://doi.org/10.1016/S0038-1101(00)00213-6
    61. A. Peigney, Ch. Laurent, E. Flahaut, R.R. Bacsa, A. Rousset. Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon 2001, 39 (4) , 507-514. https://doi.org/10.1016/S0008-6223(00)00155-X
    62. C. Park, R.T.K. Baker. Carbon Deposition on Iron–Nickel During Interaction with Ethylene–Carbon Monoxide–Hydrogen Mixtures. Journal of Catalysis 2000, 190 (1) , 104-117. https://doi.org/10.1006/jcat.1999.2735
    63. Hansong Cheng, David B. Reiser, Sheldon Dean. On the mechanism and energetics of Boudouard reaction at FeO(100) surface: 2CO→C+CO2. Catalysis Today 1999, 50 (3-4) , 579-588. https://doi.org/10.1016/S0920-5861(98)00492-1
    64. Yan Chen, L.P Guo, D.J Johnson, R.H Prince. Plasma-induced low-temperature growth of graphitic nanofibers on nickel substrates. Journal of Crystal Growth 1998, 193 (3) , 342-346. https://doi.org/10.1016/S0022-0248(98)00538-7
    65. Gabriela Díaz, Mohamed Benaissa, José G. Santiesteban, Miguel José-Yacamán. Carbon Nanotubes Prepared by Catalytic Decomposition of Benzene Over Silica Supported Cobalt Catalysts. Fullerene Science and Technology 1998, 6 (5) , 853-866. https://doi.org/10.1080/10641229809350244
    66. Hansong Cheng, David B. Reiser, Paul M. Mathias, Sheldon Dean. Role of transition metal oxides in metal dusting: Density functional study. AIChE Journal 1998, 44 (1) , 188-196. https://doi.org/10.1002/aic.690440120
    67. S. Herreyre, P. Gadelle, P. Moral, J.M.M. Millet. Study by mössbauer spectroscopy and magnetization measurement of the evolution of iron catalysts used in the disproportionation of CO. Journal of Physics and Chemistry of Solids 1997, 58 (10) , 1539-1545. https://doi.org/10.1016/S0022-3697(97)00114-5
    68. Peter E. Nolan, David C. Lynch, Andrew Hall Cutler. Catalytic disproportionation of CO in the absence of hydrogen: Encapsulating shell carbon formation. Carbon 1994, 32 (3) , 477-483. https://doi.org/10.1016/0008-6223(94)90169-4
    69. F.W.A.H. Geurts, R.G. Cnossen, A. sacco, R.R. Biederman. Carbon deposition over transition metal alloys—II. Kinetics of deposition over 〈FeNi〉 and 〈FeCo〉 alloy foils. Carbon 1994, 32 (6) , 1151-1169. https://doi.org/10.1016/0008-6223(94)90225-9
    70. J.H. Weaver, D.M. Poirier. Solid State Properties of Fullerenes and Fullerene-Based Materials. 1994, 1-108. https://doi.org/10.1016/S0081-1947(08)60577-9
    71. M. José-Yacamán, M. Miki-Yoshida, L. Rendón, J. G. Santiesteban. Catalytic growth of carbon microtubules with fullerene structure. Applied Physics Letters 1993, 62 (6) , 657-659. https://doi.org/10.1063/1.108857
    72. M. José-Yacamán, M. Miki-Yoshida, L. Rendón, J. G. Santiesteban. Catalytic growth of carbon microtubules with fullerene structure. Applied Physics Letters 1993, 62 (2) , 202-204. https://doi.org/10.1063/1.109315
    73. Munehiro Ishioka, Toshihiko Okada, Kenji Matsubara, Morinobu Endo. Formation of vapor-grown carbon fibers in Co-Co2-H2 mixtures, I. Influence of carrier gas composition. Carbon 1992, 30 (6) , 859-863. https://doi.org/10.1016/0008-6223(92)90007-J
    74. G.A Jablonski, F.W Geurts, A Sacco, R.R Biederman. Carbon deposition over Fe, Ni, and Co foils from CO-H2-CH4-CO2-H2O, CO-CO2, CH4-H2, and CO-H2-H2O gas mixtures: I. Morphology. Carbon 1992, 30 (1) , 87-98. https://doi.org/10.1016/0008-6223(92)90111-9
    75. G.A Jablonski, F.W.A.H Geurts, A Sacco. Carbon deposition over Fe, Ni, and Co foils from CO-H2-CH4-CO2-H2O, CO-CO2, CH4-H2, and CO-H2-H2O gas mixtures: II. Kinetics. Carbon 1992, 30 (1) , 99-106. https://doi.org/10.1016/0008-6223(92)90112-A
    76. L.S. Lobo, M.D. Franco. Kinetics of catalytic carbon formation on steel surfaces from light hydrocarbons. Catalysis Today 1990, 7 (2) , 247-256. https://doi.org/10.1016/0920-5861(90)85023-H
    77. Albert Sacco. Carbon Deposition and Filament Initiation and Growth Mechanisms on Iron Particles and Foils. 1990, 459-505. https://doi.org/10.1007/978-94-015-6847-0_20
    78. P.L. Walker. Carbon: An old but new material revisited. Carbon 1990, 28 (2-3) , 261-279. https://doi.org/10.1016/0008-6223(90)90001-F
    79. Yu‐Wen Chen. C‐H‐O Systems in the presence of iron oxide and iron carbide. Journal of the Chinese Institute of Engineers 1987, 10 (1) , 107-113. https://doi.org/10.1080/02533839.1987.9676948
    80. K.L. Yang, R.T. Yang. The accelerating and retarding effects of hydrogen on carbon deposition on metal surfaces. Carbon 1986, 24 (6) , 687-693. https://doi.org/10.1016/0008-6223(86)90176-4
    81. A J T Jull, D J Donahue, A L Hatheway, T W Linick, L J Toolin. Production of Graphite Targets by Deposition from CO/H 2 for Precision Accelerator 14 C Measurements. Radiocarbon 1986, 28 (2A) , 191-197. https://doi.org/10.1017/S0033822200007268
    82. J.S. Vogel, J.R. Southon, D.E. Nelson, T.A. Brown. Performance of catalytically condensed carbon for use in accelerator mass spectrometry. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 1984, 5 (2) , 289-293. https://doi.org/10.1016/0168-583X(84)90529-9
    83. Philip L. Walker, Shiro Matsumoto, Tamotsu Hanzawa, Takatoshi Muira, Ismail M.K. Ismail. Catalysis of gasification of coal-derived cokes and chars. Fuel 1983, 62 (2) , 140-149. https://doi.org/10.1016/0016-2361(83)90186-2
    84. Jongmann Yang, Roy S. Lewis, Edward Anders. Sorption of noble gases by solids, with reference to meteorites. I. Magnetite and carbon. Geochimica et Cosmochimica Acta 1982, 46 (6) , 841-860. https://doi.org/10.1016/0016-7037(82)90042-4
    85. Jongmann Yang, Edward Anders. Sorption of noble gases by solids, with reference to meteorites. II. Chromite and carbon. Geochimica et Cosmochimica Acta 1982, 46 (6) , 861-875. https://doi.org/10.1016/0016-7037(82)90043-6
    86. M. Audier, A. Oberlin, M. Oberlin, M. Coulon, L. Bonnetain. Morphology and crystalline order in catalytic carbons. Carbon 1981, 19 (3) , 217-224. https://doi.org/10.1016/0008-6223(81)90047-6
    87. J. Guinot, M. Audier, M. Coulon, L. Bonnetain. Formation and characterization of catalytic carbons obtained from CO disproportionation over an iron nickel catalyst—I. Carbon 1981, 19 (2) , 95-98. https://doi.org/10.1016/0008-6223(81)90113-5
    88. M. Audier, J. Guinot, M. Coulon, L. Bonnetain. Formation and characterization of catalytic carbons obtained from co disproportionation over an iron nickel catalyst—II. Carbon 1981, 19 (2) , 99-105. https://doi.org/10.1016/0008-6223(81)90114-7
    89. PHILIP L. WALKER. Carbons from selected organic feedstocks. 1980, 299-313. https://doi.org/10.1016/B978-0-08-022390-2.50029-1
    90. A.A. Susu, A.F. Ogunye. Selective naphthene pyrolysis for ethylene with hydrogen as diluent. Thermochimica Acta 1979, 34 (2) , 197-210. https://doi.org/10.1016/0040-6031(79)87109-9
    91. Albert Sacco, R. C. Reid. Water limitation in the C‐H‐O system over iron. AIChE Journal 1979, 25 (5) , 839-843. https://doi.org/10.1002/aic.690250512
    92. A. Sacco, R.C. Reid. Morphological changes in an iron catalyst and the formation of carbon fibers in the C-H-O-Fe system. Carbon 1979, 17 (6) , 459-464. https://doi.org/10.1016/0008-6223(79)90034-4
    93. D. Lashmore, A. J. Melmed. Field ion microscopy of polycrystalline iron whiskers. Journal of Applied Physics 1978, 49 (8) , 4586-4587. https://doi.org/10.1063/1.325436
    94. T. C. Tsao, Kun Li, W. O. Philbrook. Kinetics of Dissociation of Carbon Monoxide On α-Iron. Canadian Metallurgical Quarterly 1977, 16 (1) , 93-103. https://doi.org/10.1179/cmq.1977.16.1.93
    95. Y. Nishiyama, Y. Tamai. Deposition of carbon and its hydrogenation catalyzed by nickel. Carbon 1976, 14 (1) , 13-17. https://doi.org/10.1016/0008-6223(76)90075-0
    96. R.T.K. Baker, G.R. Gadsby, R.B. Thomas, R.J. Waite. The production and properties of filamentous carbon. Carbon 1975, 13 (3) , 211-214. https://doi.org/10.1016/0008-6223(75)90234-1
    97. T. Baird, J.R. Fryer, B. Grant. Carbon formation on iron and nickel foils by hydrocarbon pyrolysis—reactions at 700°C. Carbon 1974, 12 (5) , 591-602. https://doi.org/10.1016/0008-6223(74)90060-8
    98. D. J. Pinchin, R. T. Woodhams. Pyrolytic surface treatment of graphite fibres. Journal of Materials Science 1974, 9 (2) , 300-306. https://doi.org/10.1007/BF00550955
    99. E. T. Turkdogan, J. V. Vinters. Catalytic effect of iron on decomposition of carbon monoxide: I. carbon deposition in H2-CO Mixtures. Metallurgical transactions 1974, 5 (1) , 11-19. https://doi.org/10.1007/BF02642919
    100. R. G. Olsson, E. T. Turkdogan. Catalytic effect of iron on decomposition of carbon monoxide: II. Effect of additions of H2, H2O, CO2, SO2 and H2S. Metallurgical transactions 1974, 5 (1) , 21-26. https://doi.org/10.1007/BF02642920
    Load all citations

    The Journal of Physical Chemistry

    Cite this: J. Phys. Chem. 1959, 63, 2, 133–140
    Click to copy citationCitation copied!
    https://doi.org/10.1021/j150572a002
    Published February 1, 1959

    Article Views

    866

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.