ACS Publications. Most Trusted. Most Cited. Most Read
Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids
My Activity

Figure 1Loading Img
    Article

    Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids
    Click to copy article linkArticle link copied!

    ACS Legacy Archive
    Other Access Options

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 1991, 113, 8, 2826–2833
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja00008a004
    Published April 1, 1991

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 1123 publications.

    1. Yusuke Otsuka, Hiroyuki Kondo, Keigo Suzuki. Facile Synthesis of Novel Short-Chain Ligand-Capped Colloidal Metal Oxide Nanoparticles for Printed Flexible Devices. ACS Applied Materials & Interfaces 2024, 16 (28) , 36567-36576. https://doi.org/10.1021/acsami.4c04975
    2. Margherita Izzi, Maria C. Sportelli, Luisa Torsi, Rosaria A. Picca, Nicola Cioffi. Synthesis and Antimicrobial Applications of ZnO Nanostructures: A Review. ACS Applied Nano Materials 2023, 6 (13) , 10881-10902. https://doi.org/10.1021/acsanm.3c01432
    3. Yuan Fan, Jun Lin, Zhihua Li, Jiaolong Wang, Junchao Wei. Optical and Antibacterial Properties of Chiral Arginine-Stabilized ZnO Nanoparticles. Langmuir 2023, 39 (11) , 4161-4169. https://doi.org/10.1021/acs.langmuir.3c00114
    4. Joel van Embden, Silvia Gross, Kevin R. Kittilstved, Enrico Della Gaspera. Colloidal Approaches to Zinc Oxide Nanocrystals. Chemical Reviews 2023, 123 (1) , 271-326. https://doi.org/10.1021/acs.chemrev.2c00456
    5. Mariana Marin Garcia, Bruna Lallo da Silva, Rodrigo Sorrechia, Rosemeire Cristina Linhari Rodrigues Pietro, Leila Aparecida Chiavacci. Sustainable Antibacterial Activity of Polyamide Fabrics Containing ZnO Nanoparticles. ACS Applied Bio Materials 2022, 5 (8) , 3667-3677. https://doi.org/10.1021/acsabm.2c00104
    6. Mengyu Chen, Xingtong Chen, Wenchen Ma, Xiaojuan Sun, Longjia Wu, Xiongfeng Lin, Yixing Yang, Rui Li, Dongyang Shen, Yu Chen, Song Chen. Highly Stable SnO2-Based Quantum-Dot Light-Emitting Diodes with the Conventional Device Structure. ACS Nano 2022, 16 (6) , 9631-9639. https://doi.org/10.1021/acsnano.2c02912
    7. Jakob Thyr, José Montero, Lars Österlund, Tomas Edvinsson. Energy Alignment of Quantum-Confined ZnO Particles with Copper Oxides for Heterojunctions with Improved Photocatalytic Performance. ACS Nanoscience Au 2022, 2 (2) , 128-139. https://doi.org/10.1021/acsnanoscienceau.1c00040
    8. Chinnappa Arumugam, Gandarvakottai Senthilkumar Arumugam, Ashok Ganesan, Sarojadevi Muthusamy. Mechanical and Water Absorption Properties of Short Banana Fiber/Unsaturated Polyester/Molecular Sieves + ZnO Nanorod Hybrid Nanobiocomposites. ACS Omega 2021, 6 (51) , 35256-35271. https://doi.org/10.1021/acsomega.1c02662
    9. Nathalia Cristina Rissi, Edson J. Comparetti, Bianca Martins Estevão, Valmor Roberto Mastelaro, Valtencir Zucolotto. Doped Plasmonic Zinc Oxide Nanoparticles with Near-Infrared Absorption for Antitumor Activity. ACS Applied Nano Materials 2021, 4 (9) , 9779-9789. https://doi.org/10.1021/acsanm.1c02197
    10. Dong Chen, Desui Chen, Zhenxing Zhang, Yuxun Ye, Luying Ma, Xingliang Dai, Yizheng Jin. Thiol Modification Enables ZnO-Nanocrystal Films with Atmosphere-Independent Conductance. The Journal of Physical Chemistry C 2021, 125 (36) , 20022-20027. https://doi.org/10.1021/acs.jpcc.1c05414
    11. Keroles B. Riad, Suong V. Hoa, Paula M. Wood-Adams. Metal Oxide Quantum Dots Embedded in Silica Matrices Made by Flame Spray Pyrolysis. ACS Omega 2021, 6 (17) , 11411-11417. https://doi.org/10.1021/acsomega.0c06227
    12. Federica Bertolotti, Aurel Tǎbǎcaru, Viorica Muşat, Nicolae Ţigǎu, Antonio Cervellino, Norberto Masciocchi, Antonietta Guagliardi. Band Gap Narrowing in Silane-Grafted ZnO Nanocrystals. A Comprehensive Study by Wide-Angle X-ray Total Scattering Methods. The Journal of Physical Chemistry C 2021, 125 (8) , 4806-4819. https://doi.org/10.1021/acs.jpcc.0c10502
    13. Bárbara L. Jovito, Leonardo G. Paterno, Maria J. A. Sales, Marcos A. Gross, Luciano P. Silva, Paulo de Souza, Sônia N. Báo. Graphene Oxide/Zinc Oxide Nanocomposite Displaying Selective Toxicity to Glioblastoma Cell Lines. ACS Applied Bio Materials 2021, 4 (1) , 829-843. https://doi.org/10.1021/acsabm.0c01369
    14. Wooje Han, Seongkeun Oh, Chan Lee, Jiwan Kim, Hyung-Ho Park. ZnO Nanocrystal Thin Films for Quantum-Dot Light-Emitting Devices. ACS Applied Nano Materials 2020, 3 (8) , 7535-7542. https://doi.org/10.1021/acsanm.0c01186
    15. Wenjuan Zhang, Xingtong Chen, Yuhui Ma, Zhiwei Xu, Longjia Wu, Yixing Yang, Sai-Wing Tsang, Song Chen. Positive Aging Effect of ZnO Nanoparticles Induced by Surface Stabilization. The Journal of Physical Chemistry Letters 2020, 11 (15) , 5863-5870. https://doi.org/10.1021/acs.jpclett.0c01640
    16. Jia Yi Dong, Wen Yu Ji, Shuang Peng Wang, Qi Lin Yuan, You Chao Kong, Shi Chen Su, Kar Wei Ng, Zi Kang Tang. Solvent Effects on the Interface and Film Integrity of Solution-Processed ZnO Electron Transfer Layers for Quantum Dot Light-Emitting Diodes. ACS Applied Electronic Materials 2020, 2 (4) , 1074-1080. https://doi.org/10.1021/acsaelm.0c00091
    17. Taha Ahmed, Tomas Edvinsson. Optical Quantum Confinement in Ultrasmall ZnO and the Effect of Size on Their Photocatalytic Activity. The Journal of Physical Chemistry C 2020, 124 (11) , 6395-6404. https://doi.org/10.1021/acs.jpcc.9b11229
    18. Pierce Wainer, Owen Kendall, Alexander Lamb, Steven J. Barrow, Antonio Tricoli, Daniel E. Gómez, Joel van Embden, Enrico Della Gaspera. Continuous Growth Synthesis of Zinc Oxide Nanocrystals with Tunable Size and Doping. Chemistry of Materials 2019, 31 (23) , 9604-9613. https://doi.org/10.1021/acs.chemmater.9b02655
    19. Jason R. Darvin, Mohammad Sharif Hossain, Mahdi Nabil, Jamie Uertz, G. Mills. Concentrated Ag Nanoparticles in Dodecane as Phase Change Materials for Thermal Energy Storage. ACS Applied Nano Materials 2019, 2 (10) , 6187-6196. https://doi.org/10.1021/acsanm.9b01027
    20. Maria Herbst, Eddie Hofmann, Stephan Förster. Nucleation and Growth Kinetics of ZnO Nanoparticles Studied by in Situ Microfluidic SAXS/WAXS/UV–Vis Experiments. Langmuir 2019, 35 (36) , 11702-11709. https://doi.org/10.1021/acs.langmuir.9b01149
    21. Hyeong Woo Ban, Jong Gyu Oh, Seungki Jo, Hyewon Jeong, Da Hwi Gu, Seongheon Baek, Song Yeul Lee, Yong Il Park, Jaeyoung Jang, Jae Sung Son. Polyphosphide Precursor for Low-Temperature Solution-Processed Fibrous Phosphorus Thin Films. Chemistry of Materials 2019, 31 (15) , 5909-5918. https://doi.org/10.1021/acs.chemmater.9b02183
    22. Zhengtao Chen, Kenneth K. S. Lau. Suppressing Crystallinity by Nanoconfining Polymers Using Initiated Chemical Vapor Deposition. Macromolecules 2019, 52 (14) , 5183-5191. https://doi.org/10.1021/acs.macromol.9b00496
    23. Yifeng Lin, Kathy Lu, Richey Davis. Patterning of ZnO Quantum Dot and PMMA Hybrids with a Solvent-Assisted Technique. Langmuir 2019, 35 (17) , 5855-5863. https://doi.org/10.1021/acs.langmuir.9b00256
    24. Wei Lin, Jochen Schmidt, Michael Mahler, Torben Schindler, Tobias Unruh, Bernd Meyer, Wolfgang Peukert, and Doris Segets . Influence of Tail Groups during Functionalization of ZnO Nanoparticles on Binding Enthalpies and Photoluminescence. Langmuir 2017, 33 (47) , 13581-13589. https://doi.org/10.1021/acs.langmuir.7b03079
    25. Xiaoli Cai, Yanan Luo, Hongye Yan, Dan Du, and Yuehe Lin . pH-Responsive ZnO Nanocluster for Lung Cancer Chemotherapy. ACS Applied Materials & Interfaces 2017, 9 (7) , 5739-5747. https://doi.org/10.1021/acsami.6b13776
    26. Bruno L. Caetano, Valérie Briois, Sandra H. Pulcinelli, Florian Meneau, and Celso V. Santilli . Revisiting the ZnO Q-dot Formation Toward an Integrated Growth Model: From Coupled Time Resolved UV–Vis/SAXS/XAS Data to Multivariate Analysis. The Journal of Physical Chemistry C 2017, 121 (1) , 886-895. https://doi.org/10.1021/acs.jpcc.6b10062
    27. Bo Song, Xia Cui, Yuqiao Wang, Lifang Si, Zhaoxia Kou, Wenwen Tian, Chang Yi, and Yueming Sun . Controllable Growth of Unique Three-Dimensional Layered Basic Zinc Salt/ZnO Binary Structure. Crystal Growth & Design 2016, 16 (9) , 4877-4885. https://doi.org/10.1021/acs.cgd.6b00340
    28. Mohamed Aymen Mahjoub, Guillaume Monier, Christine Robert-Goumet, François Réveret, Mosaab Echabaane, Damien Chaudanson, Matthieu Petit, Luc Bideux, and Bernard Gruzza . Synthesis and Study of Stable and Size-Controlled ZnO–SiO2 Quantum Dots: Application as a Humidity Sensor. The Journal of Physical Chemistry C 2016, 120 (21) , 11652-11662. https://doi.org/10.1021/acs.jpcc.6b00135
    29. Jiangyong Pan, Jing Chen, Qianqian Huang, Qasim Khan, Xiang Liu, Zhi Tao, Zichen Zhang, Wei Lei, and Arokia Nathan . Size Tunable ZnO Nanoparticles To Enhance Electron Injection in Solution Processed QLEDs. ACS Photonics 2016, 3 (2) , 215-222. https://doi.org/10.1021/acsphotonics.5b00267
    30. Torben Schindler, Johannes Walter, Wolfgang Peukert, Doris Segets, and Tobias Unruh . In Situ Study on the Evolution of Multimodal Particle Size Distributions of ZnO Quantum Dots: Some General Rules for the Occurrence of Multimodalities. The Journal of Physical Chemistry B 2015, 119 (49) , 15370-15380. https://doi.org/10.1021/acs.jpcb.5b08005
    31. Stefano Diodati, Paolo Dolcet, Maurizio Casarin, and Silvia Gross . Pursuing the Crystallization of Mono- and Polymetallic Nanosized Crystalline Inorganic Compounds by Low-Temperature Wet-Chemistry and Colloidal Routes. Chemical Reviews 2015, 115 (20) , 11449-11502. https://doi.org/10.1021/acs.chemrev.5b00275
    32. Yungchieh Lai, Michael N. Rutigliano, and Götz Veser . Controlled Embedding of Metal Oxide Nanoparticles in ZSM-5 Zeolites through Preencapsulation and Timed Release. Langmuir 2015, 31 (38) , 10562-10572. https://doi.org/10.1021/acs.langmuir.5b02578
    33. T. Schindler, M. Schmiele, T. Schmutzler, T. Kassar, D. Segets, W. Peukert, A. Radulescu, A. Kriele, R. Gilles, and T. Unruh . A Combined SAXS/SANS Study for the in Situ Characterization of Ligand Shells on Small Nanoparticles: The Case of ZnO. Langmuir 2015, 31 (37) , 10130-10136. https://doi.org/10.1021/acs.langmuir.5b02198
    34. Giulia Morgese, Valerio Causin, Michele Maggini, Stefano Corrà, Silvia Gross, and Edmondo M. Benetti . Ultrastable Suspensions of Polyoxazoline-Functionalized ZnO Single Nanocrystals. Chemistry of Materials 2015, 27 (8) , 2957-2964. https://doi.org/10.1021/acs.chemmater.5b00252
    35. Arunasish Layek, Paul C. Stanish, Vadim Chirmanov, and Pavle V. Radovanovic . Hybrid ZnO-Based Nanoconjugate for Efficient and Sustainable White Light Generation. Chemistry of Materials 2015, 27 (3) , 1021-1030. https://doi.org/10.1021/cm504330k
    36. Wei Lin, Johannes Walter, Alexandra Burger, Harald Maid, Andreas Hirsch, Wolfgang Peukert, and Doris Segets . A General Approach To Study the Thermodynamics of Ligand Adsorption to Colloidal Surfaces Demonstrated by Means of Catechols Binding to Zinc Oxide Quantum Dots. Chemistry of Materials 2015, 27 (1) , 358-369. https://doi.org/10.1021/cm504080d
    37. Alojz Anžlovar, Ksenija Kogej, Zorica Crnjak Orel, and Majda Žigon . Impact of Inorganic Hydroxides on ZnO Nanoparticle Formation and Morphology. Crystal Growth & Design 2014, 14 (9) , 4262-4269. https://doi.org/10.1021/cg401870e
    38. T. Rossi, T. J. Penfold, M. H. Rittmann-Frank, M. Reinhard, J. Rittmann, C. N. Borca, D. Grolimund, C. J. Milne, and M. Chergui . Characterizing the Structure and Defect Concentration of ZnO Nanoparticles in a Colloidal Solution. The Journal of Physical Chemistry C 2014, 118 (33) , 19422-19430. https://doi.org/10.1021/jp505559u
    39. Nguyen T. K. Thanh, N. Maclean, and S. Mahiddine . Mechanisms of Nucleation and Growth of Nanoparticles in Solution. Chemical Reviews 2014, 114 (15) , 7610-7630. https://doi.org/10.1021/cr400544s
    40. Sujun Yuan, Jiuke Mu, Ruiyi Mao, Yaogang Li, Qinghong Zhang, and Hongzhi Wang . All-Nanoparticle Self-assembly ZnO/TiO2 Heterojunction Thin Films with Remarkably Enhanced Photoelectrochemical Activity. ACS Applied Materials & Interfaces 2014, 6 (8) , 5719-5725. https://doi.org/10.1021/am500314n
    41. Matthew P. Shortell, Joseph F. S. Fernando, Esa A. Jaatinen, and Eric R. Waclawik . Accurate Measurement of the Molecular Thickness of Thin Organic Shells on Small Inorganic Cores Using Dynamic Light Scattering. Langmuir 2014, 30 (2) , 470-476. https://doi.org/10.1021/la403391t
    42. T. Jesper Jacobsson and Tomas Edvinsson . A Spectroelectrochemical Method for Locating Fluorescence Trap States in Nanoparticles and Quantum Dots. The Journal of Physical Chemistry C 2013, 117 (10) , 5497-5504. https://doi.org/10.1021/jp311905t
    43. T. Jesper Jacobsson and Tomas Edvinsson . Photoelectrochemical Determination of the Absolute Band Edge Positions as a Function of Particle Size for ZnO Quantum Dots. The Journal of Physical Chemistry C 2012, 116 (29) , 15692-15701. https://doi.org/10.1021/jp302220w
    44. Shouqin Tian, Fan Yang, Dawen Zeng, and Changsheng Xie . Solution-Processed Gas Sensors Based on ZnO Nanorods Array with an Exposed (0001) Facet for Enhanced Gas-Sensing Properties. The Journal of Physical Chemistry C 2012, 116 (19) , 10586-10591. https://doi.org/10.1021/jp2123778
    45. Sankarapillai Mahesh, Anesh Gopal, Rajasekaran Thirumalai, and Ayyappanpillai Ajayaghosh . Light-Induced Ostwald Ripening of Organic Nanodots to Rods. Journal of the American Chemical Society 2012, 134 (17) , 7227-7230. https://doi.org/10.1021/ja301002g
    46. David Raymand, T. Jesper Jacobsson, Kersti Hermansson, and Tomas Edvinsson . Investigation of Vibrational Modes and Phonon Density of States in ZnO Quantum Dots. The Journal of Physical Chemistry C 2012, 116 (12) , 6893-6901. https://doi.org/10.1021/jp300985k
    47. Gary A. Beane, Anthony J. Morfa, Alison M. Funston, and Paul Mulvaney . Defect-Mediated Energy Transfer between ZnO Nanocrystals and a Conjugated Dye. The Journal of Physical Chemistry C 2012, 116 (5) , 3305-3310. https://doi.org/10.1021/jp209638g
    48. Matías E. Aguirre, Hernán B. Rodríguez, Enrique San Román, Armin Feldhoff, and María A. Grela . Ag@ZnO Core–Shell Nanoparticles Formed by the Timely Reduction of Ag+ Ions and Zinc Acetate Hydrolysis in N,N-Dimethylformamide: Mechanism of Growth and Photocatalytic Properties. The Journal of Physical Chemistry C 2011, 115 (50) , 24967-24974. https://doi.org/10.1021/jp209117s
    49. Sekika Yamamoto . Photoenhanced Band-Edge Luminescence in ZnO Nanocrystals Dispersed in Ethanol. The Journal of Physical Chemistry C 2011, 115 (44) , 21635-21640. https://doi.org/10.1021/jp207621s
    50. T. Jesper Jacobsson and Tomas Edvinsson . Absorption and Fluorescence Spectroscopy of Growing ZnO Quantum Dots: Size and Band Gap Correlation and Evidence of Mobile Trap States. Inorganic Chemistry 2011, 50 (19) , 9578-9586. https://doi.org/10.1021/ic201327n
    51. Martin Søndergaard, Espen D. Bøjesen, Mogens Christensen, and Bo B. Iversen . Size and Morphology Dependence of ZnO Nanoparticles Synthesized by a Fast Continuous Flow Hydrothermal Method. Crystal Growth & Design 2011, 11 (9) , 4027-4033. https://doi.org/10.1021/cg200596c
    52. Susanne Krüger, Stephen G. Hickey, Stefanie Tscharntke, and Alexander Eychmüller . Study of the Attachment of Linker Molecules and Their Effects on the Charge Carrier Transfer at Lead Sulfide Nanoparticle Sensitized ZnO Substrates. The Journal of Physical Chemistry C 2011, 115 (26) , 13047-13055. https://doi.org/10.1021/jp200935x
    53. Doris Segets, Renata Marczak, Stefan Schäfer, Carolin Paula, Jan-Frederik Gnichwitz, Andreas Hirsch, and Wolfgang Peukert . Experimental and Theoretical Studies of the Colloidal Stability of Nanoparticles−A General Interpretation Based on Stability Maps. ACS Nano 2011, 5 (6) , 4658-4669. https://doi.org/10.1021/nn200465b
    54. Chia-Ming Wu, Jonas Baltrusaitis, Edward G. Gillan, and Vicki H. Grassian . Sulfur Dioxide Adsorption on ZnO Nanoparticles and Nanorods. The Journal of Physical Chemistry C 2011, 115 (20) , 10164-10172. https://doi.org/10.1021/jp201986j
    55. Hironobu Hayashi, Ian V. Lightcap, Masahiko Tsujimoto, Mikio Takano, Tomokazu Umeyama, Prashant V. Kamat, and Hiroshi Imahori . Electron Transfer Cascade by Organic/Inorganic Ternary Composites of Porphyrin, Zinc Oxide Nanoparticles, and Reduced Graphene Oxide on a Tin Oxide Electrode that Exhibits Efficient Photocurrent Generation. Journal of the American Chemical Society 2011, 133 (20) , 7684-7687. https://doi.org/10.1021/ja201813n
    56. Marianna Tsaroucha, Yilmaz Aksu, Elisabeth Irran, and Matthias Driess . Synthesis of Stannyl-Substituted Zn4O4 Cubanes as Single-Source Precursors for Amorphous Tin-Doped ZnO and Zn2SnO4 Nanocrystals and Their Potential for Thin Film Field Effect Transistor Applications. Chemistry of Materials 2011, 23 (9) , 2428-2438. https://doi.org/10.1021/cm200282w
    57. Natsumi Watanabe and Shinobu Fujihara . Chemical Purification of ZnO Nanoparticles by Dialyzing Treatments and Their Use in Fabricating Luminescent Antireflective Nanocomposite Thin Films. Industrial & Engineering Chemistry Research 2011, 50 (9) , 5611-5617. https://doi.org/10.1021/ie102528e
    58. Renata Marczak, Fabian Werner, Rameez Ahmad, Volodymyr Lobaz, Dirk M. Guldi, and Wolfgang Peukert . Detailed Investigations of ZnO Photoelectrodes Preparation for Dye Sensitized Solar Cells. Langmuir 2011, 27 (7) , 3920-3929. https://doi.org/10.1021/la1042876
    59. Haibo Zeng, Shikuan Yang, and Weiping Cai . Reshaping Formation and Luminescence Evolution of ZnO Quantum Dots by Laser-Induced Fragmentation in Liquid. The Journal of Physical Chemistry C 2011, 115 (12) , 5038-5043. https://doi.org/10.1021/jp109010c
    60. Bruno L. Caetano, Celso V. Santilli, Florian Meneau, Valérie Briois, and Sandra H. Pulcinelli . In Situ and Simultaneous UV−vis/SAXS and UV−vis/XAFS Time-Resolved Monitoring of ZnO Quantum Dots Formation and Growth. The Journal of Physical Chemistry C 2011, 115 (11) , 4404-4412. https://doi.org/10.1021/jp109585t
    61. Dan R. Clary and G. Mills . Preparation and Thermal Properties of CuO Particles. The Journal of Physical Chemistry C 2011, 115 (5) , 1767-1775. https://doi.org/10.1021/jp110102r
    62. Julia E. Rossini, Adam S. Huss, Jon N. Bohnsack, David A. Blank, Kent R. Mann, and Wayne L. Gladfelter. Binding and Static Quenching Behavior of a Terthiophene Carboxylate on Monodispersed Zinc Oxide Nanocrystals. The Journal of Physical Chemistry C 2011, 115 (1) , 11-17. https://doi.org/10.1021/jp1080143
    63. Adam S. Huss, Julia E. Rossini, Darren J. Ceckanowicz, Jon N. Bohnsack, Kent R. Mann, Wayne L. Gladfelter, and David A. Blank. Photoinitiated Electron Transfer Dynamics of a Terthiophene Carboxylate on Monodispersed Zinc Oxide Nanocrystals. The Journal of Physical Chemistry C 2011, 115 (1) , 2-10. https://doi.org/10.1021/jp108028d
    64. Anthony J. Morfa, Gary Beane, Benjamin Mashford, Birendra Singh, Enrico Della Gaspera, Alex Martucci, and Paul Mulvaney . Fabrication of ZnO Thin Films from Nanocrystal Inks. The Journal of Physical Chemistry C 2010, 114 (46) , 19815-19821. https://doi.org/10.1021/jp107043z
    65. Prashant V. Kamat, Kevin Tvrdy, David R. Baker, Emmy J. Radich. Beyond Photovoltaics: Semiconductor Nanoarchitectures for Liquid-Junction Solar Cells. Chemical Reviews 2010, 110 (11) , 6664-6688. https://doi.org/10.1021/cr100243p
    66. Luyuan Zhang, Longwei Yin, Chengxiang Wang, Ning Lun and Yongxin Qi. Sol−Gel Growth of Hexagonal Faceted ZnO Prism Quantum Dots with Polar Surfaces for Enhanced Photocatalytic Activity. ACS Applied Materials & Interfaces 2010, 2 (6) , 1769-1773. https://doi.org/10.1021/am100274d
    67. Luyuan Zhang, Longwei Yin, Chengxiang Wang, Ning lun, Yongxin Qi and Dong Xiang. Origin of Visible Photoluminescence of ZnO Quantum Dots: Defect-Dependent and Size-Dependent. The Journal of Physical Chemistry C 2010, 114 (21) , 9651-9658. https://doi.org/10.1021/jp101324a
    68. Manoj Raula, Md. Harunar Rashid, Tapas K. Paira, Enakshi Dinda and Tarun K. Mandal. Ascorbate-Assisted Growth of Hierarchical ZnO Nanostructures: Sphere, Spindle, and Flower and Their Catalytic Properties. Langmuir 2010, 26 (11) , 8769-8782. https://doi.org/10.1021/la904507q
    69. Fan Li, Yuqiang Qian and Andreas Stein. Template-Directed Synthesis and Organization of Shaped Oxide/Phosphate Nanoparticles. Chemistry of Materials 2010, 22 (10) , 3226-3235. https://doi.org/10.1021/cm100478z
    70. Michael Voigt, Martin Klaumünzer, Heiko Thiem and Wolfgang Peukert . Detailed Analysis of the Growth Kinetics of ZnO Nanorods in Methanol. The Journal of Physical Chemistry C 2010, 114 (14) , 6243-6249. https://doi.org/10.1021/jp911258d
    71. Jan Mrázek, Lubomir Spanhel, Geneviève Chadeyron and Vlastimil Matějec . Evolution and Eu3+ Doping of Sol−Gel Derived Ternary ZnxTiyOz - Nanocrystals. The Journal of Physical Chemistry C 2010, 114 (7) , 2843-2852. https://doi.org/10.1021/jp9036217
    72. Graeme Williams and Prashant V. Kamat. Graphene−Semiconductor Nanocomposites: Excited-State Interactions between ZnO Nanoparticles and Graphene Oxide. Langmuir 2009, 25 (24) , 13869-13873. https://doi.org/10.1021/la900905h
    73. Bing Luo, Julia E. Rossini and Wayne L. Gladfelter. Zinc Oxide Nanocrystals Stabilized by Alkylammonium Alkylcarbamates. Langmuir 2009, 25 (22) , 13133-13141. https://doi.org/10.1021/la901830n
    74. Eugenio H. Otal, Mara Granada, Horacio E. Troiani, Horacio Cánepa and Noemí E. Walsöe de Reca . Nanostructured Colloidal Crystals from Forced Hydrolysis Methods. Langmuir 2009, 25 (16) , 9051-9056. https://doi.org/10.1021/la900807t
    75. Ningzhong Bao, Liming Shen, Wei An, Prahallad Padhan, C. Heath Turner and Arunava Gupta . Formation Mechanism and Shape Control of Monodisperse Magnetic CoFe2O4 Nanocrystals. Chemistry of Materials 2009, 21 (14) , 3458-3468. https://doi.org/10.1021/cm901033m
    76. Doris Segets, Lars Martinez Tomalino, Johannes Gradl and Wolfgang Peukert. Real-Time Monitoring of the Nucleation and Growth of ZnO Nanoparticles Using an Optical Hyper-Rayleigh Scattering Method. The Journal of Physical Chemistry C 2009, 113 (28) , 11995-12001. https://doi.org/10.1021/jp9009965
    77. Frederick Ochanda, Kevin Cho, Dickson Andala, Thomas C. Keane, Ari Atkinson and Wayne E. Jones, Jr. . Synthesis and Optical Properties of Co-Doped ZnO Submicrometer Tubes from Electrospun Fiber Templates. Langmuir 2009, 25 (13) , 7547-7552. https://doi.org/10.1021/la802753k
    78. Ming Sun and Xiurong Yang . Phosphine-Free Synthesis of High-Quality CdSe Nanocrystals in Noncoordination Solvents: “Activating Agent” and “Nucleating Agent” Controlled Nucleation and Growth. The Journal of Physical Chemistry C 2009, 113 (20) , 8701-8709. https://doi.org/10.1021/jp811308h
    79. Y.W. Chen, Q. Qiao, Y.C. Liu and G.L. Yang . Size-Controlled Synthesis and Optical Properties of Small-Sized ZnO Nanorods. The Journal of Physical Chemistry C 2009, 113 (18) , 7497-7502. https://doi.org/10.1021/jp809778w
    80. Renata Marczak, Fabian Werner, Jan-Frederik Gnichwitz, Andreas Hirsch, Dirk M. Guldi and Wolfgang Peukert . Communication via Electron and Energy Transfer between Zinc Oxide Nanoparticles and Organic Adsorbates. The Journal of Physical Chemistry C 2009, 113 (11) , 4669-4678. https://doi.org/10.1021/jp810696h
    81. Dazhi Sun, W. Neil Everett, Minhao Wong, Hung-Jue Sue and Nobuo Miyatake. Tuning of the Dispersion of Ligand-Free ZnO Quantum Dots in Polymer Matrices with Exfoliated Nanoplatelets. Macromolecules 2009, 42 (5) , 1665-1671. https://doi.org/10.1021/ma801979c
    82. Y. Paukku, A. Michalkova and J. Leszczynski . Quantum-Chemical Comprehensive Study of the Organophosphorus Compounds Adsorption on Zinc Oxide Surfaces. The Journal of Physical Chemistry C 2009, 113 (4) , 1474-1485. https://doi.org/10.1021/jp807744a
    83. Shi-Feng Li, Xin-Ming Zhang, Wan-Xin Du, Yong-Hong Ni and Xian-Wen Wei. Chemiluminescence Reactions of a Luminol System Catalyzed by ZnO Nanoparticles. The Journal of Physical Chemistry C 2009, 113 (3) , 1046-1051. https://doi.org/10.1021/jp808312j
    84. Yuan-Qing Li, Yang Yang, Shao-Yun Fu, Xiao-Yan Yi, Liang-Chen Wang and Hong-Da Chen. Transparent and Light-Emitting Epoxy Super-Nanocomposites Containing ZnO-QDs/SiO2 Nanocomposite Particles as Encapsulating Materials for Solid-State Lighting. The Journal of Physical Chemistry C 2008, 112 (47) , 18616-18622. https://doi.org/10.1021/jp8050609
    85. Yuan-Qing Li, Yang Yang, Chang Q Sun and Shao-Yun Fu. Significant Enhancements in the Fluorescence and Phosphorescence of ZnO Quantum Dots/SiO2 Nanocomposites by Calcination. The Journal of Physical Chemistry C 2008, 112 (44) , 17397-17401. https://doi.org/10.1021/jp8063068
    86. Shaohua Shen, Liang Zhao, Zhaohui Zhou and Liejin Guo. Enhanced Photocatalytic Hydrogen Evolution over Cu-Doped ZnIn2S4 under Visible Light Irradiation. The Journal of Physical Chemistry C 2008, 112 (41) , 16148-16155. https://doi.org/10.1021/jp804525q
    87. Dazhi Sun, Hung-Jue Sue and Nobuo Miyatake . Optical Properties of ZnO Quantum Dots in Epoxy with Controlled Dispersion. The Journal of Physical Chemistry C 2008, 112 (41) , 16002-16010. https://doi.org/10.1021/jp805104h
    88. Dong-Feng Zhang, Ling-Dong Sun, Jing Zhang, Zheng-Guang Yan and Chun-Hua Yan. Hierarchical Construction of ZnO Architectures Promoted by Heterogeneous Nucleation. Crystal Growth & Design 2008, 8 (10) , 3609-3615. https://doi.org/10.1021/cg800143x
    89. Takashi Tachikawa, Jun Rye Choi, Mamoru Fujitsuka and Tetsuro Majima. Photoinduced Charge-Transfer Processes on MOF-5 Nanoparticles: Elucidating Differences between Metal-Organic Frameworks and Semiconductor Metal Oxides. The Journal of Physical Chemistry C 2008, 112 (36) , 14090-14101. https://doi.org/10.1021/jp803620v
    90. Reenamole Georgekutty, Michael K. Seery and Suresh C. Pillai . A Highly Efficient Ag-ZnO Photocatalyst: Synthesis, Properties, and Mechanism. The Journal of Physical Chemistry C 2008, 112 (35) , 13563-13570. https://doi.org/10.1021/jp802729a
    91. Agnieszka Kawska, Patrick Duchstein, Oliver Hochrein and Dirk Zahn. Atomistic Mechanisms of ZnO Aggregation from Ethanolic Solution: Ion Association, Proton Transfer, and Self-Organization. Nano Letters 2008, 8 (8) , 2336-2340. https://doi.org/10.1021/nl801169x
    92. Chiing-Chang Chen, Huan-Jung Fan and Jeng-Lyan Jan. Degradation Pathways and Efficiencies of Acid Blue 1 by Photocatalytic Reaction with ZnO Nanopowder. The Journal of Physical Chemistry C 2008, 112 (31) , 11962-11972. https://doi.org/10.1021/jp801027r
    93. Ya-Ping Du, Ya-Wen Zhang, Ling-Dong Sun and Chun-Hua Yan. Efficient Energy Transfer in Monodisperse Eu-Doped ZnO Nanocrystals Synthesized from Metal Acetylacetonates in High-Boiling Solvents. The Journal of Physical Chemistry C 2008, 112 (32) , 12234-12241. https://doi.org/10.1021/jp802958x
    94. Yang Yang, Yuan-Qing Li, Shao-Yun Fu and Hong-Mei Xiao. Transparent and Light-Emitting Epoxy Nanocomposites Containing ZnO Quantum Dots as Encapsulating Materials for Solid State Lighting. The Journal of Physical Chemistry C 2008, 112 (28) , 10553-10558. https://doi.org/10.1021/jp802111q
    95. Huan-Ming Xiong, Yang Xu, Qing-Guang Ren and Yong-Yao Xia . Stable Aqueous ZnO@Polymer Core−Shell Nanoparticles with Tunable Photoluminescence and Their Application in Cell Imaging. Journal of the American Chemical Society 2008, 130 (24) , 7522-7523. https://doi.org/10.1021/ja800999u
    96. Xuefei Sun, Xiaoqing Qiu, Liping Li and Guangshe Li. ZnO Twin-Cones: Synthesis, Photoluminescence, and Catalytic Decomposition of Ammonium Perchlorate. Inorganic Chemistry 2008, 47 (10) , 4146-4152. https://doi.org/10.1021/ic702348c
    97. Yichun Liu, Mingya Zhong, Guiye Shan, Yajun Li, Baiqu Huang and Guoliang Yang. Biocompatible ZnO/Au Nanocomposites for Ultrasensitive DNA Detection Using Resonance Raman Scattering. The Journal of Physical Chemistry B 2008, 112 (20) , 6484-6489. https://doi.org/10.1021/jp710399d
    98. Peter Lipowsky,, Niklas Hedin,, Joachim Bill,, Rudolf C. Hoffmann,, Anwar Ahniyaz,, Fritz Aldinger, and, Lennart Bergström. Controlling the Assembly of Nanocrystalline ZnO Films by a Transient Amorphous Phase in Solution. The Journal of Physical Chemistry C 2008, 112 (14) , 5373-5383. https://doi.org/10.1021/jp077201a
    99. Yongsheng Liu,, Wenqin Luo,, Renfu Li,, Guokui Liu,, Mark R. Antonio, and, Xueyuan Chen. Optical Spectroscopy of Eu3+ Doped ZnO Nanocrystals. The Journal of Physical Chemistry C 2008, 112 (3) , 686-694. https://doi.org/10.1021/jp077001z
    100. Ziwei Deng,, Min Chen,, Guangxin Gu, and, Limin Wu. A Facile Method to Fabricate ZnO Hollow Spheres and Their Photocatalytic Property. The Journal of Physical Chemistry B 2008, 112 (1) , 16-22. https://doi.org/10.1021/jp077662w
    Load more citations

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 1991, 113, 8, 2826–2833
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja00008a004
    Published April 1, 1991

    Article Views

    11k

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.