ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Measurements of H.alpha.-HN vicinal coupling constants in a protein with large line widths in a new 3D 1H-15N-13C quadruple resonance NMR experiment

Cite this: J. Am. Chem. Soc. 1991, 113, 16, 6323–6324
Publication Date (Print):July 1, 1991
https://doi.org/10.1021/ja00016a088
    ACS Legacy Archive

    Article Views

    75

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 20 publications.

    1. Frank Löhr,, Jürgen M. Schmidt, and, Heinz Rüterjans. Simultaneous Measurement of 3JHN,Hα and 3JHα,Hβ Coupling Constants in 13C,15N-Labeled Proteins. Journal of the American Chemical Society 1999, 121 (50) , 11821-11826. https://doi.org/10.1021/ja991356h
    2. Katiuscia Pagano, Federico Fogolari, Alessandra Corazza, Paolo Viglino, Gennaro Esposito. Estimation of $$^{3}J_{HN\hbox{-}H\alpha}$$ and $$^{3}J_{H\alpha\hbox{-}H\beta}$$ coupling constants from heteronuclear TOCSY spectra. Journal of Biomolecular NMR 2007, 39 (3) , 213-222. https://doi.org/10.1007/s10858-007-9190-6
    3. JOHN CAVANAGH, WAYNE J. FAIRBROTHER, ARTHUR G. PALMER, MARK RANCE, NICHOLAS J. SKELTON. HETERONUCLEAR NMR EXPERIMENTS. 2007, 533-678. https://doi.org/10.1016/B978-012164491-8/50009-9
    4. Helena Aitio, Perttu Permi. Semi-Constant-Time HMSQC (SCT-HMSQC-HA) for the Measurement of 3JHNHα Couplings in 15N-Labeled Proteins. Journal of Magnetic Resonance 2000, 143 (2) , 391-396. https://doi.org/10.1006/jmre.1999.2010
    5. Luciano Mueller, N. Vasant Kumar. Multidimensional NMR of macromolecules. 1996, 85-157. https://doi.org/10.1016/B978-044489410-6/50004-0
    6. Matthias Eberstadt, Gerd Gemmecker, Dale F. Mierke, Horst Kessler. Scalar Coupling Constants—Their Analysis and Their Application for the Elucidation of Structures. Angewandte Chemie International Edition in English 1995, 34 (16) , 1671-1695. https://doi.org/10.1002/anie.199516711
    7. Matthias Eberstadt, Gerd Gemmecker, Dale F. Mierke, Horst Kessler. Skalare Kopplungen – ihre Analyse und ihre Verwendung zur Strukturaufklärung. Angewandte Chemie 1995, 107 (16) , 1813-1838. https://doi.org/10.1002/ange.19951071604
    8. David G. Vander Velde, James Matsuura, Mark C. Manning. Two-, Three-, and Four-Dimensional Nuclear Magnetic Resonance Spectroscopy of Protein Pharmaceuticals. 1995, 179-218. https://doi.org/10.1007/978-1-4899-1079-0_5
    9. Frank Löhr, Heinz Rüterjans. (H)NCAHA and (H)CANNH experiments for the determination of vicinal coupling constants related to the ϕ-torsion angle. Journal of Biomolecular NMR 1995, 5 (1) , 25-36. https://doi.org/10.1007/BF00227467
    10. David M. LeMaster. Isotope labeling in solution protein assignment and structural analysis. Progress in Nuclear Magnetic Resonance Spectroscopy 1994, 26 , 371-419. https://doi.org/10.1016/0079-6565(94)80010-3
    11. Ad Bax, Geerten W Vuister, Stephan Grzesiek, Frank Delaglio, Andy C Wang, Rolf Tschudin, Guang Zhu. [2] Measurement of homo- and heteronuclear J couplings from quantitative J correlation. 1994, 79-105. https://doi.org/10.1016/S0076-6879(94)39004-5
    12. K. V. R. Chary, Vinit K. Rastogi, Girjesh Govil, H. Todd Miles. Estimation of 31 P– 1 H and 1 H– 1 H vicinal coupling constants along the DNA backbone by 2D HELCO measurements. J. Chem. Soc., Chem. Commun. 1994, 31 (3) , 241-242. https://doi.org/10.1039/C39940000241
    13. Gerard W. Canters, Cornelis W. Hilbers, Mart Van de Kamp, Sybren S. Wijmenga. [9] Multidimensional nuclear magnetic resonance methods to probe metal environments in proteins. 1993, 244-290. https://doi.org/10.1016/0076-6879(93)27011-5
    14. . References. 1993, 431-468. https://doi.org/10.1016/S0066-4103(08)60071-X
    15. Robert T. Clubb, Gerhard Wagner. A triple-resonance pulse scheme for selectively correlating amide1HN and15N nuclei with the1Hα proton of the preceding residue. Journal of Biomolecular NMR 1992, 2 (4) , 389-394. https://doi.org/10.1007/BF01874816
    16. Gerhard Wagner, V. Thanabal, Brian J. Stockman, Jeffrey W. Peng, N. R. Nirmala, Sven G. Hyberts, Matthew S. Goldberg, David J. Detlefsen, Robert T. Clubb, Marc Adler. NMR studies of structure and dynamics of isotope enriched proteins. Biopolymers 1992, 32 (4) , 381-390. https://doi.org/10.1002/bip.360320414
    17. Peter Schmieder, Horst Kessler. Determination of the ϕ angle in a peptide backbone by NMR spectroscopy with a combination of homonuclear and heteronuclear coupling constants. Biopolymers 1992, 32 (4) , 435-440. https://doi.org/10.1002/bip.360320421
    18. Robert T. Clubb, V. Thanabal, Gerhard Wagner. A new 3D HN(CA)HA experiment for obtaining fingerprint HN-Hα cross peaks in15N- and13C-labeled proteins. Journal of Biomolecular NMR 1992, 2 (2) , 203-210. https://doi.org/10.1007/BF01875531
    19. Robert T Clubb, V Thanabal, Gerhard Wagner. A constant-time three-dimensional triple-resonance pulse scheme to correlate intraresidue 1HN, 15N, and 13C′ chemical shifts in 15N13C-labelled proteins. Journal of Magnetic Resonance (1969) 1992, 97 (1) , 213-217. https://doi.org/10.1016/0022-2364(92)90252-3
    20. Geerten W. Vuister, Marco Tessari, Yasmin Karimi-Nejad, Brian Whitehead. Pulse Sequences for Measuring Coupling Constants. , 195-257. https://doi.org/10.1007/0-306-47083-7_6

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect