ACS Publications. Most Trusted. Most Cited. Most Read
Carbanion spectroscopy: cyanomethide anion (CH2CN-)
My Activity

Figure 1Loading Img
    Research Article

    Carbanion spectroscopy: cyanomethide anion (CH2CN-)
    Click to copy article linkArticle link copied!

    ACS Legacy Archive
    Other Access Options

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 1987, 109, 20, 5996–6003
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja00254a018
    Published September 1, 1987

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 71 publications.

    1. Olivia Chitarra, Olivier Pirali, Jean-Thibaut Spaniol, Thomas S. Hearne, Jean-Christophe Loison, John F. Stanton, Marie-Aline Martin-Drumel. Pure Rotational Spectroscopy of the CH2CN Radical Extended to the Sub-Millimeter Wave Spectral Region. The Journal of Physical Chemistry A 2022, 126 (41) , 7502-7513. https://doi.org/10.1021/acs.jpca.2c04399
    2. Rebecca A. Firth, Taylor L. Dimino, Wilson K. Gichuhi. Negative Ion Photoelectron Spectra of Deprotonated Benzonitrile Isomers via Computation of Franck–Condon Factors. The Journal of Physical Chemistry A 2022, 126 (29) , 4781-4790. https://doi.org/10.1021/acs.jpca.2c03220
    3. Benjamin A. Laws, Zachariah D. Levey, Timothy W. Schmidt, Stephen T. Gibson. Velocity Map Imaging Spectroscopy of the Dipole-Bound State of CH2CN–: Implications for the Diffuse Interstellar Bands. Journal of the American Chemical Society 2021, 143 (44) , 18684-18692. https://doi.org/10.1021/jacs.1c08762
    4. Peter E. VanNatta, David A. Ramirez, Andres R. Velarde, Ghazanfar Ali, Matthew T. Kieber-Emmons. Exceptionally High O–H Bond Dissociation Free Energy of a Dicopper(II) μ-Hydroxo Complex and Insights into the Geometric and Electronic Structure Origins Thereof. Journal of the American Chemical Society 2020, 142 (38) , 16292-16312. https://doi.org/10.1021/jacs.0c06425
    5. Hao Li, Xiao-Fei Gao, Xin Meng, Shan Xi Tian. Dissociative Electron Attachment to Molecular Acetonitrile. The Journal of Physical Chemistry A 2019, 123 (42) , 9089-9095. https://doi.org/10.1021/acs.jpca.9b07399
    6. Karthika J. Kadassery, Komal Sethi, Paul M. Fanara, David C. Lacy. CO-Photolysis-Induced H-Atom Transfer from MnIO–H Bonds. Inorganic Chemistry 2019, 58 (7) , 4679-4685. https://doi.org/10.1021/acs.inorgchem.9b00322
    7. Andrew R. Dixon, Dmitry Khuseynov, and Andrei Sanov . Heterogeneously Substituted Radicals and Carbenes: Photoelectron Imaging of the FC(H)CN– and FCCN– Anions. The Journal of Physical Chemistry A 2014, 118 (37) , 8533-8541. https://doi.org/10.1021/jp5024229
    8. Dmitry Khuseynov, Andrew R. Dixon, Daniel J. Goebbert, and Andrei Sanov . Heterogeneous Substitution Effects in Chlorocyanomethyl Radical and Chlorocyanocarbene. The Journal of Physical Chemistry A 2013, 117 (41) , 10681-10691. https://doi.org/10.1021/jp4053117
    9. Han-Gook Cho and Lester Andrews . Matrix Infrared Spectra and Density Functional Calculations of the H2CCN and H2CNC Radicals Produced from CH3CN. The Journal of Physical Chemistry A 2011, 115 (31) , 8638-8642. https://doi.org/10.1021/jp204887y
    10. Christine E. Tinberg and Stephen J. Lippard. Oxidation Reactions Performed by Soluble Methane Monooxygenase Hydroxylase Intermediates Hperoxo and Q Proceed by Distinct Mechanisms. Biochemistry 2010, 49 (36) , 7902-7912. https://doi.org/10.1021/bi1009375
    11. Daniel J. Goebbert, Luis Velarde, Dmitry Khuseynov and Andrei Sanov. C−H Bond Dissociation Energy of Malononitrile. The Journal of Physical Chemistry Letters 2010, 1 (4) , 792-795. https://doi.org/10.1021/jz900379t
    12. Hao Chen, R. Graham Cooks, Eduardo C. Meurer, Marcos N. Eberlin. Hydrogen/chlorine exchange reactions of gaseous carbanions. Journal of the American Society for Mass Spectrometry 2005, 16 (12) , 2045-2051. https://doi.org/10.1016/j.jasms.2005.08.012
    13. Abdirisak A. Isse and, Armando Gennaro. Homogeneous Reduction of Haloacetonitriles by Electrogenerated Aromatic Radical Anions:  Determination of the Reduction Potential of •CH2CN. The Journal of Physical Chemistry A 2004, 108 (19) , 4180-4186. https://doi.org/10.1021/jp036782a
    14. Michel Sablier and, Toshihiro Fujii. Mass Spectrometry of Free Radicals. Chemical Reviews 2002, 102 (9) , 2855-2924. https://doi.org/10.1021/cr010295e
    15. Jonathan C. Rienstra-Kiracofe,, Gregory S. Tschumper, and, Henry F. Schaefer III, , Sreela Nandi and, G. Barney Ellison. Atomic and Molecular Electron Affinities:  Photoelectron Experiments and Theoretical Computations. Chemical Reviews 2002, 102 (1) , 231-282. https://doi.org/10.1021/cr990044u
    16. Kai-Chung Lau and, Wai-Kee Li, , C. Y. Ng, , S.-W. Chiu. A Gaussian-2 Study of Isomeric C2H2N and C2H2N+. The Journal of Physical Chemistry A 1999, 103 (17) , 3330-3335. https://doi.org/10.1021/jp984540i
    17. Karina Sendt,, Emi Ikeda,, George B. Bacskay, and, John C. Mackie. Ab Initio Quantum Chemical and Experimental (Shock Tube) Studies of the Pyrolysis Kinetics of Acetonitrile. The Journal of Physical Chemistry A 1999, 103 (8) , 1054-1072. https://doi.org/10.1021/jp9835216
    18. Paul M. Mayer,, Mark S. Taylor,, Ming Wah Wong, and, Leo Radom. Thermochemistry of CH3CN, CH3NC, and Their Cyclic Isomers and Related Radicals, Cations, and Anions:  Some Curious Discrepancies between Theory and Experiment. The Journal of Physical Chemistry A 1998, 102 (35) , 7074-7080. https://doi.org/10.1021/jp982272i
    19. Paul M. Mayer and, Leo Radom. Deprotonating Molecules and Free Radicals to Form Carbon-Centered Anions:  A G2 ab Initio Study of Molecular and Free Radical Acidity. The Journal of Physical Chemistry A 1998, 102 (25) , 4918-4924. https://doi.org/10.1021/jp981090l
    20. Renée A. L. Peerboom, Leo J. de Koning, Nice M. M. Nibbering. On the stabilization of carbanions by adjacent phenyl, cyano, methoxy-carbonyl, and nitro groups in the gas phase. Journal of the American Society for Mass Spectrometry 1994, 5 (3) , 159-168. https://doi.org/10.1016/1044-0305(94)85029-1
    21. Eleanor K. Ashworth, Stephen H. Ashworth, James N. Bull. Spectroscopy and dynamics of isolated anions: Versatile instrumentation for photodetachment and photoelectron spectroscopy. Review of Scientific Instruments 2024, 95 (7) https://doi.org/10.1063/5.0207759
    22. Pinyong Zhong, Linjun Zhang, Nianhua Luo, Jinbiao Liu. Advances in the Application of Acetonitrile in Organic Synthesis since 2018. Catalysts 2023, 13 (4) , 761. https://doi.org/10.3390/catal13040761
    23. Stanislav A. Pshenichnyuk, Ilya I. Fabrikant, Alberto Modelli, Sylwia Ptasińska, Alexei S. Komolov. Resonance electron interaction with five-membered heterocyclic compounds: Vibrational Feshbach resonances and hydrogen-atom stripping. Physical Review A 2019, 100 (1) https://doi.org/10.1103/PhysRevA.100.012708
    24. Justin Lyle, Olivia Wedig, Sahil Gulania, Anna I. Krylov, Richard Mabbs. Channel branching ratios in CH2CN− photodetachment: Rotational structure and vibrational energy redistribution in autodetachment. The Journal of Chemical Physics 2017, 147 (23) https://doi.org/10.1063/1.5001475
    25. Yaicel G. Proenza, Miguel A.F. de Souza, Ricardo L. Longo. Mechanism and selectivity of X−+ CH3ONO2 (X = NCCH2, CH3C(O)CH2, and PhCH2) multichannel gas phase reactions. International Journal of Mass Spectrometry 2017, 418 , 140-147. https://doi.org/10.1016/j.ijms.2016.10.015
    26. Andrew R. Dixon, Dmitry Khuseynov, Andrei Sanov. Cyanobenzyl and chlorobenzyl radicals via anion photoelectron imaging spectroscopy. Chemical Physics Letters 2014, 614 , 72-77. https://doi.org/10.1016/j.cplett.2014.09.001
    27. Han-Gook Cho. Matrix Infrared Spectra and DFT Computations of 2H-Azirine Produced from Acetonitrile by Laser-Ablation Plume Radiation. Bulletin of the Korean Chemical Society 2014, 35 (7) , 2093-2096. https://doi.org/10.5012/bkcs.2014.35.7.2093
    28. Marissa L. Weichman, Jongjin B. Kim, Daniel M. Neumark. Rovibronic structure in slow photoelectron velocity-map imaging spectroscopy of CH2CN− and CD2CN−. The Journal of Chemical Physics 2014, 140 (10) https://doi.org/10.1063/1.4867501
    29. Yaicel G. Proenza, Miguel A. F. de Souza, Elizete Ventura, Silmar A. do Monte, Ricardo L. Longo. Assessment of density-functionals for describing the X − + CH 3 ONO 2 gas-phase reactions with X = F, OH, CH 2 CN. Phys. Chem. Chem. Phys. 2014, 16 (48) , 26769-26778. https://doi.org/10.1039/C4CP03674C
    30. Han-Gook Cho. Matrix Infrared Spectra and DFT Computations of CH 2 CNH and CH 2 NCH Produced from CH 3 CN by Laser-Ablation Plume Radiation. Bulletin of the Korean Chemical Society 2013, 34 (5) , 1361-1365. https://doi.org/10.5012/bkcs.2013.34.5.1361
    31. Ryan C. Fortenberry, T. Daniel Crawford. Theoretical prediction of new dipole-bound singlet states for anions of interstellar interest. The Journal of Chemical Physics 2011, 134 (15) https://doi.org/10.1063/1.3576053
    32. Ryan C. Fortenberry, T. Daniel Crawford. Electronically Excited States in Interstellar Chemistry. 2011, 195-214. https://doi.org/10.1016/B978-0-444-53835-2.00009-2
    33. V. Vuitton, P. Lavvas, R.V. Yelle, M. Galand, A. Wellbrock, G.R. Lewis, A.J. Coates, J.-E. Wahlund. Negative ion chemistry in Titan's upper atmosphere. Planetary and Space Science 2009, 57 (13) , 1558-1572. https://doi.org/10.1016/j.pss.2009.04.004
    34. T. Hirao, H. Ozeki, S. Saito, S. Yamamoto. Fourier transform microwave spectroscopy of the isocyanomethyl radical, CH2NC. The Journal of Chemical Physics 2007, 127 (13) https://doi.org/10.1063/1.2776267
    35. M. A. Cordiner, P. J. Sarre. The CH$_\mathsf{2}$CN -  molecule: carrier of the $\mathsf{\lambda}$8037 diffuse interstellar band?. Astronomy & Astrophysics 2007, 472 (2) , 537-545. https://doi.org/10.1051/0004-6361:20077358
    36. Harald Brand, Axel Schulz, Alexander Villinger. Modern Aspects of Pseudohalogen Chemistry: News from CN‐ and PN‐Chemistry. Zeitschrift für anorganische und allgemeine Chemie 2007, 633 (1) , 22-35. https://doi.org/10.1002/zaac.200600239
    37. Harald Brand, Joel F. Liebman, Axel Schulz, Peter Mayer, Alexander Villinger. Nonlinear, Resonance‐Stabilized Pseudohalides: From Alkali Methanides to Ionic Liquids of Methanides. European Journal of Inorganic Chemistry 2006, 2006 (21) , 4294-4308. https://doi.org/10.1002/ejic.200600668
    38. Marcin Frankowski, Zheng Sun, Alice M. Smith-Gicklhorn. Unraveling the possible isomers of CH4CN+ and CH2CN+ through FT-IR matrix-isolation spectroscopy of mass-selected ions and DFT theory. Physical Chemistry Chemical Physics 2005, 7 (5) , 797. https://doi.org/10.1039/b415412f
    39. Naoki Asakawa. Determination of small chemical shielding anisotropy by adiabatically ramped spin-locking NMR and ab initio chemical shielding calculation: l-alanine methyl carbon. Journal of Molecular Structure: THEOCHEM 2004, 675 (1-3) , 29-35. https://doi.org/10.1016/j.theochem.2003.12.030
    40. Marco Di Stefano, Marzio Rosi, Antonio Sgamellotti, Daniela Ascenzi, Davide Bassi, Pietro Franceschi, Paolo Tosi. Experimental and theoretical investigation of the production of cations containing C–N bonds in the reaction of benzene with atomic nitrogen ions. The Journal of Chemical Physics 2003, 119 (4) , 1978-1985. https://doi.org/10.1063/1.1582836
    41. . References. 2002https://doi.org/10.1201/9781420039863.bmatt
    42. Mark R. Nimlos, Gustavo Davico, C. Michael Geise, Paul G. Wenthold, W. Carl Lineberger, Stephen J. Blanksby, Christopher M. Hadad, George A. Petersson, G. Barney Ellison. Photoelectron spectroscopy of HCCN− and HCNC− reveals the quasilinear triplet carbenes, HCCN and HCNC. The Journal of Chemical Physics 2002, 117 (9) , 4323-4339. https://doi.org/10.1063/1.1496473
    43. Jerzy Cioslowski, Michael Schimeczek, Guang Liu, Vesselin Stoyanov. A set of standard enthalpies of formation for benchmarking, calibration, and parametrization of electronic structure methods. The Journal of Chemical Physics 2000, 113 (21) , 9377-9389. https://doi.org/10.1063/1.1321306
    44. Vicki D. Moravec, Caroline Chick Jarrold. Study of tin- and tin cluster–cyano complexes using anion photoelectron spectroscopy and density functional calculations. The Journal of Chemical Physics 2000, 113 (3) , 1035-1045. https://doi.org/10.1063/1.481883
    45. Vicki D. Moravec, Caroline C. Jarrold. The electronic structure of PdC2H and PdC2HN determined by anion photoelectron spectroscopy. The Journal of Chemical Physics 2000, 112 (2) , 792-798. https://doi.org/10.1063/1.480608
    46. Tomas Baer, Rick Lafleur, Oleg Mazyar. The Role of Ion Dissociation Dynamics in the Study of Ion and Neutral Thermochemistry. 1999, 303-322. https://doi.org/10.1007/978-94-011-4671-5_14
    47. Dieter Enders, Jochen Kirchhoff, Peter Gerdes, Dietrich Mannes, Gerhard Raabe, Jan Runsink, Gernot Boche, Michael Marsch, Hubertus Ahlbrecht, Horst Sommer. Structure and Reactivity of Lithiated α-Amino Nitriles. European Journal of Organic Chemistry 1998, 1998 (1) , 63-72. https://doi.org/10.1002/(SICI)1099-0690(199801)1998:1<63::AID-EJOC63>3.0.CO;2-H
    48. Shuji Saito, Satoshi Yamamoto. The microwave spectrum of the cyanomethyl radical CH2CN(2B1). The Journal of Chemical Physics 1997, 107 (6) , 1732-1739. https://doi.org/10.1063/1.475154
    49. Christoph Jansen, Dieter an Mey, Gerhard Raabe, Jörg Fleischhauer. The energetically preferred orientation of the hydroxyl group in cyclohexanol Ab initio and force field calculations. Journal of Molecular Structure: THEOCHEM 1997, 398-399 , 395-404. https://doi.org/10.1016/S0166-1280(96)04975-5
    50. Monique Born, Steen Ingemann, Nico M. M. Nibbering. Formation and chemistry of radical anions in the gas phase. Mass Spectrometry Reviews 1997, 16 (4) , 181-200. https://doi.org/10.1002/(SICI)1098-2787(1997)16:4<181::AID-MAS2>3.0.CO;2-D
    51. ADRIANA PAPPOVA. Complexes of borane(1) [BH] and HBCN-, HBCO, HBCF+: a calculational and conceptual study. Molecular Physics 1996, 89 (1) , 247-265. https://doi.org/10.1080/002689796174119
    52. Georges Leroy, Jean‐Pierre Dewispelaere, Hanan Benkadour, Claude Wilante. A theoretical approach to the thermochemistry of radical and anionic polymerizations of various unsaturated monomers. Macromolecular Theory and Simulations 1996, 5 (2) , 269-289. https://doi.org/10.1002/mats.1996.040050208
    53. Yoshihiro Sumiyoshi, Keiichi Tanaka, Takehiko Tanaka. Time-resolved infrared diode laser spectroscopy of the ν5 band of the cyanomethyl radical (H2CCN). The Journal of Chemical Physics 1996, 104 (5) , 1839-1845. https://doi.org/10.1063/1.471709
    54. Gennady L. Gutsev, Ludwik Adamowicz. The valence and dipole-bound states of the cyanomethide ion, CH2CN−. Chemical Physics Letters 1995, 246 (3) , 245-250. https://doi.org/10.1016/0009-2614(95)01097-S
    55. Gavin L. Edwards. One or More CC Bond(s) Formed by Substitution: Substitution of Halogen. 1995, 105-169. https://doi.org/10.1016/B0-08-044705-8/00248-X
    56. . References to Volume 1. 1995, 1147-1316. https://doi.org/10.1016/B0-08-044705-8/09009-9
    57. Charles B. Kellogg, John Morrison Galbraith, Joseph E. Fowler, Henry F. Schaefer. Equilibrium geometry of isocyanomethylene (HCNC) and comparison to the troublesome isomer cyanomethylene (HCCN). The Journal of Chemical Physics 1994, 101 (1) , 430-435. https://doi.org/10.1063/1.468152
    58. Ahmed M. El‐Nahas, Paul Von Ragué Schleyer. Structures and stabilization energies of methyl anions with main group substituents from the first five periods. Journal of Computational Chemistry 1994, 15 (6) , 596-626. https://doi.org/10.1002/jcc.540150605
    59. John E. Bartmess, Burton Wilson, Daniel N. Sorensen, John E. Bloor. The gas-phase acidity of nitrocyclopropane. International Journal of Mass Spectrometry and Ion Processes 1992, 117 , 557-563. https://doi.org/10.1016/0168-1176(92)80113-F
    60. Renée A. L. Peerboom, Geert Jan Rademaker, Leo J. de Koning, Nico M. M. Nibbering. Stabilization of cycloalkyl carbanions in the gas phase. Rapid Communications in Mass Spectrometry 1992, 6 (6) , 394-399. https://doi.org/10.1002/rcm.1290060608
    61. César A. Muedas, Detlev Sülzle, Helmut Schwarz. Structural characterization and distinction of isobaric NCCCO− and NCCNN− and their neutral analogues in the gas phase. International Journal of Mass Spectrometry and Ion Processes 1992, 113 (3) , R17-R22. https://doi.org/10.1016/0168-1176(92)85016-S
    62. Henri E.K. Matimba, Astrid M. Crabbendam, Steen Ingemann, Nico M.M. Nibbering. Gas-phase bimolecular chemistry of the ż−CHNC and ż−CHCN radical anions. International Journal of Mass Spectrometry and Ion Processes 1992, 114 (1-2) , 85-97. https://doi.org/10.1016/0168-1176(92)85024-T
    63. A.A. Viggiano, Thomas M. Miller, Amy E. Stevens Miller, Robert A. Morris, Jane M. Van Doren, John F. Paulson. SF4: electron affinity determination by charge-transfer reactions. International Journal of Mass Spectrometry and Ion Processes 1991, 109 , 327-338. https://doi.org/10.1016/0168-1176(91)85112-Y
    64. Christoph Rüchardt, Michael Meier, Klaus Haaf, Joachim Pakusch, Erwin K. A. Wolber, Barbara Müller. Die Isocyanid‐Cyanid‐Umlagerung ‐ Mechanismus und präparative Anwendung. Angewandte Chemie 1991, 103 (8) , 907-915. https://doi.org/10.1002/ange.19911030804
    65. Christoph Rüchardt, Michael Meier, Klaus Haaf, Joachim Pakusch, Erwin K. A. Wolber, Barbara Müller. The Isocyanide–Cyanide Rearrangement; Mechanism and Preparative Applications. Angewandte Chemie International Edition in English 1991, 30 (8) , 893-901. https://doi.org/10.1002/anie.199108933
    66. Gregory W. Adams, John H. Bowie, Roger N. Hayes. The complex anionic rearrangements of deprotonated α-oximino carbonyl derivatives in the gas phase. J. Chem. Soc., Perkin Trans. 2 1991, 20 (11) , 1809-1818. https://doi.org/10.1039/P29910001809
    67. David R. Bates. Negative Ions: Structure and Spectra. 1990, 1-80. https://doi.org/10.1016/S1049-250X(08)60148-2
    68. Donna M. Wetzel, John I. Brauman. Rotational structure in an excited vibronic band of the dipole-supported state of cyanomethyl anion, CH2CN−. The Journal of Chemical Physics 1989, 90 (1) , 68-73. https://doi.org/10.1063/1.456468
    69. K. Hiraoka, S. Mizuse, S. Yamabe, Y. Nakatsuji. Gas-phase clustering reactions of CN− and CH2CN− with CH3CN. Chemical Physics Letters 1988, 148 (6) , 497-501. https://doi.org/10.1016/0009-2614(88)80320-8
    70. S. MORAN, H. B. JUN. ELLIS, D. J. DEFREES, A. D. MCLEAN, G. B. ELLISON. ChemInform Abstract: Carbanion Spectroscopy: CH2CN‐.. ChemInform 1988, 19 (3) https://doi.org/10.1002/chin.198803100
    71. K. R. Lykke, D. M. Neumark, T. Andersen, V. J. Trapa, W. C. Lineberger. Autodetachment spectroscopy and dynamics of CH2CN− and CD2CN−. The Journal of Chemical Physics 1987, 87 (12) , 6842-6853. https://doi.org/10.1063/1.453379

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 1987, 109, 20, 5996–6003
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja00254a018
    Published September 1, 1987

    Article Views

    612

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.