ACS Publications. Most Trusted. Most Cited. Most Read
Conformation of two 4'-thio-2'-deoxynucleoside analogs studied by 5000-MHz proton NMR spectroscopy and x-ray crystallography.
My Activity

Figure 1Loading Img
    article

    Conformation of two 4'-thio-2'-deoxynucleoside analogs studied by 5000-MHz proton NMR spectroscopy and x-ray crystallography.
    Click to copy article linkArticle link copied!

    ACS Legacy Archive
    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 1992, 114, 25, 9936–9943
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja00051a028
    Published December 1, 1992

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Terms & Conditions

    Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 40 publications.

    1. Gourav Das, S. Harikrishna, Kiran R. Gore. Investigating the Effect of Chemical Modifications on the Ribose Sugar Conformation, Watson–Crick Base Pairing, and Intrastrand Stacking Interactions: A Theoretical Approach. The Journal of Physical Chemistry B 2024, 128 (35) , 8313-8331. https://doi.org/10.1021/acs.jpcb.4c02557
    2. Matthew Maddess John McIntosh Wonsuk Chang . Discovery and Chemical Development of Uvelostinag (MK-1454): A Therapeutic Cyclic Dinucleotide Agonist of the Stimulator of Interferon Gene. , 1-94. https://doi.org/10.1021/bk-2022-1423.ch001
    3. Hashem A. Taha, Michele R. Richards, and Todd L. Lowary . Conformational Analysis of Furanoside-Containing Mono- and Oligosaccharides. Chemical Reviews 2013, 113 (3) , 1851-1876. https://doi.org/10.1021/cr300249c
    4. Jarrod W. Johnson, Darryl P. Evanoff, Marc E. Savard, Gerald Lange, Timothy R. Ramadhar, Abdeljalil Assoud, Nicholas J. Taylor and Gary I. Dmitrienko. Cyclobutanone Mimics of Penicillins: Effects of Substitution on Conformation and Hemiketal Stability. The Journal of Organic Chemistry 2008, 73 (18) , 6970-6982. https://doi.org/10.1021/jo801274m
    5. Joseph J. Barchi, Jr., Rajeshri G. Karki, Marc C. Nicklaus, Maqbool A. Siddiqui, Clifford George, Igor A. Mikhailopulo and Victor E. Marquez. Comprehensive Structural Studies of 2′,3′-Difluorinated Nucleosides: Comparison of Theory, Solution, and Solid State. Journal of the American Chemical Society 2008, 130 (28) , 9048-9057. https://doi.org/10.1021/ja800964g
    6. Jonathan K. Watts, Blair D. Johnston, Kumarasamy Jayakanthan, Alexander S. Wahba, B. Mario Pinto and Masad J. Damha. Synthesis and Biophysical Characterization of Oligonucleotides Containing a 4′-Selenonucleotide. Journal of the American Chemical Society 2008, 130 (27) , 8578-8579. https://doi.org/10.1021/ja802205u
    7. Gourav Das, S. Harikrishna, Kiran R. Gore. Influence of Sugar Modifications on the Nucleoside Conformation and Oligonucleotide Stability: A Critical Review. The Chemical Record 2022, 22 (12) https://doi.org/10.1002/tcr.202200174
    8. Mary K. Yates, Katherine L. Seley-Radtke. The evolution of antiviral nucleoside analogues: A review for chemists and non-chemists. Part II: Complex modifications to the nucleoside scaffold. Antiviral Research 2019, 162 , 5-21. https://doi.org/10.1016/j.antiviral.2018.11.016
    9. Marina Evich, Alexander M. Spring-Connell, Markus W. Germann. Impact of modified ribose sugars on nucleic acid conformation and function. Heterocyclic Communications 2017, 23 (3) , 155-165. https://doi.org/10.1515/hc-2017-0056
    10. Didier LeNouen, Albert Defoin, Jean-Bernard Behr. Determination of the Relative Configuration and Conformational Analysis of Five-membered N -Acyl-Iminosugars by Relevant 3 J Coupling Constants.. ChemistrySelect 2016, 1 (6) , 1256-1267. https://doi.org/10.1002/slct.201600287
    11. N. Tarashima, T. Sumitomo, H. Ando, K. Furukawa, T. Ishida, N. Minakawa. Synthesis of DNA fragments containing 2′-deoxy-4′-selenonucleoside units using DNA polymerases: comparison of dNTPs with O, S and Se at the 4′-position in replication. Organic & Biomolecular Chemistry 2015, 13 (25) , 6949-6952. https://doi.org/10.1039/C5OB00941C
    12. Ryogo Minamimoto, Jun Toyohara, Ayako Seike, Hideyuki Ito, Hisako Endo, Miyako Morooka, Kazuhiko Nakajima, Takuya Mitsumoto, Kimiteru Ito, Momoko Okasaki, Kiichi Ishiwata, Kazuo Kubota. 4′-[Methyl- 11 C]-Thiothymidine PET/CT for Proliferation Imaging in Non–Small Cell Lung Cancer. Journal of Nuclear Medicine 2012, 53 (2) , 199-206. https://doi.org/10.2967/jnumed.111.095539
    13. Feng Zheng, Lin Fu, Renxiao Wang, Feng-Ling Qing. Synthesis and conformational analysis of d -2′-deoxy-2′,2′-difluoro-4′-dihydro-4′-thionucleosides. Org. Biomol. Chem. 2010, 8 (1) , 163-170. https://doi.org/10.1039/B914679B
    14. Pieter MS Hendrickx, José C Martins. A user-friendly Matlab program and GUI for the pseudorotation analysis of saturated five-membered ring systems based on scalar coupling constants. Chemistry Central Journal 2008, 2 (1) https://doi.org/10.1186/1752-153X-2-20
    15. Kumarasamy Jayakanthan, Blair D. Johnston, B. Mario Pinto. Stereoselective synthesis of 4′-selenonucleosides using the Pummerer glycosylation reaction. Carbohydrate Research 2008, 343 (10-11) , 1790-1800. https://doi.org/10.1016/j.carres.2008.02.014
    16. Mayumi Takahashi, Shunsuke Daidouji, Motoo Shiro, Noriaki Minakawa, Akira Matsuda. Synthesis and crystal structure of 2′-deoxy-2′-fluoro-4′-thioribonucleosides: substrates for the synthesis of novel modified RNAs. Tetrahedron 2008, 64 (19) , 4313-4324. https://doi.org/10.1016/j.tet.2008.02.071
    17. Akimasa Matsugami, Takako Ohyama, Masashi Inada, Naonori Inoue, Noriaki Minakawa, Akira Matsuda, Masato Katahira. Unexpected A-form formation of 4′-thioDNA in solution, revealed by NMR, and the implications as to the mechanism of nuclease resistance. Nucleic Acids Research 2008, 36 (6) , 1805-1812. https://doi.org/10.1093/nar/gkn011
    18. Jun Toyohara, Maki Okada, Chie Toramatsu, Kazutoshi Suzuki, Toshiaki Irie. Feasibility studies of 4′-[methyl-11C]thiothymidine as a tumor proliferation imaging agent in mice. Nuclear Medicine and Biology 2008, 35 (1) , 67-74. https://doi.org/10.1016/j.nucmedbio.2007.10.001
    19. Jun Toyohara, Akio Hayashi, Mikiko Sato, Akie Gogami, Hiromichi Tanaka, Kazuhiro Haraguchi, Yuichi Yoshimura, Hiroki Kumamoto, Yoshiharu Yonekura, Yasuhisa Fujibayashi. Development of radioiodinated nucleoside analogs for imaging tissue proliferation: comparisons of six 5-iodonucleosides. Nuclear Medicine and Biology 2003, 30 (7) , 687-696. https://doi.org/10.1016/S0969-8051(03)00081-7
    20. Vı́ctor Ulgar, Óscar López, Inés Maya, José G Fernández-Bolaños, Mikael Bols. Synthesis of furan 4′-thio-C-nucleosides, their methylsulfonium and sulfoxide derivatives. Evaluation as glycosidase inhibitors. Tetrahedron 2003, 59 (16) , 2801-2809. https://doi.org/10.1016/S0040-4020(03)00339-9
    21. Yan Xu, Katsuhito Kino, Hiroshi Sugiyama. The Conformational Study of Two Carbocyclic Nucleosides: Why Carbocyclic Nucleic Acids (CarNAs) Form More Stable Duplexes with RNA than DNA Does. Journal of Biomolecular Structure and Dynamics 2002, 20 (3) , 437-446. https://doi.org/10.1080/07391102.2002.10506862
    22. Noriaki Minakawa, Daisuke Kaga, Yuka Kato, Kanji Endo, Motohiro Tanaka, Takuma Sasaki, Akira Matsuda. Synthesis and structural elucidation of 1-(3-C-ethynyl-4-thio-β- D -ribofuranosyl)cytosine (4′-thioECyd). J. Chem. Soc., Perkin Trans. 1 2002, 12 (19) , 2182-2189. https://doi.org/10.1039/B204993G
    23. Jose G. Fernändez-Bolaños, Najim A.L. Al-Masoudi, Inés Maya. Sugar derivatives having sulfur in the ring. 2001, 21-98. https://doi.org/10.1016/S0065-2318(01)57015-8
    24. G Inguaggiato, D Hughes, E De Clercq, J Balzarini, C Simons. Novel 6-Azapyrimidine-2′-Deoxy-4′-Thionucleosides: Synthesis, Biological Evaluation and Conformational Analysis. Antiviral Chemistry and Chemotherapy 1999, 10 (5) , 241-249. https://doi.org/10.1177/095632029901000503
    25. L. E. Bailey, M. L. García-Martin, H. Stender, G. Ball. Structural Studies of 5-Ethyl-2′-Deoxyuridine by Selective Pulse 1 H DPFGSE NOE Spectroscopy and PM3 Calculations. Nucleosides and Nucleotides 1999, 18 (4-5) , 1067-1068. https://doi.org/10.1080/15257779908041647
    26. Aleksej Yu. Denisov, E. V. Zamaratski, Tatiana V. Maltseva, Anders Sandström, Somer Bekiroglu, Karl-Heinz Altmann, Martin Egli, Jyoti Chattopadhyaya. The Solution Conformation of a Carbocyclic Analog of the Dickerson-Drew Dodecamer: Comparison with its own X-ray Structure and that of the NMR Structure of the Native Counterpart. Journal of Biomolecular Structure and Dynamics 1998, 16 (3) , 547-568. https://doi.org/10.1080/07391102.1998.10508269
    27. Alasdair C. MacCulloch, Richard T. Walker. A novel method for deuteration of 2′-deoxy-4′-thionucleosides. Tetrahedron 1998, 54 (41) , 12457-12464. https://doi.org/10.1016/S0040-4020(98)00727-3
    28. Jean Boivin, Laure Ramos, Samir Z. Zard. An expedient radical based approach to difluorophosphonate analogues of thionucleosides. Tetrahedron Letters 1998, 39 (38) , 6877-6880. https://doi.org/10.1016/S0040-4039(98)01501-9
    29. I. Basnak, Ming Sun, T. A. Hamor, N. Spencer, R. T. Walke. The Structure of 5-Cyclohexyl-2′-Deoxyuridine as Studied by X-Ray Crystallography and NMR Spectroscopy. Nucleosides and Nucleotides 1996, 15 (7-8) , 1275-1285. https://doi.org/10.1080/07328319608002429
    30. I. Basnak, M. Sun, P. L. Coe, R. T. Walker. The Synthesis of Some 5-Alkyl (Cycloalkyl)-Substituted 2′ -Deoxy-4′-Thiouridines. Nucleosides and Nucleotides 1996, 15 (1-3) , 121-134. https://doi.org/10.1080/07328319608002375
    31. David F. Ewing, Grahame Mackenzie. Configurational Assignment in 2′-Deoxy-4′-Thionucleosides - A Review. Nucleosides and Nucleotides 1996, 15 (1-3) , 809-820. https://doi.org/10.1080/07328319608002424
    32. T. J. Boggon, E. L. Hancox, K. E. McAuley-Hecht, B. A. Connolly, W. N. Hunter, T. Brown, R. T. Walker, G. A. Leonard. The Crystal Structure Analysis of d(CGCGAASSCGCG)2, a Synthetic DNA Dodecamer Duplex Containing Four 4'-Thio-2'-Deoxythymidine Nucleotides. Nucleic Acids Research 1996, 24 (5) , 951-961. https://doi.org/10.1093/nar/24.5.951
    33. William B. Parker, Sue C. Shaddix, Lucy M. Rose, Kamal N. Tiwari, John A. Montgomery, John A. Secrist, L.Lee Bennett. Metabolism and metabolic actions of 4′-thiothymidine in L1210 cells. Biochemical Pharmacology 1995, 50 (5) , 687-695. https://doi.org/10.1016/0006-2952(95)00178-3
    34. D. Galisteo, J.A.López Sastre, H.Martínez García, R.Nuñez Miguel. Conformational comparative analysis of 2′,3′-dideoxythymidine analogues by molecular mechanics calculations (chem-x) and by semiempirical methods (AM1). Journal of Molecular Structure 1995, 350 (2) , 147-160. https://doi.org/10.1016/0022-2860(94)08472-T
    35. Lak S. Jeong, Marc C. Nicklaus, Cliff George, Victor E. Marquez. Unanticipated retention of configuration in the DAST fluorination of deoxy-4′-thiopyrimidine nucleosides with “up” hydroxyl groups. Tetrahedron Letters 1994, 35 (41) , 7569-7572. https://doi.org/10.1016/S0040-4039(00)78345-6
    36. I. Basnak, P. L. Coe, R. T. Walker. The Synthesis of Some 5-Substituted-6-aza-2′-deoxyuridines. Nucleosides and Nucleotides 1994, 13 (1-3) , 163-175. https://doi.org/10.1080/15257779408013233
    37. I. Basnak, A. Balkan, P. L. Coe, R. T. Walker. The Synthesis of Some 5-Substituted and 5,6-Disubstituted 2′-Deoxyuridines. Nucleosides and Nucleotides 1994, 13 (1-3) , 177-196. https://doi.org/10.1080/15257779408013234
    38. E.Louise Hancox, Thomas A. Hamor, Richard T. Walker. The chemical synthesis and x-ray structure of the sulfone of 4′-thiothymidine. Tetrahedron Letters 1994, 35 (8) , 1291-1294. https://doi.org/10.1016/0040-4039(94)88047-6
    39. Kamal N. Tiwari, John A. Montgomery, John A. Secrist. The Synthesis and Biological Activity of 1-(2-Deoxy-4-Thio-α;-L-Threo-Pentofuranosyl)Thymine. Nucleosides and Nucleotides 1993, 12 (8) , 841-846. https://doi.org/10.1080/07328319308018554
    40. Stanislaw F. Wnuk. Sulfur- and seleno-sugar modified nucleosides. Synthesis, chemical transformations and biological properties.. Tetrahedron 1993, 49 (44) , 9877-9936. https://doi.org/10.1016/S0040-4020(01)80190-3

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 1992, 114, 25, 9936–9943
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja00051a028
    Published December 1, 1992

    Article Views

    230

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.