Para photoaddition of N-methyltriazolinedione to benzene. Synthesis of energy-rich azo compounds comprising benzene + nitrogenClick to copy article linkArticle link copied!

Note: In lieu of an abstract, this is the article's first page.
Cited By
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by ACS Publications if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
This article is cited by 55 publications.
- Zohaib Siddiqi, David Sarlah. Reimagining Dearomatization: Arenophile-Mediated Single-Atom Insertions and π-Extensions. Accounts of Chemical Research 2025, 58
(7)
, 1134-1150. https://doi.org/10.1021/acs.accounts.5c00035
- Sajan Pradhan, Fahimeh Mohammadi, Jean Bouffard. Skeletal Transformation of Unactivated Arenes Enabled by a Low-Temperature Dearomative (3 + 2) Cycloaddition. Journal of the American Chemical Society 2023, 145
(22)
, 12214-12223. https://doi.org/10.1021/jacs.3c02314
- Kazuki Ikeda, Riku Kojima, Kentaro Kawai, Takayasu Murakami, Takashi Kikuchi, Masahiro Kojima, Tatsuhiko Yoshino, Shigeki Matsunaga. Formation of Isolable Dearomatized [4 + 2] Cycloadducts from Benzenes, Naphthalenes, and N-Heterocycles Using 1,2-Dihydro-1,2,4,5-tetrazine-3,6-diones as Arenophiles under Visible Light Irradiation. Journal of the American Chemical Society 2023, 145
(16)
, 9326-9333. https://doi.org/10.1021/jacs.3c02556
- Kentaro Kawai, Kazuki Ikeda, Akane Sato, Akira Kabasawa, Masahiro Kojima, Kenta Kokado, Akira Kakugo, Kazuki Sada, Tatsuhiko Yoshino, Shigeki Matsunaga. 1,2-Disubstituted 1,2-Dihydro-1,2,4,5-tetrazine-3,6-dione as a Dynamic Covalent Bonding Unit at Room Temperature. Journal of the American Chemical Society 2022, 144
(3)
, 1370-1379. https://doi.org/10.1021/jacs.1c11665
- Tsubasa Ito, Shingo Harada, Haruka Homma, Hiroki Takenaka, Shumpei Hirose, Tetsuhiro Nemoto. Asymmetric Intramolecular Dearomatization of Nonactivated Arenes with Ynamides for Rapid Assembly of Fused Ring System under Silver Catalysis. Journal of the American Chemical Society 2021, 143
(2)
, 604-611. https://doi.org/10.1021/jacs.0c10682
- Aika Yanagimoto, Masaaki Komatsuda, Kei Muto, Junichiro Yamaguchi. Dearomative Allylation of Naphthyl Cyanohydrins by Palladium Catalysis: Catalyst-Enhanced Site Selectivity. Organic Letters 2020, 22
(9)
, 3423-3427. https://doi.org/10.1021/acs.orglett.0c00897
- Masaaki Komatsuda, Hiroki Kato, Kei Muto, Junichiro Yamaguchi. Pd-Catalyzed Dearomative Three-Component Reaction of Bromoarenes with Diazo Compounds and Allylborates. ACS Catalysis 2019, 9
(10)
, 8991-8995. https://doi.org/10.1021/acscatal.9b03461
- David
G. Dennis, Mikiko Okumura, David Sarlah. Synthesis of (±)-Idarubicinone via Global Functionalization of Tetracene. Journal of the American Chemical Society 2019, 141
(26)
, 10193-10198. https://doi.org/10.1021/jacs.9b05370
- Tanner
W. Bingham, Lucas W. Hernandez, Daniel G. Olson, Riley L. Svec, Paul J. Hergenrother, David Sarlah. Enantioselective Synthesis of Isocarbostyril Alkaloids and Analogs Using Catalytic Dearomative Functionalization of Benzene. Journal of the American Chemical Society 2019, 141
(1)
, 657-670. https://doi.org/10.1021/jacs.8b12123
- William
C. Wertjes, Mikiko Okumura, David Sarlah. Palladium-Catalyzed Dearomative syn-1,4-Diamination. Journal of the American Chemical Society 2019, 141
(1)
, 163-167. https://doi.org/10.1021/jacs.8b13030
- Masaaki Komatsuda, Kei Muto, Junichiro Yamaguchi. Pd-Catalyzed Dearomative Allylation of Benzyl Phosphates. Organic Letters 2018, 20
(14)
, 4354-4357. https://doi.org/10.1021/acs.orglett.8b01807
- Lucas
W. Hernandez, Ulrich Klöckner, Jola Pospech, Lilian Hauss, David Sarlah. Nickel-Catalyzed Dearomative trans-1,2-Carboamination. Journal of the American Chemical Society 2018, 140
(13)
, 4503-4507. https://doi.org/10.1021/jacs.8b01726
- Mikiko Okumura, Alexander S. Shved, and David Sarlah . Palladium-Catalyzed Dearomative syn-1,4-Carboamination. Journal of the American Chemical Society 2017, 139
(49)
, 17787-17790. https://doi.org/10.1021/jacs.7b11663
- Lucas W. Hernandez, Jola Pospech, Ulrich Klöckner, Tanner W. Bingham, and David Sarlah . Synthesis of (+)-Pancratistatins via Catalytic Desymmetrization of Benzene. Journal of the American Chemical Society 2017, 139
(44)
, 15656-15659. https://doi.org/10.1021/jacs.7b10351
- Kevin De Bruycker, Stijn Billiet, Hannes A. Houck, Subrata Chattopadhyay, Johan M. Winne, and Filip E. Du Prez . Triazolinediones as Highly Enabling Synthetic Tools. Chemical Reviews 2016, 116
(6)
, 3919-3974. https://doi.org/10.1021/acs.chemrev.5b00599
- Gary W. Breton and Kevin R. Hoke . Application of Radical Cation Spin Density Maps toward the Prediction of Photochemical Reactivity between N-Methyl-1,2,4-triazoline-3,5-dione and Substituted Benzenes. The Journal of Organic Chemistry 2013, 78
(10)
, 4697-4707. https://doi.org/10.1021/jo4001417
- Markus Heubes,, Thomas Dietz,, Helmut Quast,, Maximilian Seefelder, and, Alexander Witzel, , Vijay R. Gadgil and, Richard Vaughan Williams. Lifting of the Degeneracy in Semibullvalenes by Remote and Direct Substituents: A Quantitative Study Using Variable-Temperature Carbon-13 NMR Spectroscopy. The Journal of Organic Chemistry 2001, 66
(6)
, 1949-1960. https://doi.org/10.1021/jo001062a
- Gary W. Breton and, Kristy A. Newton. Further Studies of the Thermal and Photochemical Diels−Alder Reactions of N-Methyl-1,2,4-triazoline-3,5-dione (MeTAD) with Naphthalene and Some Substituted Naphthalenes. The Journal of Organic Chemistry 2000, 65
(10)
, 2863-2869. https://doi.org/10.1021/jo9906429
- Florence Risi,, Louis Pizzala,, Micheline Carles,, Patrick Verlaque, and, Jean-Pierre Aycard. Photolysis of Matrix-Isolated 4-R-1,2,4-triazoline-3,5-diones: Identification of Aziridine-2,3-dione Transients. The Journal of Organic Chemistry 1996, 61
(2)
, 666-670. https://doi.org/10.1021/jo950778g
- M. Okumura. 4.1 Arenophile-Mediated Photochemical Dearomative Functionalization. 2025https://doi.org/10.1055/sos-SD-245-00051
- Debajyoti Saha. Catalytic Dearomative Cycloaddition Reactions Enabled by Visible Light. Asian Journal of Organic Chemistry 2024, 13
(12)
https://doi.org/10.1002/ajoc.202400374
- Shupeng Liu, Tianyi Xu, Yuting Liu, Youliang Wang. Dearomative Intramolecular
meta
‐Thermocycloadditions of Benzene Rings via Wheland Intermediates. Angewandte Chemie 2024, 136
(35)
https://doi.org/10.1002/ange.202407841
- Shupeng Liu, Tianyi Xu, Yuting Liu, Youliang Wang. Dearomative Intramolecular
meta
‐Thermocycloadditions of Benzene Rings via Wheland Intermediates. Angewandte Chemie International Edition 2024, 63
(35)
https://doi.org/10.1002/anie.202407841
- Ning Lei, Qian Zhang, Pan Tao, Cong Lu, Qian Lei, Ke Zheng. Dearomative difunctionalization of arenes
via
highly selective radical relay reactions. Organic Chemistry Frontiers 2024, 11
(17)
, 4654-4662. https://doi.org/10.1039/D4QO00964A
- De‐Hai Liu, Jiajia Ma. Recent Advances in Dearomative Partial Reduction of Benzenoid Arenes. Angewandte Chemie 2024, 136
(21)
https://doi.org/10.1002/ange.202402819
- De‐Hai Liu, Jiajia Ma. Recent Advances in Dearomative Partial Reduction of Benzenoid Arenes. Angewandte Chemie International Edition 2024, 63
(21)
https://doi.org/10.1002/anie.202402819
- Yusuke Kuroda, Maya Krell, Kazuma Kurokawa, Kiyosei Takasu. Synthesis of mesoionic triazolones
via
a formal [3+2] cycloaddition between 4-phenyl-1,2,4-triazoline-3,5-dione and alkynes. Chemical Communications 2024, 60
(13)
, 1719-1722. https://doi.org/10.1039/D3CC05088B
- Angshuman Palai, Pramod Rai, Biplab Maji. Rejuvenation of dearomative cycloaddition reactions
via
visible light energy transfer catalysis. Chemical Science 2023, 14
(43)
, 12004-12025. https://doi.org/10.1039/D3SC04421A
- Gary W. Breton. Reinvestigation of the Room Temperature Photochemical Reaction between N-Methyl-1,2,4-triazoline-3,5-dione (MeTAD) and Benzene. Organics 2023, 4
(2)
, 164-172. https://doi.org/10.3390/org4020013
- Yusuke Kuroda. Remarkable Solvent Effect of Fluorinated Alcohols on Azo–Ene Reactions. Chemical and Pharmaceutical Bulletin 2022, 70
(5)
, 359-361. https://doi.org/10.1248/cpb.c22-00076
- Cosimo Boldrini, Syuzanna R. Harutyunyan. Pd-catalyzed allylative dearomatisation using Grignard reagents. Chemical Communications 2021, 57
(89)
, 11807-11810. https://doi.org/10.1039/D1CC05609C
- Masataka Nakahara, Kengo Hanaya, Takeshi Sugai, Shuhei Higashibayashi. Theoretical Analysis of the Heterocyclic [4+2] Cycloaddition Between Pyridinium Ion and Enol Ether. ChemistryOpen 2021, 10
(6)
, 627-629. https://doi.org/10.1002/open.202000310
- Mikiko Okumura, David Sarlah. 4‐Methyl‐1,2,4‐triazoline‐3,5‐dione. 2021, 1-11. https://doi.org/10.1002/047084289X.rn02375
- Kirill Kulish, Cosimo Boldrini, Marta Castiñeira Reis, Juana M. Pérez, Syuzanna R. Harutyunyan. Lewis Acid Promoted Dearomatization of Naphthols. Chemistry – A European Journal 2020, 26
(68)
, 15843-15846. https://doi.org/10.1002/chem.202003392
- Yuan‐Zheng Cheng, Xu‐Lun Huang, Wei‐Hui Zhuang, Qing‐Ru Zhao, Xiao Zhang, Tian‐Sheng Mei, Shu‐Li You. Intermolecular Dearomatization of Naphthalene Derivatives by Photoredox‐Catalyzed 1,2‐Hydroalkylation. Angewandte Chemie 2020, 132
(41)
, 18218-18223. https://doi.org/10.1002/ange.202008358
- Yuan‐Zheng Cheng, Xu‐Lun Huang, Wei‐Hui Zhuang, Qing‐Ru Zhao, Xiao Zhang, Tian‐Sheng Mei, Shu‐Li You. Intermolecular Dearomatization of Naphthalene Derivatives by Photoredox‐Catalyzed 1,2‐Hydroalkylation. Angewandte Chemie International Edition 2020, 59
(41)
, 18062-18067. https://doi.org/10.1002/anie.202008358
- Zhipeng Zhang, Ying-jun Zhou, Xiao-Wei Liang. Total synthesis of natural products using photocycloaddition reactions of arenes. Organic & Biomolecular Chemistry 2020, 18
(29)
, 5558-5566. https://doi.org/10.1039/D0OB01204A
- Mikiko Okumura, David Sarlah. Visible‐Light‐Induced Dearomatizations. European Journal of Organic Chemistry 2020, 2020
(10)
, 1259-1273. https://doi.org/10.1002/ejoc.201901229
- Weizhao Zhao, Xin Huang, Yaling Zhan, Qifeng Zhang, Dongyang Li, Yage Zhang, Lichun Kong, Bo Peng. Dearomative Dual Functionalization of Aryl Iodanes. Angewandte Chemie 2019, 131
(48)
, 17370-17374. https://doi.org/10.1002/ange.201909019
- Weizhao Zhao, Xin Huang, Yaling Zhan, Qifeng Zhang, Dongyang Li, Yage Zhang, Lichun Kong, Bo Peng. Dearomative Dual Functionalization of Aryl Iodanes. Angewandte Chemie International Edition 2019, 58
(48)
, 17210-17214. https://doi.org/10.1002/anie.201909019
- Conghui Tang, Mikiko Okumura, Hejun Deng, David Sarlah. Palladium‐Catalyzed Dearomative
syn
‐1,4‐Oxyamination. Angewandte Chemie 2019, 131
(44)
, 15909-15913. https://doi.org/10.1002/ange.201909838
- Conghui Tang, Mikiko Okumura, Hejun Deng, David Sarlah. Palladium‐Catalyzed Dearomative
syn
‐1,4‐Oxyamination. Angewandte Chemie International Edition 2019, 58
(44)
, 15762-15766. https://doi.org/10.1002/anie.201909838
- Conghui Tang, Mikiko Okumura, Yunbo Zhu, Annie R. Hooper, Yu Zhou, Yu‐Hsuan Lee, David Sarlah. Palladium‐Catalyzed Dearomative
syn
‐1,4‐Carboamination with Grignard Reagents. Angewandte Chemie 2019, 131
(30)
, 10351-10355. https://doi.org/10.1002/ange.201905021
- Conghui Tang, Mikiko Okumura, Yunbo Zhu, Annie R. Hooper, Yu Zhou, Yu‐Hsuan Lee, David Sarlah. Palladium‐Catalyzed Dearomative
syn
‐1,4‐Carboamination with Grignard Reagents. Angewandte Chemie International Edition 2019, 58
(30)
, 10245-10249. https://doi.org/10.1002/anie.201905021
- Johannes F. Teichert. Benzol dearomatisieren mit Licht. Nachrichten aus der Chemie 2017, 65
(11)
, 1092-1095. https://doi.org/10.1002/nadc.20174067859
- Mikiko Okumura, Stephanie M. Nakamata Huynh, Jola Pospech, David Sarlah. Arenophile‐Mediated Dearomative Reduction. Angewandte Chemie 2016, 128
(51)
, 16142-16146. https://doi.org/10.1002/ange.201609686
- Mikiko Okumura, Stephanie M. Nakamata Huynh, Jola Pospech, David Sarlah. Arenophile‐Mediated Dearomative Reduction. Angewandte Chemie International Edition 2016, 55
(51)
, 15910-15914. https://doi.org/10.1002/anie.201609686
- Emma H. Southgate, Jola Pospech, Junkai Fu, Daniel R. Holycross, David Sarlah. Dearomative dihydroxylation with arenophiles. Nature Chemistry 2016, 8
(10)
, 922-928. https://doi.org/10.1038/nchem.2594
- Martin G. Banwell. A light touch breaks a strong ring. Nature Chemistry 2016, 8
(10)
, 900-901. https://doi.org/10.1038/nchem.2623
- Alireza Salimi Beni, Zeinab Dalirnasab, Abbas Teimouri, Alireza Najafi Chermahini. Studies on tautomerism in the triazoline dione. Canadian Journal of Chemistry 2011, 89
(11)
, 1387-1395. https://doi.org/10.1139/v11-114
- William M. Horspool. The Photochemistry of the Hydrazo, Azo and Azoxy Groups. 2009https://doi.org/10.1002/9780470682531.pat0156
- Florence Risi, Ana-Maria Alstanei, Elena Volanschi, Micheline Carles, Louis Pizzala, Jean-Pierre Aycard. Photoaddition of Aliphatic Ethers to 4-Methyl-1,2,4-triazoline-3,5-dione: Application to the Synthesis of Functionalized Crown Ethers and Mechanism. European Journal of Organic Chemistry 2000, 2000
(4)
, 617-626. https://doi.org/10.1002/(SICI)1099-0690(200002)2000:4<617::AID-EJOC617>3.0.CO;2-M
- Duoli Sun, Stephan M. Hubig, Jay K. Kochi. Electron-transfer pathway for photoinduced Diels–Alder cycloadditions. Journal of Photochemistry and Photobiology A: Chemistry 1999, 122
(2)
, 87-94. https://doi.org/10.1016/S1010-6030(99)00007-6
- Stanislav Rádl. 1 2, 4-Triazoline-3,5-Diones. 1996, 119-205. https://doi.org/10.1016/S0065-2725(08)60071-9
- S. J. HAMROCK, R. S. SHERIDAN. ChemInform Abstract: Para Photoaddition of N‐Methyltriazolinedione to Benzene. Synthesis of Energy‐Rich Azo Compounds Comprising Benzene + N2.. ChemInform 1990, 21
(13)
https://doi.org/10.1002/chin.199013184
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.