ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Porphyrin-Quinone Electron Transfer Revisited. The Role of Excited-State Degeneracy in Ultrafast Charge Transfer Reactions

Cite this: J. Am. Chem. Soc. 1995, 117, 13, 3749–3753
Publication Date (Print):April 1, 1995
https://doi.org/10.1021/ja00118a011
    ACS Legacy Archive

    Article Views

    467

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 63 publications.

    1. Erin J. Peterson, Jeff Rawson, David N. Beratan, Peng Zhang, Michael J. Therien. Regulating Singlet–Triplet Energy Gaps through Substituent-Driven Modulation of the Exchange and Coulomb Interactions. Journal of the American Chemical Society 2022, 144 (34) , 15457-15461. https://doi.org/10.1021/jacs.2c06713
    2. Tatu Kumpulainen, Bernhard Lang, Arnulf Rosspeintner, and Eric Vauthey . Ultrafast Elementary Photochemical Processes of Organic Molecules in Liquid Solution. Chemical Reviews 2017, 117 (16) , 10826-10939. https://doi.org/10.1021/acs.chemrev.6b00491
    3. Agostino Migliore, Nicholas F. Polizzi, Michael J. Therien, and David N. Beratan . Biochemistry and Theory of Proton-Coupled Electron Transfer. Chemical Reviews 2014, 114 (7) , 3381-3465. https://doi.org/10.1021/cr4006654
    4. Jin Yang, Luyuan Zhang, Lijuan Wang, and Dongping Zhong . Femtosecond Conical Intersection Dynamics of Tryptophan in Proteins and Validation of Slowdown of Hydration Layer Dynamics. Journal of the American Chemical Society 2012, 134 (40) , 16460-16463. https://doi.org/10.1021/ja305283j
    5. Wenkai Zhang, Minbiao Ji, Zheng Sun, and Kelly J. Gaffney . Dynamics of Solvent-Mediated Electron Localization in Electronically Excited Hexacyanoferrate(III). Journal of the American Chemical Society 2012, 134 (5) , 2581-2588. https://doi.org/10.1021/ja207306t
    6. Timothy V. Duncan, Paul R. Frail, Ivan R. Miloradovic, and Michael J. Therien . Excitation of Highly Conjugated (Porphinato)palladium(II) and (Porphinato)platinum(II) Oligomers Produces Long-Lived, Triplet States at Unit Quantum Yield That Absorb Strongly over Broad Spectral Domains of the NIR. The Journal of Physical Chemistry B 2010, 114 (45) , 14696-14702. https://doi.org/10.1021/jp102901u
    7. Avijit Ghosh, Shaikh M. Mobin, Roland Fröhlich, Ray J. Butcher, Dilip K. Maity, and Mangalampalli Ravikanth . Effect of Five Membered Versus Six Membered Meso-Substituents on Structure and Electronic Properties of Mg(II) Porphyrins: A Combined Experimental and Theoretical Study. Inorganic Chemistry 2010, 49 (18) , 8287-8297. https://doi.org/10.1021/ic1008522
    8. Andrew C. Benniston, Graeme Copley, Anthony Harriman, David Howgego, Ross W. Harrington and William Clegg . Cofacial Boron Dipyrromethene (Bodipy) Dimers: Synthesis, Charge Delocalization, and Exciton Coupling. The Journal of Organic Chemistry 2010, 75 (6) , 2018-2027. https://doi.org/10.1021/jo1000803
    9. Fuyuki Ito,, Yukihide Ishibashi,, Sazzadur Rahman Khan,, Hiroshi Miyasaka,, Kazuya Kameyama,, Mitsuhiko Morisue,, Akiharu Satake,, Kazuya Ogawa, and, Yoshiaki Kobuke. Photoinduced Electron Transfer and Excitation Energy Transfer in Directly Linked Zinc Porphyrin/Zinc Phthalocyanine Composite. The Journal of Physical Chemistry A 2006, 110 (47) , 12734-12742. https://doi.org/10.1021/jp062822+
    10. Ken Okamoto and, Shunichi Fukuzumi. Hydrogen Bonds Not Only Provide a Structural Scaffold to Assemble Donor and Acceptor Moieties of Zinc Porphyrin−Quinone Dyads but Also Control the Photoinduced Electron Transfer to Afford the Long-Lived Charge-Separated States. The Journal of Physical Chemistry B 2005, 109 (16) , 7713-7723. https://doi.org/10.1021/jp050352y
    11. Igor V. Rubtsov,, Naomi P. Redmore,, Robin M. Hochstrasser, and, Michael J. Therien. Interrogating Conformationally Dependent Electron-Transfer Dynamics via Ultrafast Visible Pump/IR Probe Spectroscopy. Journal of the American Chemical Society 2004, 126 (9) , 2684-2685. https://doi.org/10.1021/ja0305499
    12. Noboru Mataga,, Haik Chosrowjan,, Seiji Taniguchi, and, Yutaka Shibata, , Naoya Yoshida and, Atsuhiro Osuka, , Takeshi Kikuzawa and, Tadashi Okada. Ultrafast Charge Separation from the S2 Excited State of Directly Linked Porphyrin−Imide Dyads:  First Unequivocal Observation of the Whole Bell-Shaped Energy-Gap Law and Its Solvent Dependencies. The Journal of Physical Chemistry A 2002, 106 (51) , 12191-12201. https://doi.org/10.1021/jp021522z
    13. Hua-Zhong Yu,, J. Spencer Baskin, and, Ahmed H. Zewail. Ultrafast Dynamics of Porphyrins in the Condensed Phase:  II. Zinc Tetraphenylporphyrin. The Journal of Physical Chemistry A 2002, 106 (42) , 9845-9854. https://doi.org/10.1021/jp0203999
    14. Youn K. Kang,, Igor V. Rubtsov,, Peter M. Iovine,, Jianxin Chen, and, Michael J. Therien. Distance Dependence of Electron Transfer in Rigid, Cofacially Compressed, π-Stacked Porphyrin−Bridge−Quinone Systems. Journal of the American Chemical Society 2002, 124 (28) , 8275-8279. https://doi.org/10.1021/ja012504i
    15. Naomi P. Redmore,, Igor V. Rubtsov, and, Michael J. Therien. Synthesis, Excited-State Dynamics, and Reactivity of a Directly-Linked Pyromellitimide−(Porphinato)zinc(II) Complex. Inorganic Chemistry 2002, 41 (3) , 566-570. https://doi.org/10.1021/ic0108641
    16. Noboru Mataga,, Haik Chosrowjan,, Yutaka Shibata,, Naoya Yoshida,, Atsuhiro Osuka,, Takeshi Kikuzawa, and, Tadashi Okada. First Unequivocal Observation of the Whole Bell-Shaped Energy Gap Law in Intramolecular Charge Separation from S2 Excited State of Directly Linked Porphyrin−Imide Dyads and Its Solvent-Polarity Dependencies. Journal of the American Chemical Society 2001, 123 (49) , 12422-12423. https://doi.org/10.1021/ja010865s
    17. Hiroshi Imahori,, Nikolai V. Tkachenko,, Visa Vehmanen,, Koichi Tamaki,, Helge Lemmetyinen,, Yoshiteru Sakata, and, Shunichi Fukuzumi. An Extremely Small Reorganization Energy of Electron Transfer in Porphyrin−Fullerene Dyad. The Journal of Physical Chemistry A 2001, 105 (10) , 1750-1756. https://doi.org/10.1021/jp003207n
    18. Peter M. Iovine,, Matthew A. Kellett,, Naomi P. Redmore, and, Michael J. Therien. Syntheses and 1H NMR Spectroscopy of Rigid, Cofacially Aligned, Porphyrin−Bridge−Quinone Systems in Which the Interplanar Separations between the Porphyrin, Aromatic Bridge, and Quinone Are Less than the Sum of Their Respective van der Waals Radii. Journal of the American Chemical Society 2000, 122 (36) , 8717-8727. https://doi.org/10.1021/ja000759a
    19. Edward W. Castner, Jr., , Darcy Kennedy and, Robert J. Cave. Solvent as Electron Donor:  Donor/Acceptor Electronic Coupling Is a Dynamical Variable. The Journal of Physical Chemistry A 2000, 104 (13) , 2869-2885. https://doi.org/10.1021/jp9936852
    20. Hyun Sun Cho,, Nam Woong Song,, Yong Hee Kim,, Sae Chae Jeoung,, Sangjoon Hahn, and, Dongho Kim, , Seong Keun Kim, , Naoya Yoshida and, Atsuhiro Osuka. Ultrafast Energy Relaxation Dynamics of Directly Linked Porphyrin Arrays. The Journal of Physical Chemistry A 2000, 104 (15) , 3287-3298. https://doi.org/10.1021/jp9942623
    21. Carmita F. Portela,, Jarmila Brunckova,, Joseph L. Richards,, Bernd Schöllhorn,, Yassuko Iamamoto,, Douglas Magde,, Teddy G. Traylor, and, Charles L. Perrin. Distance Dependence of Photoinduced Electron Transfer in Metalloporphyrin Dimers. The Journal of Physical Chemistry A 1999, 103 (49) , 10540-10552. https://doi.org/10.1021/jp991766s
    22. Guy Ashkenazi,, Ronnie Kosloff, and, Mark A. Ratner. Photoexcited Electron Transfer:  Short-Time Dynamics and Turnover Control by Dephasing, Relaxation, and Mixing. Journal of the American Chemical Society 1999, 121 (14) , 3386-3395. https://doi.org/10.1021/ja981998p
    23. Mikael Andersson,, Jan Davidsson, and, Leif Hammarström, , Jouko Korppi-Tommola and, Timo Peltola. Photoinduced Electron Transfer Reactions in a Porphyrin−Viologen Complex:  Observation of S2 to S1 Relaxation and Electron Transfer from the S2 State. The Journal of Physical Chemistry B 1999, 103 (16) , 3258-3262. https://doi.org/10.1021/jp9829795
    24. Anne W. Kaplan,, Jennifer L. Polse,, Graham E. Ball,, Richard A. Andersen, and, Robert G. Bergman. Synthesis, Structure, and Reactivity of η2-N2-Aryldiazoalkane Titanium Complexes:  Cleavage of the N−N Bond. Journal of the American Chemical Society 1998, 120 (45) , 11649-11662. https://doi.org/10.1021/ja981340b
    25. Ranjit Kumble,, Steven Palese,, Victor S.-Y. Lin,, Michael J. Therien, and, Robin M. Hochstrasser. Ultrafast Dynamics of Highly Conjugated Porphyrin Arrays. Journal of the American Chemical Society 1998, 120 (44) , 11489-11498. https://doi.org/10.1021/ja981811u
    26. Anne W. Kaplan and, Robert G. Bergman. Nitrous Oxide Mediated Synthesis of Monomeric Hydroxoruthenium Complexes. Reactivity of (DMPE)2Ru(H)(OH) and the Synthesis of a Silica-Bound Ruthenium Complex. Organometallics 1998, 17 (23) , 5072-5085. https://doi.org/10.1021/om980295d
    27. Zachary K. Sweeney,, Jennifer L. Polse,, Richard A. Andersen, and, Robert G. Bergman. Cycloaddition and Nucleophilic Substitution Reactions of the Monomeric Titanocene Sulfido Complex (η5-C5Me5)2(C5H5N)TiS. Journal of the American Chemical Society 1998, 120 (31) , 7825-7834. https://doi.org/10.1021/ja980877m
    28. Jennifer L. Polse,, Anne W. Kaplan,, Richard A. Andersen, and, Robert G. Bergman. Synthesis of an η2-N2-Titanium Diazoalkane Complex with Both Imido- and Metal Carbene-Like Reactivity Patterns. Journal of the American Chemical Society 1998, 120 (25) , 6316-6328. https://doi.org/10.1021/ja974303d
    29. Nimrod Moiseyev,, Joseph Rucker, and, Michael H. Glickman. Reduction of Ferric Iron Could Drive Hydrogen Tunneling in Lipoxygenase Catalysis:  Implications for Enzymatic and Chemical Mechanisms. Journal of the American Chemical Society 1997, 119 (17) , 3853-3860. https://doi.org/10.1021/ja9632825
    30. Gary P. Wiederrecht,, Mark P. Niemczyk,, Walter A. Svec, and, Michael R. Wasielewski. Ultrafast Photoinduced Electron Transfer in a Chlorophyll-Based Triad:  Vibrationally Hot Ion Pair Intermediates and Dynamic Solvent Effects. Journal of the American Chemical Society 1996, 118 (1) , 81-88. https://doi.org/10.1021/ja953159y
    31. T. Häberle,, J. Hirsch,, F. Pöllinger,, H. Heitele, and, M. E. Michel-Beyerle, , C. Anders,, A. Döhling,, C. Krieger,, A. Rückemann, and, H. A. Staab. Ultrafast Charge Separation and Driving Force Dependence in Cyclophane-Bridged Zn−Porphyrin−Quinone Molecules. The Journal of Physical Chemistry 1996, 100 (46) , 18269-18274. https://doi.org/10.1021/jp960423g
    32. Yvonne Abel, Ivan Vlassiouk, Enno Lork, Sergei Smirnov, Marat R. Talipov, Franz‐Peter Montforts. Symmetry Effects in Photoinduced Electron Transfer in Chlorin‐Quinone Dyads: Adiabatic Suppression in the Marcus Inverted Region. Chemistry – A European Journal 2020, 26 (71) , 17120-17127. https://doi.org/10.1002/chem.202002736
    33. Yeduru Venkatesh, Venkatesan Munisamy, Bheerappagari Ramakrishna, Pippara Hemant Kumar, Haraprasad Mandal, Prakriti Ranjan Bangal. Photoinduced bimolecular electron transfer from aromatic amines to pentafluorophenyl porphyrin combined with ultrafast charge recombination persistence with Marcus inverted region. Physical Chemistry Chemical Physics 2017, 19 (7) , 5658-5673. https://doi.org/10.1039/C6CP08520B
    34. Karishma Devi Borah, Jagannath Bhuyan. Magnesium porphyrins with relevance to chlorophylls. Dalton Transactions 2017, 46 (20) , 6497-6509. https://doi.org/10.1039/C7DT00823F
    35. Wen-kai Zhang. Polarization Dependent Time-Resolved Infrared Spectroscopy and Its Applications. Chinese Journal of Chemical Physics 2016, 29 (1) , 1-9. https://doi.org/10.1063/1674-0068/29/cjcp1512246
    36. Gong-jia Lan, Jian-bin Zhang, Tian-xiang Zhao, Qiu-xia Xu, Xiong-hui Wei. Supramolecular Fixation of Three Amines using Cobalt Tetraphenylporphyrin for SO2 Removal. Chinese Journal of Chemical Physics 2014, 27 (5) , 616-620. https://doi.org/10.1063/1674-0068/27/05/616-620
    37. Fei Gao, Tianrui Huo. Supramolecular recognition of functional magnesium tetraphenylporphyrin with pyrrolidine for SO2 capture. Korean Journal of Chemical Engineering 2013, 30 (9) , 1747-1750. https://doi.org/10.1007/s11814-013-0093-9
    38. Peter Hamm, Ahmed H. Zewail, Graham R. Fleming. A tribute to Robin Hochstrasser. Chemical Physics 2013, 422 , 1-7. https://doi.org/10.1016/j.chemphys.2013.05.003
    39. Fei Gao, Jian-Bin Zhang, Chun-Ping Li, Tian-Rui Huo, Xiong-Hui Wei. Supramolecular binding of amines with functional magnesium tetraphenylporphyrin for CO2 capture. Chinese Chemical Letters 2013, 24 (3) , 249-252. https://doi.org/10.1016/j.cclet.2013.01.043
    40. JianBin Zhang, ChunPing Li, TianRui Huo, Qiang Li, Tong Zhang, XiongHui Wei. Photochemical fixation and reduction of sulfur dioxide to sulfide by tetraphenylporphyrin magnesium: Spectroscopic and kinetic studies. Science China Chemistry 2012, 55 (9) , 1881-1886. https://doi.org/10.1007/s11426-012-4656-0
    41. Li Hua Liu, Wen Bin Li, Fei Gao, Tian Rui Huo. Adduct of magnesium tetraphenylporphyrin with aniline for colorimetric detection of SO2. Chinese Chemical Letters 2012, 23 (2) , 208-212. https://doi.org/10.1016/j.cclet.2011.10.018
    42. Jian Bin Zhang, Chun Ping Li, Tian Rui Huo, Zhan Ying Liu, Li Hua Liu, Tong Zhang, Dong Yan Zhang, Xiong Hui Wei. Photochemical reaction of magnesium tetraphenyl porphyrin with sulfur dioxide. Chinese Chemical Letters 2010, 21 (7) , 787-789. https://doi.org/10.1016/j.cclet.2010.03.023
    43. Natalia N. Sergeeva, Mathias O. Senge. Photochemical Transformations Involving Magnesium Porphyrins and Phthalocyanines. 2009https://doi.org/10.1002/9780470682531.pat0404
    44. Munmun Bardhan, Tapas Misra, Joydeep Chowdhury, Tapan Ganguly. Comparative studies by using spectroscopic tools on the charge transfer (CT) band of a novel synthesized short-chain dyad in isotropic media and in a gel (P123). Chemical Physics Letters 2009, 481 (1-3) , 142-148. https://doi.org/10.1016/j.cplett.2009.09.054
    45. Jian Bin Zhang, Peng Yan Zhang, Guo Hua Chen, Fang Han, Xiong Hui Wei. Photochemical reaction between magnesium tetraphenyl porphyrin and oxygen. Chinese Chemical Letters 2008, 19 (10) , 1190-1192. https://doi.org/10.1016/j.cclet.2008.07.004
    46. Sung Cho, Wei‐Shi Li, Min‐Chul Yoon, Tae Kyu Ahn, Dong‐Lin Jiang, Jiwon Kim, Takuzo Aida, Dongho Kim. Relationship between Incoherent Excitation Energy Migration Processes and Molecular Structures in Zinc(II) Porphyrin Dendrimers. Chemistry – A European Journal 2006, 12 (29) , 7576-7584. https://doi.org/10.1002/chem.200600213
    47. F. Ann Walker, Ursula Simonis. Iron Porphyrin Chemistry. 2005https://doi.org/10.1002/0470862106.ia111
    48. F. Ann Walker, Ursula Simonis. Iron Porphyrin Chemistry. 2005https://doi.org/10.1002/9781119951438.eibc0104
    49. Mohamed E. El-Khouly, Yasuyuki Araki, Osamu Ito, Suresh Gadde, Amy L. McCarty, Paul A. Karr, Melvin E. Zandler, Francis D’Souza. Spectral, electrochemical, and photophysical studies of a magnesium porphyrin–fullerene dyad. Physical Chemistry Chemical Physics 2005, 7 (17) , 3163. https://doi.org/10.1039/b507673k
    50. Joseph Strzalka, Brian R. Gibney, Sushil Satija, J. Kent Blasie. Specular neutron reflectivity and the structure of artificial protein maquettes vectorially oriented at interfaces. Physical Review E 2004, 70 (6) https://doi.org/10.1103/PhysRevE.70.061905
    51. Noboru Mataga, Seiji Taniguchi, Haik Chosrowjan, Atsuhiro Osuka, Naoya Yoshida. Ultrafast charge transfer and radiationless relaxations from higher excited state (S2) of directly linked Zn-porphyrin (ZP)-acceptor dyads: investigations into fundamental problems of exciplex chemistry. Chemical Physics 2003, 295 (3) , 215-228. https://doi.org/10.1016/j.chemphys.2003.09.005
    52. Naoya Yoshida, Tomoya Ishizuka, Katsuyuki Yofu, Masataka Murakami, Hiroshi Miyasaka, Tadashi Okada, Yasushi Nagata, Akira Itaya, Hyun Sun Cho, Dongho Kim, Atsuhiro Osuka. Synthesis of Directly Linked Zinc( II ) Porphyrin–Imide Dyads and Energy Gap Dependence of Intramolecular Electron Transfer Reactions. Chemistry – A European Journal 2003, 9 (12) , 2854-2866. https://doi.org/10.1002/chem.200204588
    53. Noboru Mataga, Seiji Taniguchi, Haik Chosrowjan, Atsuhiro Osuka, Naoya Yoshida. Ultrafast charge separation and radiationless relaxation processes from higher excited electronic states of directly linked porphyrin-acceptor dyads. Photochemical & Photobiological Sciences 2003, 2 (5) , 493-500. https://doi.org/10.1039/b300649m
    54. . Optical Properties of Oxotitanium (Ⅳ) Meso-tetrakis(4-sulfonatophenyl)porphyrin Intercalated into the Layered Double Hydroxides (LDH) Studied by Laser Spectroscopy. Bulletin of the Korean Chemical Society 2003, 446-452. https://doi.org/10.5012/bkcs.2003.24.4.446
    55. Nam Woong Song, Hyun Sun Cho, Min-Chul Yoon, Sae Chae Jeoung, Naoya Yoshida, Atsuhiro Osuka, Dongho Kim. Fluorescence from the Highly Excited States and Vibrational Energy Relaxation in Directly Linked Porphyrin Arrays. Bulletin of the Chemical Society of Japan 2002, 75 (5) , 1023-1029. https://doi.org/10.1246/bcsj.75.1023
    56. Visa Vehmanen, Nikolai V. Tkachenko, Hiroshi Imahori, Shunichi Fukuzumi, Helge Lemmetyinen. Charge-transfer emission of compact porphyrin–fullerene dyad analyzed by Marcus theory of electron-transfer. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2001, 57 (11) , 2229-2244. https://doi.org/10.1016/S1386-1425(01)00496-6
    57. Avijit Sen, V Krishnan. Photophysical and electrochemical redox properties of fixed distance porphyrin–quinone systems. Journal of Photochemistry and Photobiology A: Chemistry 1999, 123 (1-3) , 77-85. https://doi.org/10.1016/S1010-6030(99)00033-7
    58. M. Bixon, Joshua Jortner. Electron Transfer—from Isolated Molecules to Biomolecules. 1999, 35-202. https://doi.org/10.1002/9780470141656.ch3
    59. Klaas Wynne, Robin M. Hochstrasser. Coherence and Adiabaticity in Ultrafast Electron Transfer. 1999, 263-309. https://doi.org/10.1002/9780470141663.ch4
    60. Toshihiro Kondo, Masatoshi Yanagida, Shu-ichi Nomura, Takashi Ito, Kohei Uosaki. pH-dependent photoinduced electron transfer at the gold electrode modified with a self-assembled monolayer of a porphyrin-mercaptoquinone coupling molecule. Journal of Electroanalytical Chemistry 1997, 438 (1-2) , 121-126. https://doi.org/10.1016/S0022-0728(96)05064-4
    61. Klaas Wynne, Gavin D. Reid, Robin M. Hochstrasser. Vibrational coherence in electron transfer: The tetracyanoethylene–pyrene complex. The Journal of Chemical Physics 1996, 105 (6) , 2287-2297. https://doi.org/10.1063/1.472097
    62. U. Rempel, B. von Maltzan, C. von Borczyskowski. Competition between charge transfer via superexchange and thermally activated energy transfer in porphyrinheterodimerquinone systems. Chemical Physics Letters 1995, 245 (2-3) , 253-261. https://doi.org/10.1016/0009-2614(95)00982-A
    63. Klaas Wynne, R. M. Hochstrasser. Anisotropy as an ultrafast probe of electronic coherence in degenerate systems exhibiting Raman scattering, fluorescence, transient absorption and chemical reactions. Journal of Raman Spectroscopy 1995, 26 (7) , 561-569. https://doi.org/10.1002/jrs.1250260711

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect