ACS Publications. Most Trusted. Most Cited. Most Read
My Activity

Figure 1Loading Img

Selective binding of one enantioface of monosubstituted alkenes to the chiral transition metal Lewis acid [(.eta.5-C5H5)Re(NO)(PPh3)]+

Cite this: J. Am. Chem. Soc. 1988, 110, 12, 4082–4084
Publication Date (Print):June 1, 1988
ACS Legacy Archive

Article Views





PDF (1 MB)
Supporting Info (1)»

Note: In lieu of an abstract, this is the article's first page.

Free first page

Supporting Information

Terms & Conditions

Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at

Cited By

This article is cited by 19 publications.

  1. Ke Zhang, Charles B. Musgrave III, Diane A. Dickie, William A. Goddard III, T. Brent Gunnoe. Capping Arene Ligated Rhodium-Catalyzed Olefin Hydrogenation: A Model Study of the Ligand Influence on a Catalytic Process That Incorporates Oxidative Addition and Reductive Elimination. Organometallics 2022, 41 (22) , 3373-3386.
  2. Steven J. Dakermanji, Karl S. Westendorff, Emmit K. Pert, Katy B. Wilson, Jeffery T. Myers, Justin H. Wilde, Diane A. Dickie, Kevin D. Welch, W. Dean Harman. Spatial Recognition Within Terpenes: Redox and H-bond Promoted Linkage Isomerizations and the Selective Binding of Complex Alkenes. Organometallics 2020, 39 (10) , 1961-1975.
  3. Michael B. Wells,, Jonathan E. McConathy,, Peter S. White, and, Joseph L. Templeton. Regioselective and Stereoselective Reactions of 2-Butyne Bound to a Resolved Chiral Tungsten(II) Center. Organometallics 2002, 21 (23) , 5007-5020.
  4. T. Brent Gunnoe,, Michal Sabat, and, W. Dean Harman. Stereoselective Dihapto-Binding of Prochiral Aromatic Compounds by {TpRe(CO)(PMe3)}:  Synthesis, Characterization, Stability, and Enantiofacial Discrimination (Tp = Hydrido(tris)pyrazolylborate). Organometallics 2000, 19 (5) , 728-740.
  5. Lisa E. Helberg,, T. Brent Gunnoe,, Benjamin C. Brooks,, Michal Sabat, and, W. Dean Harman. Rhenium(I) Terpyridine π-Bases:  Reversible η2-Coordination of Ketones, Aldehydes, and Olefins in the Terpyridine Plane. Organometallics 1999, 18 (4) , 573-581.
  6. Andreas Böhm, Henri Brunner, Wolfgang Beck. Chirale Halbsandwich-Pentamethylcyclopentadienyl-Rhodium(III)- und Iridium(III)-Komplexe mit Schiff-Basen aus Salicylaldehyd und α-Aminosäureestern [1]. Zeitschrift für anorganische und allgemeine Chemie 2008, 634 (2) , 274-278.
  7. Pradeep Gutta, Dean J. Tantillo. Theoretical Studies on Farnesyl Cation Cyclization:  Pathways to Pentalenene. Journal of the American Chemical Society 2006, 128 (18) , 6172-6179.
  8. Tang-Sheng Peng, Atta M. Arif, John A. Gladysz. Thermodynamic Enantioface-Binding Selectivities of Monosubstituted Alkenes to a Highly Discriminating Chiral Transition -MetalLewis Acid; equilibration of diastereoisomeric (cyclopentadienyl)(alkene)(nitrosyl)(triphenylphosphine)rhenium complexes ([Re(?5-C5H5)(CH2 = CHR)(NO) (PPh3)]+BF4?). Helvetica Chimica Acta 1992, 75 (2) , 442-456.
  9. David J. Ager, Michael B. East. Methodology to establish 1,2- and 1,3-difunctionality for the synthesis of carbohydrate derivates. Tetrahedron 1992, 48 (14) , 2803-2894.
  10. Bernard W. Rockett, George Marr. Organic reactions of selected π-complexes annual survey covering the year 1988. Journal of Organometallic Chemistry 1990, 392 (1-3) , 161-283.
  11. Ulrich Kölle, Janusz Kossakowski, Gerhard Raabe. Cp*Ru(acac) — ein koordinativ ungesättigter, stabiler 16-Valenzelektronen-Komplex. Angewandte Chemie 1990, 102 (7) , 839-840.
  12. Sénamé K. Agbossou, Whitney W. Smith, John A. Gladysz. Synthesis and Reactivity of Chiral Rhenium Alcohol Complexes of the Formula [(η5-C5H5)Re(NO)(PPh3)(ROH)]⊕BF4⊖. Chemische Berichte 1990, 123 (6) , 1293-1299.
  13. Michael A. Dewey, Atta M. Arif, J.A. Gladysz. Syntheses and structures of σ-pyridine, quinoline, and isoquinoline complexes of the formula [(η5-C5H5)Re(NO)(PPh3)(NCxHy)]+ CF3SO3−. Journal of Organometallic Chemistry 1990, 384 (1-2) , C29-C32.
  14. David N.A. Fox, Timothy Gallagher. Asymmetric synthesis via electrophile-mediated cyclisations. Tetrahedron 1990, 46 (13-14) , 4697-4710.
  15. Tang-Sheng Peng, J.A. Gladysz. Regiospecific, diastereospecific and enantiospecific nucleophilic additions to chiral monosubstituted alkene complexes of the formula [(η5-C5H5)Re(NO)(PPh3)(H2CCHR)]+ BF4−. Tetrahedron Letters 1990, 31 (31) , 4417-4420.
  16. Tang-Sheng Peng, J. A. Gladysz. Isomerization of diastereoisomeric alkene complexes of the formula [(η 5 -C 5 H 5 )Re(NO)(PPh 3 )(H 2 CCHR)] + ; the alkene enantioface bound to the metal can ‘flip’ without alkene dissociation. J. Chem. Soc., Chem. Commun. 1990, 110 (13) , 902-903.
  17. . Organische Chemie 1988. Nachrichten aus Chemie, Technik und Laboratorium 1989, 126-142.
  18. Charles M. Garner, Jesus M. Fernández, J.A. Gladysz. Stereoselective addition of cyanide ion to chiral rhenium π-aldehyde complexes of the formulae [(η5-C5H5)Re(NO)(PPh3)(η2-OCHR)]+ BF4−. Tetrahedron Letters 1989, 30 (30) , 3931-3934.
  19. G. S. BODNER, J. M. FERNANDEZ, A. M. ARIF, J. A. GLADYSZ. ChemInform Abstract: Selective Binding of One Enantioface of Monosubstituted Alkenes to the Chiral Transition Metal Lewis Acid ((η5-C5H5)Re(NO)(PPh3))+.. ChemInform 1988, 19 (40)

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Your Mendeley pairing has expired. Please reconnect