ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Multiple Bonds between Main-Group Elements and Transition Metals. 136. "Polymerization" of an Organometal Oxide: The Unusual Behavior of Methyltrioxorhenium(VII) in Water

Cite this: J. Am. Chem. Soc. 1995, 117, 11, 3223–3230
Publication Date (Print):March 1, 1995
https://doi.org/10.1021/ja00116a026
Copyright © 1995 American Chemical Society
    ACS Legacy Archive

    Article Views

    274

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    PDF (2 MB)

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Cited By

    This article is cited by 52 publications.

    1. Min Wang, Jiping Ma, Huifang Liu, Nengchao Luo, Zhitong Zhao, and Feng Wang . Sustainable Productions of Organic Acids and Their Derivatives from Biomass via Selective Oxidative Cleavage of C–C Bond. ACS Catalysis 2018, 8 (3) , 2129-2165. https://doi.org/10.1021/acscatal.7b03790
    2. Changzhi Li, Xiaochen Zhao, Aiqin Wang, George W. Huber, and Tao Zhang . Catalytic Transformation of Lignin for the Production of Chemicals and Fuels. Chemical Reviews 2015, 115 (21) , 11559-11624. https://doi.org/10.1021/acs.chemrev.5b00155
    3. Irshad Ahmad, Garry Chapman, and Kenneth M. Nicholas . Sulfite-Driven, Oxorhenium-Catalyzed Deoxydehydration of Glycols. Organometallics 2011, 30 (10) , 2810-2818. https://doi.org/10.1021/om2001662
    4. Herbert W. Roesky,, Ionel Haiduc, and, Narayan S. Hosmane. Organometallic Oxides of Main Group and Transition Elements Downsizing Inorganic Solids to Small Molecular Fragments. Chemical Reviews 2003, 103 (7) , 2579-2596. https://doi.org/10.1021/cr020376q
    5. Kimberly A. Brittingham and, James H. Espenson. Kinetics and Mechanisms of Reactions of Alkyl Hydroperoxides with Methylrhenium Oxides. Inorganic Chemistry 1999, 38 (4) , 744-750. https://doi.org/10.1021/ic9809052
    6. James H. Espenson,, Haisong Tan,, Sahana Mollah,, R. S. Houk, and, Matthew D. Eager. Base Hydrolysis of Methyltrioxorhenium. The Mechanism Revised and Extended:  A Novel Application of Electrospray Mass Spectrometry. Inorganic Chemistry 1998, 37 (18) , 4621-4624. https://doi.org/10.1021/ic980447x
    7. Carlos C. Romão,, Fritz E. Kühn, and, Wolfgang A. Herrmann. Rhenium(VII) Oxo and Imido Complexes:  Synthesis, Structures, and Applications. Chemical Reviews 1997, 97 (8) , 3197-3246. https://doi.org/10.1021/cr9703212
    8. Wolfgang A. Herrmann and, Fritz E. Kühn. Organorhenium Oxides. Accounts of Chemical Research 1997, 30 (4) , 169-180. https://doi.org/10.1021/ar9601398
    9. Shumin Wang,, David B. Mitzi,, Gregory A. Landrum,, Hugh Genin, and, Roald Hoffmann. Synthesis and Solid State Chemistry of CH3BiI2:  A Structure with an Extended One-Dimensional Organometallic Framework. Journal of the American Chemical Society 1997, 119 (4) , 724-732. https://doi.org/10.1021/ja961753h
    10. Gábor Laurenczy,, Ferenc Lukács, and, Raymond Roulet, , Wolfgang A. Herrmann and, Richard W. Fischer. Multiple Bonds between Main-Group Elements and Transition Metals. 152.1 Hydrolysis and Polymerization−Precipitation of Methyltrioxorhenium in Aqueous Solution. Organometallics 1996, 15 (2) , 848-851. https://doi.org/10.1021/om9500937
    11. Mahdi M. Abu-Omar,, Evan H. Appelman, and, James H. Espenson. Oxygen-Transfer Reactions of Methylrhenium Oxides. Inorganic Chemistry 1996, 35 (26) , 7751-7757. https://doi.org/10.1021/ic960701q
    12. Grant Proulx and, Robert G. Bergman. Reactions of Cp2Ta(CH2)(CH3) with Substituted and Unsubstituted Metal Carbonyls (Groups 7, 8, and 9). Evidence for Intermediates Involved in the Carbon−Carbon Bond-Forming Steps of the Reduction and Deoxygenation of CO. Journal of the American Chemical Society 1996, 118 (8) , 1981-1996. https://doi.org/10.1021/ja951685j
    13. Wolfgang A. Herrmann. 50 Years of Passion for Organometallic Chemistry. Journal of Organometallic Chemistry 2023, 1000 , 122815. https://doi.org/10.1016/j.jorganchem.2023.122815
    14. Zhan Zhang, Guochuan Yin, Bruno Andrioletti. Advances in value-added aromatics by oxidation of lignin with transition metal complexes. Transition Metal Chemistry 2022, 47 (4-5) , 189-211. https://doi.org/10.1007/s11243-022-00498-4
    15. Ajinkya More, Thomas Elder, Zhihua Jiang. A review of lignin hydrogen peroxide oxidation chemistry with emphasis on aromatic aldehydes and acids. Holzforschung 2021, 75 (9) , 806-823. https://doi.org/10.1515/hf-2020-0165
    16. Jing Li, Martin Lutz, Robertus J. M. Klein Gebbink. N-Donor Ligand Supported “ReO2+”: A Pre-Catalyst for the Deoxydehydration of Diols and Polyols. Catalysts 2020, 10 (7) , 754. https://doi.org/10.3390/catal10070754
    17. Massimiliano Lupacchini, Andrea Mascitti, Valentino Canale, Lucia Tonucci, Evelina Colacino, Maurizio Passacantando, Alessandro Marrone, Nicola d'Alessandro. Deoxydehydration of glycerol in presence of rhenium compounds: reactivity and mechanistic aspects. Catalysis Science & Technology 2019, 9 (12) , 3036-3046. https://doi.org/10.1039/C8CY02478B
    18. Justin Gossett, Radhey Srivastava. Rhenium-catalyzed deoxydehydration of renewable biomass using sacrificial alcohol as reductant. Tetrahedron Letters 2017, 58 (39) , 3760-3763. https://doi.org/10.1016/j.tetlet.2017.08.028
    19. Shi-Chao Qi, Jun-ichiro Hayashi, Shinji Kudo, Lu Zhang. Catalytic hydrogenolysis of kraft lignin to monomers at high yield in alkaline water. Green Chemistry 2017, 19 (11) , 2636-2645. https://doi.org/10.1039/C7GC01121K
    20. Reentje G. Harms, Wolfgang A. Herrmann, Fritz E. Kühn. Organorhenium dioxides as oxygen transfer systems: Synthesis, reactivity, and applications. Coordination Chemistry Reviews 2015, 296 , 1-23. https://doi.org/10.1016/j.ccr.2015.03.015
    21. Zhan'ao Tan, Liangjie Li, Fuzhi Wang, Qi Xu, Shusheng Li, Gang Sun, Xiaohe Tu, Xuliang Hou, Jianhui Hou, Yongfang Li. Solution-Processed Rhenium Oxide: A Versatile Anode Buffer Layer for High Performance Polymer Solar Cells with Enhanced Light Harvest. Advanced Energy Materials 2014, 4 (1) , 1300884. https://doi.org/10.1002/aenm.201300884
    22. Valentino Canale, Lucia Tonucci, Mario Bressan, Nicola d'Alessandro. Deoxydehydration of glycerol to allyl alcohol catalyzed by rhenium derivatives. Catal. Sci. Technol. 2014, 4 (10) , 3697-3704. https://doi.org/10.1039/C4CY00631C
    23. Shuo Liu, Aysegul Senocak, Jessica L. Smeltz, Linan Yang, Benjamin Wegenhart, Jing Yi, Hilkka I. Kenttämaa, Elon A. Ison, Mahdi M. Abu-Omar. Mechanism of MTO-Catalyzed Deoxydehydration of Diols to Alkenes Using Sacrificial Alcohols. Organometallics 2013, 32 (11) , 3210-3219. https://doi.org/10.1021/om400127z
    24. Heiko Lange, Silvia Decina, Claudia Crestini. Oxidative upgrade of lignin – Recent routes reviewed. European Polymer Journal 2013, 49 (6) , 1151-1173. https://doi.org/10.1016/j.eurpolymj.2013.03.002
    25. Camille Boucher-Jacobs, Kenneth M. Nicholas. Catalytic Deoxydehydration of Glycols with Alcohol Reductants. ChemSusChem 2013, 6 (4) , 597-599. https://doi.org/10.1002/cssc.201200781
    26. Claudia Crestini, Marcello Crucianelli, Marco Orlandi, Raffaele Saladino. Oxidative strategies in lignin chemistry: A new environmental friendly approach for the functionalisation of lignin and lignocellulosic fibers. Catalysis Today 2010, 156 (1-2) , 8-22. https://doi.org/10.1016/j.cattod.2010.03.057
    27. Marcello Crucianelli, Raffaele Saladino, Francesco De Angelis. Methyltrioxorhenium Catalysis in Nonconventional Solvents: A Great Catalyst in a Safe Reaction Medium. ChemSusChem 2010, 3 (5) , 524-540. https://doi.org/10.1002/cssc.201000022
    28. Mirela M. Barsan, Denis F. R. Gilson, Christian Reber, Ian S. Butler. High-pressure micro-Raman spectroscopic study of methyltrioxorhenium(VII). Journal of Raman Spectroscopy 2006, 37 (12) , 1321-1326. https://doi.org/10.1002/jrs.1537
    29. Rudolf Herrmann, Klaus Tröster, Georg Eickerling, Christian Helbig, Christoph Hauf, Robert Miller, Franz Mayr, Hans-Albrecht Krug von Nidda, Ernst-Wilhelm Scheidt, Wolfgang Scherer. Ceramic methyltrioxorhenium. Inorganica Chimica Acta 2006, 359 (15) , 4779-4788. https://doi.org/10.1016/j.ica.2006.04.028
    30. R. Miller, E.-W. Scheidt, G. Eickerling, C. Helbig, F. Mayr, R. Herrmann, W. Scherer, H.-A. Krug von Nidda, V. Eyert, P. Schwab. poly -methyltrioxorhenium { ( C H 3 ) 0.92 Re O 3 } ∞ : A conducting two-dimensional organometallic oxide. Physical Review B 2006, 73 (16) https://doi.org/10.1103/PhysRevB.73.165113
    31. André Lubineau, Jacques Augé, Marie‐Christine Scherrmann. State‐of‐the‐Art. 2005, 40-95. https://doi.org/10.1002/9783527619597.ch2b
    32. Boy Cornils, Emile G. Kuntz. Typical Reactions. 2005, 148-290. https://doi.org/10.1002/9783527619597.ch2d
    33. Fritz E. Kühn, Andrea Scherbaum, Wolfgang A. Herrmann. Methyltrioxorhenium and its applications in olefin oxidation, metathesis and aldehyde olefination. Journal of Organometallic Chemistry 2004, 689 (24) , 4149-4164. https://doi.org/10.1016/j.jorganchem.2004.08.018
    34. Philip Gisdakis, Notker Rösch, Éva Bencze, Janos Mink, Isabel S. Gonçalves, Fritz E. Kühn. Monomer−Dimer Equilibria of Oxo/Imido Complexes of Heptavalent Rhenium: Theoretical and Spectroscopic Investigations. European Journal of Inorganic Chemistry 2001, 2001 (4) , 981-991. https://doi.org/10.1002/1099-0682(200104)2001:4<981::AID-EJIC981>3.0.CO;2-F
    35. Arnd Vogler, Horst Kunkely. Excited state properties of organometallic compounds of rhenium in high and low oxidation states. Coordination Chemistry Reviews 2000, 200-202 , 991-1008. https://doi.org/10.1016/S0010-8545(99)00241-6
    36. Olaf Muth, Michael Fröba. On the Way to New Nanoporous Transition Metal Oxides. 2000, 357-366. https://doi.org/10.1016/S0167-2991(00)80234-7
    37. Fritz E. Kühn, Richard W. Fischer, Wolfgang A. Herrmann. Methyltrioxorhenium. Chemie in unserer Zeit 1999, 33 (4) , 192-198. https://doi.org/10.1002/ciuz.19990330403
    38. David B. Mitzi. Synthesis, Structure, and Properties of Organic‐Inorganic Perovskites and Related Materials. 1999, 1-121. https://doi.org/10.1002/9780470166499.ch1
    39. J.C Vites, M.M Lynam. Rhenium 1995. Coordination Chemistry Reviews 1998, 169 (1) , 201-235. https://doi.org/10.1016/S0010-8545(98)00007-1
    40. Horst Kunkely, Arnd Vogler. Photoredox reaction of (p-dimethylaminopyridine)osmium(VIII)tetroxide induced by ligand-to-metal charge transfer excitation. Inorganic Chemistry Communications 1998, 1 (1) , 7-9. https://doi.org/10.1016/S1387-7003(97)00003-8
    41. Henri Rudler, Jose Ribeiro Gregorio, Bernard Denise, Jacqueline Vaissermann. On the formation of (CH3)4Re2O4 from methyl trioxorhenium complex CH3ReO3 under non-alkylating conditions. Journal of Organometallic Chemistry 1997, 548 (2) , 295-299. https://doi.org/10.1016/S0022-328X(97)00445-2
    42. P. Wikrent, B. J. Drouin, S. G. Kukolich, J. C. Lilly, M. T. Ashby, W. A. Herrmann, W. Scherer. Measurements of the structure of methyltrioxorhenium using microwave spectroscopy. The Journal of Chemical Physics 1997, 107 (7) , 2187-2192. https://doi.org/10.1063/1.474618
    43. Wolfgang A. Herrmann, Fritz E. Kühn, Mike R. Mattner, Georg R.J. Artus, Martin R. Geisberger, João D.G. Correia. Multiple bonds between transition metals and main-group elements, 163 nitrogen-donor adducts of organorhenium(VII) oxides: Structural and catalytic aspects. Journal of Organometallic Chemistry 1997, 538 (1-2) , 203-209. https://doi.org/10.1016/S0022-328X(96)06919-7
    44. Horst Kunkely, Arnd Vogler. Photochemistry of (trans-4-styrylpyridine)methyl(trioxo)rhenium(VII). Photoassisted isomerization of 4-styrylpyridine. Journal of Photochemistry and Photobiology A: Chemistry 1997, 103 (3) , 227-229. https://doi.org/10.1016/S1010-6030(96)04464-4
    45. Boris Schmidt. Methyltrioxorhenium - from oxidation and cyclopropanation to metathesis. Journal für Praktische Chemie/Chemiker-Zeitung 1997, 339 (1) , 493-496. https://doi.org/10.1002/prac.19973390190
    46. Gerard Parkin. Terminal Chalcogenido Complexes of the Transition Metals. 1997, 1-165. https://doi.org/10.1002/9780470166482.ch1
    47. S.M. Sickafoose, P. Wikrent, B.J. Drouin, S.G. Kukolich. Microwave spectra and quadrupole coupling measurements for methyl rhenium trioxide. Chemical Physics Letters 1996, 263 (1-2) , 191-196. https://doi.org/10.1016/S0009-2614(96)01181-5
    48. Mike R. Mattner, Wolfgang A. Herrmann, R�diger Berger, Christoph Gerber, Jim K. Gimzewski. Scanning probe microscopy of polymeric methyltrioxorhenium. Advanced Materials 1996, 8 (8) , 654-657. https://doi.org/10.1002/adma.19960080811
    49. Sibylle Köstlmeier, Gianfranco Pacchioni, Wolfgang A Herrmann, Notker Rösch. Structure and properties of dimer, trimer and tetramer aggregates of methyltrioxorhenium (MTO): an ab initio study. Journal of Organometallic Chemistry 1996, 514 (1-2) , 111-117. https://doi.org/10.1016/0022-328X(95)06002-E
    50. Host Kunkely, Arnd Vogler. Photochemistry of aqueous methyltrioxorhenium (VII), Intramolecular sensitization in the 2,2′-bipyridine adduct by ligand-to-ligand chatge transfer excitation. Journal of Photochemistry and Photobiology A: Chemistry 1996, 94 (2-3) , 135-138. https://doi.org/10.1016/1010-6030(95)04227-X
    51. Peter B. Kettler, Yuanda Chang, David Rose, Jon Zubieta, Michael J. Abrams. Synthesis and structural characterization of complexes of the {Cp*Rh} and MeRe cores with pyridine-2-thiol ligand types. Structures of MeReO(η2-2-SC5H3N-3-SiMe)2 and (η5-Me5C5)Rh(η-2-SC5H3N-3-SiMe3) if(η1-2-SC5H3N-3-SiMe3). Inorganica Chimica Acta 1996, 244 (2) , 199-205. https://doi.org/10.1016/0020-1693(95)04785-9
    52. Wolfgang A. Herrmann. Essays on organometallic chemistry, VII. Laboratory curiosities of yesterday, catalysts of tomorrow: organometallic oxides. Journal of Organometallic Chemistry 1995, 500 (1-2) , 149-173. https://doi.org/10.1016/0022-328X(95)00518-U

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect