Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Structures of the Cadmium, Mercury, and Zinc Thiolate Clusters in Metallothionein: XAFS Study of Zn7-MT, Cd7-MT, Hg7-MT, and Hg18-MT Formed from Rabbit Liver Metallothionein 2
My Activity

Figure 1Loading Img
    Article

    Structures of the Cadmium, Mercury, and Zinc Thiolate Clusters in Metallothionein: XAFS Study of Zn7-MT, Cd7-MT, Hg7-MT, and Hg18-MT Formed from Rabbit Liver Metallothionein 2
    Click to copy article linkArticle link copied!

    ACS Legacy Archive
    Other Access Options

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 1994, 116, 24, 11004–11013
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja00103a016
    Published November 1, 1994

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 75 publications.

    1. Sara A. Thomas and Jean-François Gaillard . Cysteine Addition Promotes Sulfide Production and 4-Fold Hg(II)–S Coordination in Actively Metabolizing Escherichia coli. Environmental Science & Technology 2017, 51 (8) , 4642-4651. https://doi.org/10.1021/acs.est.6b06400
    2. Shu-Hua Chen, William K. Russell, and David H. Russell . Combining Chemical Labeling, Bottom-Up and Top-Down Ion-Mobility Mass Spectrometry To Identify Metal-Binding Sites of Partially Metalated Metallothionein. Analytical Chemistry 2013, 85 (6) , 3229-3237. https://doi.org/10.1021/ac303522h
    3. Kathryn L. Nagy, Alain Manceau, Jarrod D. Gasper, Joseph N. Ryan, and George R. Aiken . Metallothionein-Like Multinuclear Clusters of Mercury(II) and Sulfur in Peat. Environmental Science & Technology 2011, 45 (17) , 7298-7306. https://doi.org/10.1021/es201025v
    4. Xiao-Yan Tang, Ai-Xia Zheng, Hai Shang, Rong-Xin Yuan, Hong-Xi Li, Zhi-Gang Ren, and Jian-Ping Lang . Binding of a Coordinatively Unsaturated Mercury(II) Thiolate Compound by Carboxylate Anions. Inorganic Chemistry 2011, 50 (2) , 503-516. https://doi.org/10.1021/ic101587h
    5. Violet Diacomanolis, Jack C. Ng, Ross Sadler, Masaharu Nomura, Barry N. Noller, and Hugh H. Harris. Consistent Chemical Form of Cd in Liver and Kidney Tissues in Rats Dosed with a Range of Cd Treatments: XAS of Intact Tissues. Chemical Research in Toxicology 2010, 23 (11) , 1647-1649. https://doi.org/10.1021/tx100333r
    6. Ming Xu, Xiaowen Yan, Qingqing Xie, Limin Yang and Qiuquan Wang . Dynamic Labeling Strategy with 204Hg-Isotopic Methylmercurithiosalicylate for Absolute Peptide and Protein Quantification. Analytical Chemistry 2010, 82 (5) , 1616-1620. https://doi.org/10.1021/ac902902y
    7. Farideh Jalilehvand, Vicky Mah, Bonnie O. Leung, János Mink, Guy M. Bernard and László Hajba . Cadmium(II) Cysteine Complexes in the Solid State: A Multispectroscopic Study. Inorganic Chemistry 2009, 48 (9) , 4219-4230. https://doi.org/10.1021/ic900145n
    8. Xiao-Yan Tang, Rong-Xin Yuan, Zhi-Gang Ren, Hong-Xi Li, Yong Zhang and Jian-Ping Lang. Interactions of a Cationic Mercury(II) Thiolate Complex [Hg(Tab)2](PF6)2 with N-Donor Ligands. Inorganic Chemistry 2009, 48 (6) , 2639-2651. https://doi.org/10.1021/ic8021744
    9. Koji Baba, Taka-aki Okamura, Hitoshi Yamamoto, Tetsuo Yamamoto and Norikazu Ueyama. Zinc, Cadmium, and Mercury 1,2-Benzenedithiolates with Intramolecular NH···S Hydrogen Bonds. Inorganic Chemistry 2008, 47 (7) , 2837-2848. https://doi.org/10.1021/ic702037k
    10. Takashi Aridomi,, Tatsuya Kawamoto, and, Takumi Konno. Controlled Binding of a l-Cysteinato Cobalt(III) Octahedron to a Cadmium(II) Center. Inorganic Chemistry 2007, 46 (4) , 1343-1353. https://doi.org/10.1021/ic061868e
    11. Farideh Jalilehvand,, Bonnie O. Leung,, Maryam Izadifard, and, Emiliana Damian. Mercury(II) Cysteine Complexes in Alkaline Aqueous Solution. Inorganic Chemistry 2006, 45 (1) , 66-73. https://doi.org/10.1021/ic0508932
    12. Jayna Chan,, Maureen E. Merrifield,, Alexander V. Soldatov, and, Martin J. Stillman. XAFS Spectral Analysis of the Cadmium Coordination Geometry in Cadmium Thiolate Clusters in Metallothionein. Inorganic Chemistry 2005, 44 (14) , 4923-4933. https://doi.org/10.1021/ic048871n
    13. Oleg S. Pokrovsky,, Gleb S. Pokrovski,, Alexandre Gélabert,, Jacques Schott, and, Alain Boudou. Speciation of Zn Associated with Diatoms Using X-ray Absorption Spectroscopy. Environmental Science & Technology 2005, 39 (12) , 4490-4498. https://doi.org/10.1021/es0480419
    14. Teruko Arai,, Tokutaka Ikemoto,, Akiko Hokura,, Yasuko Terada,, Takashi Kunito,, Shinsuke Tanabe, and, Izumi Nakai. Chemical Forms of Mercury and Cadmium Accumulated in Marine Mammals and Seabirds as Determined by XAFS Analysis. Environmental Science & Technology 2004, 38 (24) , 6468-6474. https://doi.org/10.1021/es040367u
    15. Gerald Henkel and, Bernt Krebs. Metallothioneins:  Zinc, Cadmium, Mercury, and Copper Thiolates and Selenolates Mimicking Protein Active Site Features − Structural Aspects and Biological Implications. Chemical Reviews 2004, 104 (2) , 801-824. https://doi.org/10.1021/cr020620d
    16. Frank E. Huggins and, Gerald P. Huffman, , Grant E. Dunham, , Constance L. Senior. XAFS Examination of Mercury Sorption on Three Activated Carbons. Energy & Fuels 1999, 13 (1) , 114-121. https://doi.org/10.1021/ef9801322
    17. K. Xia,, U. L. Skyllberg,, W. F. Bleam,, P. R. Bloom,, E. A. Nater, and, P. A. Helmke. X-ray Absorption Spectroscopic Evidence for the Complexation of Hg(II) by Reduced Sulfur in Soil Humic Substances. Environmental Science & Technology 1999, 33 (2) , 257-261. https://doi.org/10.1021/es980433q
    18. Ziqi Gui,, Anna Rae Green,, Masoud Kasrai,, G. Michael Bancroft, and, Martin J. Stillman. Sulfur K-Edge EXAFS Studies of Cadmium-, Zinc-, Copper-, and Silver-Rabbit Liver Metallothioneins. Inorganic Chemistry 1996, 35 (22) , 6520-6529. https://doi.org/10.1021/ic951624m
    19. Lina He, Hongxin Xie, Xu Bai, Jiating Zhao, Liwei Cui, Junfang Zhang, Bai Li, Yu-Feng Li. MALDI–TOF-MS and XAS analysis of complexes formed by metallothionein with mercury and/or selenium. BioMetals 2021, 34 (6) , 1353-1363. https://doi.org/10.1007/s10534-021-00346-5
    20. Adyn Melenbacher, Natalie C Korkola, Martin J Stillman. The pathways and domain specificity of Cu( i ) binding to human metallothionein 1A. Metallomics 2020, 12 (12) , 1951-1964. https://doi.org/10.1039/d0mt00215a
    21. Amelia T Yuan, Natalie C Korkola, Daisy L Wong, Martin J Stillman. Metallothionein Cd4S11 cluster formation dominates in the protection of carbonic anhydrase. Metallomics 2020, 12 (5) , 767-783. https://doi.org/10.1039/d0mt00023j
    22. Shu-Jin Bao, Chun-Yu Liu, Min Zhang, Xu-Ran Chen, Hong Yu, Hong-Xi Li, Pierre Braunstein, Jian-Ping Lang. Metal complexes with the zwitterion 4-(trimethylammonio)benzenethiolate: Synthesis, structures and applications. Coordination Chemistry Reviews 2019, 397 , 28-53. https://doi.org/10.1016/j.ccr.2019.06.012
    23. Alain Manceau, Paco Bustamante, Ahmed Haouz, Jean Paul Bourdineaud, Maria Gonzalez‐Rey, Cyprien Lemouchi, Isabelle Gautier‐Luneau, Valérie Geertsen, Elodie Barruet, Mauro Rovezzi, Pieter Glatzel, Serge Pin. Mercury(II) Binding to Metallothionein in Mytilus edulis revealed by High Energy‐Resolution XANES Spectroscopy. Chemistry – A European Journal 2019, 25 (4) , 997-1009. https://doi.org/10.1002/chem.201804209
    24. Yunyun Li, Yuqin Fan, Jiating Zhao, Xiaohan Xu, Hui Jing, Lihai Shang, Yuxi Gao, Bai Li, Yu-Feng Li. Elevated mercury bound to serum proteins in methylmercury poisoned rats after selenium treatment. BioMetals 2016, 29 (5) , 893-903. https://doi.org/10.1007/s10534-016-9961-1
    25. Anne‐Solène Jullien, Christelle Gateau, Colette Lebrun, Pascale Delangle. Mercury Complexes with Tripodal Pseudopeptides Derived from D ‐Penicillamine Favour a HgS 3 Coordination. European Journal of Inorganic Chemistry 2015, 2015 (22) , 3674-3680. https://doi.org/10.1002/ejic.201500421
    26. Mironel Enescu, Alain Manceau. High-level ab initio calculation of the stability of mercury–thiolate complexes. Theoretical Chemistry Accounts 2014, 133 (3) https://doi.org/10.1007/s00214-014-1457-x
    27. Beatrice Campanella, Emilia Bramanti. Detection of proteins by hyphenated techniques with endogenous metal tags and metal chemical labelling. The Analyst 2014, 139 (17) , 4124-4153. https://doi.org/10.1039/C4AN00722K
    28. Yingjiao Wang, Tyler Robison, Heather Wiatrowski. The impact of ionic mercury on antioxidant defenses in two mercury-sensitive anaerobic bacteria. BioMetals 2013, 26 (6) , 1023-1031. https://doi.org/10.1007/s10534-013-9679-2
    29. Farideh Jalilehvand, Karnjit Parmar, Stephen Zielke. Mercury(ii) complex formation with N-acetylcysteine. Metallomics 2013, 5 (10) , 1368. https://doi.org/10.1039/c3mt00173c
    30. Kelly L. Summers, AnjanPreet K. Mahrok, Michael D.M. Dryden, Martin J. Stillman. Structural properties of metal-free apometallothioneins. Biochemical and Biophysical Research Communications 2012, 425 (2) , 485-492. https://doi.org/10.1016/j.bbrc.2012.07.141
    31. Kasper P. Kepp. Full quantum-mechanical structure of the human protein Metallothionein-2. Journal of Inorganic Biochemistry 2012, 107 (1) , 15-24. https://doi.org/10.1016/j.jinorgbio.2011.11.002
    32. Per Greisen, Jakob B. Jespersen, Kasper P. Kepp. Metallothionein Zn 2+ - and Cu 2+ -clusters from first-principles calculations. Dalton Trans. 2012, 41 (8) , 2247-2256. https://doi.org/10.1039/C1DT11785H
    33. Xiao-Yan Tang, Rong-Xin Yuan, Jin-Xiang Chen, Wei Zhao, Ai-Xia Zheng, Miao Yu, Hong-Xi Li, Zhi-Gang Ren, Jian-Ping Lang. Group 12 metal zwitterionic thiolate compounds: preparation and structural characterization. Dalton Transactions 2012, 41 (20) , 6162. https://doi.org/10.1039/c2dt30313b
    34. Duncan E. K. Sutherland, Martin J. Stillman. The “magic numbers” of metallothionein. Metallomics 2011, 3 (5) , 444. https://doi.org/10.1039/c0mt00102c
    35. Yu-Feng Li, Chunying Chen. X-ray Absorption Spectroscopy. 2010, 163-211. https://doi.org/10.1039/9781847559913-00163
    36. Sukaina Zeitoun‐Ghandour, John M. Charnock, Mark E. Hodson, Oksana I. Leszczyszyn, Claudia A. Blindauer, Stephen R. Stürzenbaum. The two Caenorhabditis elegans metallothioneins (CeMT‐1 and CeMT‐2) discriminate between essential zinc and toxic cadmium. The FEBS Journal 2010, 277 (11) , 2531-2542. https://doi.org/10.1111/j.1742-4658.2010.07667.x
    37. Meiyi Li, Yu-Shan Huang, U-Ser Jeng, I-Jui Hsu, YewChung Sermon Wu, Ying-Huang Lai, Chiu-Hun Su, Jyh-Fu Lee, Yu Wang, Chia-Ching Chang. Resonant X-Ray Scattering and Absorption for the Global and Local Structures of Cu-modified Metallothioneins in Solution. Biophysical Journal 2009, 97 (2) , 609-617. https://doi.org/10.1016/j.bpj.2009.05.004
    38. Yifei Guo, Ming Xu, Limin Yang, Qiuquan Wang. Strategy for absolute quantification of proteins: CH3Hg+ labeling integrated molecular and elemental mass spectrometry. Journal of Analytical Atomic Spectrometry 2009, 24 (9) , 1184. https://doi.org/10.1039/b902241d
    39. Xiaoqiong Wan, Eva Freisinger. The plant metallothionein 2 from Cicer arietinum forms a single metal–thiolate cluster. Metallomics 2009, 1 (6) , 489. https://doi.org/10.1039/b906428a
    40. Xiao‐Yan Tang, Jin‐Xiang Chen, Guang‐Fei Liu, Zhi‐Gang Ren, Yong Zhang, Jian‐Ping Lang. Reactions of [Hg(Tab) 2 ](PF 6 ) 2 [Tab = 4‐(trimethylammonio)benzenethiolate] with NaX (X = Cl, NO 2 , NO 3 ): Isolation and Structural Characterization of a Series of Mono‐ and Binuclear Hg/Tab/X Compounds. European Journal of Inorganic Chemistry 2008, 2008 (16) , 2593-2600. https://doi.org/10.1002/ejic.200800121
    41. Alain Manceau, Kathryn L. Nagy. Relationships between Hg(ii)–S bond distance and Hg(ii) coordination in thiolates. Dalton Transactions 2008, 56 (11) , 1421. https://doi.org/10.1039/b718372k
    42. Christopher P. Mercogliano, David J. DeRosier. Concatenated metallothionein as a clonable gold label for electron microscopy. Journal of Structural Biology 2007, 160 (1) , 70-82. https://doi.org/10.1016/j.jsb.2007.06.010
    43. Yintang Zhang, Maotian Xu, Yanju Wang, Freddy Toledo, Feimeng Zhou. Studies of metal ion binding by apo-metallothioneins attached onto preformed self-assembled monolayers using a highly sensitive surface plasmon resonance spectrometer. Sensors and Actuators B: Chemical 2007, 123 (2) , 784-792. https://doi.org/10.1016/j.snb.2006.10.019
    44. Eva Freisinger. Spectroscopic characterization of a fruit-specific metallothionein: M. acuminata MT3. Inorganica Chimica Acta 2007, 360 (1) , 369-380. https://doi.org/10.1016/j.ica.2006.07.059
    45. Alexander V. Soldatov, Grigory Smolentsev, Galina Yalovega, Jayna Chan, Martin Stillman. The structure of Cd sites in metallothioneins studied by combination of XAFS and molecular dynamic. Radiation Physics and Chemistry 2006, 75 (11) , 1901-1904. https://doi.org/10.1016/j.radphyschem.2005.07.053
    46. Kelly E. Rigby Duncan, Thanh T. Ngu, Jayna Chan, Maria T. Salgado, Maureen E. Merrifield, Martin J. Stillman. Peptide Folding, Metal-Binding Mechanisms, and Binding Site Structures in Metallothioneins. Experimental Biology and Medicine 2006, 231 (9) , 1488-1499. https://doi.org/10.1177/153537020623100907
    47. Kelly E. Rigby, Jayna Chan, Jason Mackie, Martin J. Stillman. Molecular dynamics study on the folding and metallation of the individual domains of metallothionein. Proteins: Structure, Function, and Bioinformatics 2006, 62 (1) , 159-172. https://doi.org/10.1002/prot.20663
    48. Christopher P. Mercogliano, David J. DeRosier. Gold Nanocluster Formation using Metallothionein: Mass Spectrometry and Electron Microscopy. Journal of Molecular Biology 2006, 355 (2) , 211-223. https://doi.org/10.1016/j.jmb.2005.10.026
    49. Wolfgang Kaim, Brigitte Schwederski. Die bioanorganische Chemie vorwiegend toxischer Metalle. 2005, 336-356. https://doi.org/10.1007/978-3-663-01605-2_17
    50. James E. Penner-Hahn. Characterization of “spectroscopically quiet” metals in biology. Coordination Chemistry Reviews 2005, 249 (1-2) , 161-177. https://doi.org/10.1016/j.ccr.2004.03.011
    51. Elena Casero, Jos� A. Mart�n-Gago, F�lix Pariente, Encarnaci�n Lorenzo. Metal release in metallothioneins induced by nitric oxide: X-ray absorption spectroscopy study. European Biophysics Journal 2004, 33 (8) , 726-731. https://doi.org/10.1007/s00249-004-0418-z
    52. Kelly E. Rigby, Martin J. Stillman. Structural studies of metal-free metallothionein. Biochemical and Biophysical Research Communications 2004, 325 (4) , 1271-1278. https://doi.org/10.1016/j.bbrc.2004.10.144
    53. Àngels Leiva‐Presa, Mercè Capdevila, Pilar Gonzàlez‐Duarte. Mercury(II) binding to metallothioneins. European Journal of Biochemistry 2004, 271 (23-24) , 4872-4880. https://doi.org/10.1111/j.1432-1033.2004.04456.x
    54. Wolfgang Kaim, Brigitte Schwederski. Die bioanorganische Chemie vorwiegend toxischer Metalle. 2004, 336-356. https://doi.org/10.1007/978-3-322-92714-9_17
    55. S.J. Archibald. Zinc. 2003, 1147-1251. https://doi.org/10.1016/B0-08-043748-6/05130-6
    56. Vlastimil Dorčák, Artur Krężel. Correlation of acid–base chemistry of phytochelatin PC2 with its coordination properties towards the toxic metal ion Cd( ii ). Dalton Trans. 2003, 44 (11) , 2253-2259. https://doi.org/10.1039/B301357J
    57. Jin Qian, Ulf Skyllberg, Wolfgang Frech, William F Bleam, Paul R Bloom, Pierre Emmanuel Petit. Bonding of methyl mercury to reduced sulfur groups in soil and stream organic matter as determined by x-ray absorption spectroscopy and binding affinity studies. Geochimica et Cosmochimica Acta 2002, 66 (22) , 3873-3885. https://doi.org/10.1016/S0016-7037(02)00974-2
    58. Maureen E Merrifield, Zuyun Huang, Peter Kille, Martin J Stillman. Copper speciation in the α and β domains of recombinant human metallothionein by electrospray ionization mass spectrometry. Journal of Inorganic Biochemistry 2002, 88 (2) , 153-172. https://doi.org/10.1016/S0162-0134(01)00394-4
    59. M. Kubicki, S.K. Hadjikakou, M.N. Xanthopoulou. Synthesis, characterisation and study of mercury(II) bromide complexes with triphenylphosphine and heterocyclic thiones. The crystal structures of [bis(triphenylphosphine) dibromo mercury(II)] and [dibromo (pyrimidine-2-thionato) (triphenylphosphine) mercury(II)]. Extended intra-molecular linkages via NH⋯Br and CH⋯Br interactions. Polyhedron 2001, 20 (17) , 2179-2185. https://doi.org/10.1016/S0277-5387(01)00827-0
    60. S.K. Hadjikakou, M. Kubicki. Synthesis, characterisation and study of mercury(II) chloride complexes with triphenylphosphine and heterocyclic thiones. The crystal structures of [(benzothiazole-2-thionato)(benzothiazole-2-thione)(bis-triphenylphosphine) chloro mercury(II)] and [(μ2-dichloro){(bis-pyrimidine-2-thionato)mercury(II)}{(bis-triphenylphosphine)mercury(II)}] at 100 K. Polyhedron 2000, 19 (20-21) , 2231-2236. https://doi.org/10.1016/S0277-5387(00)00533-7
    61. , Peter Faller, Bernd Ctortecka, Wolfgang Tröger, Tilman Butz, Milan Vašák. Optical and TDPAC spectroscopy of Hg(II)-rubredoxin: model for a mononuclear tetrahedral [Hg(CysS)4]2− center. JBIC Journal of Biological Inorganic Chemistry 2000, 5 (3) , 393-401. https://doi.org/10.1007/PL00010668
    62. Huangxian Ju, Dónal Leech. Electrochemical study of a metallothionein modified gold disk electrode and its action on Hg2+ cations. Journal of Electroanalytical Chemistry 2000, 484 (2) , 150-156. https://doi.org/10.1016/S0022-0728(00)00071-1
    63. Martin J Stillman, Donald Thomas, Colleen Trevithick, Xu Guo, Michael Siu. Circular dichroism, kinetic and mass spectrometric studies of copper(I) and mercury(II) binding to metallothionein. Journal of Inorganic Biochemistry 2000, 79 (1-4) , 11-19. https://doi.org/10.1016/S0162-0134(99)00174-9
    64. R. K. Mehra. Biosynthesis and Metal-Binding Characteristics of Phytochelatins. 2000, 365-383. https://doi.org/10.1007/978-94-015-9532-2_32
    65. Xiangqun Li, Kazuo Suzuki, Ayumi Kashiwada, Hidekazu Hiroaki, Daisuke Kohda, Toshiki Tanaka. Soft metal ions, Cd(II) and Hg (II), induce triple‐stranded α‐helical assembly and folding of a de novo designed peptide in their trigonal geometries. Protein Science 2000, 9 (7) , 1327-1333. https://doi.org/10.1110/ps.9.7.1327
    66. Hongzhe Sun, Hongyan Li, Ian Harvey, Peter J. Sadler. Interactions of Bismuth Complexes with Metallothionein(II). Journal of Biological Chemistry 1999, 274 (41) , 29094-29101. https://doi.org/10.1074/jbc.274.41.29094
    67. Martin J. Stillman, Anna Rae Green, Ziqi Gui, David Fowle, P. Anthony Presta. Circular dichroism, emission, and exafs studies of Ag(I), Cd(II), Cu(I), and Hg(II) binding to metallothioneins and modeling the metal binding site. 1999, 23-35. https://doi.org/10.1007/978-3-0348-8847-9_4
    68. Ingrid J. Pickering, Roger C. Prince, Graham N. George, Wilfried E. Rauser, W.A. Wickramasinghe, Andrew A. Watson, Charles T. Dameron, Ian G. Dance, David P. Fairlie, David E. Salt. X-ray absorption spectroscopy of cadmium phytochelatin and model systems. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology 1999, 1429 (2) , 351-364. https://doi.org/10.1016/S0167-4838(98)00242-8
    69. David A. Fowle, Martin J. Stillman. Comparison of the Structures of the Metal-thiolate Binding Site in Zn(II)-, Cd(II)-, and Hg(II)-Metallothioneins Using Molecular Modeling Techniques. Journal of Biomolecular Structure and Dynamics 1997, 14 (4) , 393-406. https://doi.org/10.1080/07391102.1997.10508139
    70. Martin J. Stillman. Spectroscopic Properties of Ag(I), Cd(II), Cu(I), Hg(II), and Zn(II) Metallothioneins. 1997, 139-194. https://doi.org/10.1007/978-94-011-5780-3_9
    71. Kammann Ulrike, Grymlas Jurgen, Hein Wolfgang, Steinhart Hans. Metal-binding proteins in bream ( Abramis brama L.) caught in the River Elbe. Biomarkers 1997, 2 (2) , 125-129. https://doi.org/10.1080/135475097231850
    72. Jian Z. Xiong, Detong Jiang, Craig E. Dixon, Kim M. Baines, T.K. Sham. Structure and bonding of organosilicon compounds containing silicon–silicon and silicon–germanium bonds: an X-ray absorption fine structure study. Canadian Journal of Chemistry 1996, 74 (11) , 2229-2239. https://doi.org/10.1139/v96-251
    73. Martin J. Stillman. Metallothioneins. Coordination Chemistry Reviews 1995, 144 , 461-511. https://doi.org/10.1016/0010-8545(95)01173-M
    74. D.T. Jiang, Z.Q. Gui, S.M. Heald, T.K. Sham, Martin J. Stillman. XAFS of silver(I) metallothionein. Physica B: Condensed Matter 1995, 208-209 , 729-730. https://doi.org/10.1016/0921-4526(94)00797-Y
    75. Wolfgang Kaim, Brigitte Schwederski. Die bioanorganische Chemie vorwiegend toxischer Metalle. 1995, 336-356. https://doi.org/10.1007/978-3-322-91893-2_17

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 1994, 116, 24, 11004–11013
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja00103a016
    Published November 1, 1994

    Article Views

    402

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.