ACS Publications. Most Trusted. Most Cited. Most Read
3,4-Connected carbon nets: through-space and through-bond interactions in the solid state
My Activity

Figure 1Loading Img
    Article

    3,4-Connected carbon nets: through-space and through-bond interactions in the solid state
    Click to copy article linkArticle link copied!

    ACS Legacy Archive
    Other Access Options

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 1987, 109, 22, 6742–6751
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja00256a031
    Published October 1, 1987

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 105 publications.

    1. Xiaoyin Li, Jie Liu, Fancy Qian Wang, Qian Wang, P. Jena. Rational Design of Porous Nodal-Line Semimetallic Carbon for K-Ion Battery Anode Materials. The Journal of Physical Chemistry Letters 2019, 10 (20) , 6360-6367. https://doi.org/10.1021/acs.jpclett.9b02484
    2. Lailei Wu, Biao Wan, Yan Zhao, Yunkun Zhang, Hanyu Liu, Yachun Wang, Jingwu Zhang, and Huiyang Gou . Unraveling Stable Vanadium Tetraboride and Triboride by First-Principles Computations. The Journal of Physical Chemistry C 2015, 119 (37) , 21649-21657. https://doi.org/10.1021/acs.jpcc.5b06721
    3. Dasari L. V. K. Prasad, Nicholas M. Gerovac, Michael J. Bucknum, and Roald Hoffmann . Squaroglitter: A 3,4-Connected Carbon Net. Journal of Chemical Theory and Computation 2013, 9 (8) , 3855-3859. https://doi.org/10.1021/ct4004367
    4. Guoying Gao, N. W. Ashcroft, and Roald Hoffmann . The Unusual and the Expected in the Si/C Phase Diagram. Journal of the American Chemical Society 2013, 135 (31) , 11651-11656. https://doi.org/10.1021/ja405359a
    5. Xiao-Dong Wen, Roald Hoffmann, and N. W. Ashcroft . Benzene under High Pressure: a Story of Molecular Crystals Transforming to Saturated Networks, with a Possible Intermediate Metallic Phase. Journal of the American Chemical Society 2011, 133 (23) , 9023-9035. https://doi.org/10.1021/ja201786y
    6. Mathew A. Hudspeth, Brandon W. Whitman, Veronica Barone and Juan E. Peralta. Electronic Properties of the Biphenylene Sheet and Its One-Dimensional Derivatives. ACS Nano 2010, 4 (8) , 4565-4570. https://doi.org/10.1021/nn100758h
    7. P. Liu, H. Cui and G. W. Yang. Synthesis of Body-Centered Cubic Carbon Nanocrystals. Crystal Growth & Design 2008, 8 (2) , 581-586. https://doi.org/10.1021/cg7006777
    8. M. J. Bucknum and, E. A. Castro. The Carbon Allotrope Hexagonite and Its Potential Synthesis from Cold Compression of Carbon Nanotubes. Journal of Chemical Theory and Computation 2006, 2 (3) , 775-781. https://doi.org/10.1021/ct060003n
    9. Hussam M. Bdour,, Jeff Lung-Fa Kao, and, John-Stephen Taylor. Synthesis and Characterization of a [3-15N]-Labeled Cis-Syn Thymine Dimer-Containing DNA Duplex. The Journal of Organic Chemistry 2006, 71 (4) , 1640-1646. https://doi.org/10.1021/jo0524167
    10. J. Carsten Pieck,, David Kuch,, Friederike Grolle,, Uwe Linne,, Clemens Haas, and, Thomas Carell. PNA-Based Reagents for the Direct and Site-Specific Synthesis of Thymine Dimer Lesions in Genomic DNA. Journal of the American Chemical Society 2006, 128 (5) , 1404-1405. https://doi.org/10.1021/ja056358i
    11. Paul N. W. Baxter and, Riad Dali-Youcef. Nitrogen Heterocyclic Carbon-Rich Materials:  Synthesis and Spectroscopic Properties of Dehydropyridoannulene Macrocycles. The Journal of Organic Chemistry 2005, 70 (13) , 4935-4953. https://doi.org/10.1021/jo040276f
    12. Haimei Chen,, John A. Parkinson,, Simon Parsons,, Robert A. Coxall,, Robert O. Gould, and, Peter J. Sadler. Organometallic Ruthenium(II) Diamine Anticancer Complexes:  Arene-Nucleobase Stacking and Stereospecific Hydrogen-Bonding in Guanine Adducts. Journal of the American Chemical Society 2002, 124 (12) , 3064-3082. https://doi.org/10.1021/ja017482e
    13. Paul N. W. Baxter. Synthesis and Properties of a Twistophane Ion Sensor:  A New Conjugated Macrocyclic Ligand for the Spectroscopic Detection of Metal Ions. The Journal of Organic Chemistry 2001, 66 (12) , 4170-4179. https://doi.org/10.1021/jo001777d
    14. Erika F. Merschrod S. and, Roald Hoffmann. Polyboride Networks, Molybdenum Clusters, and Uranium Bonding. Chemistry of Materials 1999, 11 (2) , 341-351. https://doi.org/10.1021/cm980569n
    15. Shin Aoki,, Chizuyo Sugimura, and, Eiichi Kimura. Efficient Inhibition of Photo[2 + 2]cycloaddition of Thymidilyl(3‘−5‘)thymidine and Promotion of Photosplitting of the cis-syn-Cyclobutane Thymine Dimer by Dimeric Zinc(II)−Cyclen Complexes Containing m- and p-Xylyl Spacers. Journal of the American Chemical Society 1998, 120 (39) , 10094-10102. https://doi.org/10.1021/ja981788c
    16. Carole Saintomé,, Pascale Clivio,, Alain Favre, and, Jean-Louis Fourrey. Photochemistry of 4-Thiothymine Derivatives in the Presence of N-9-Substituted-Adenine Derivatives:  Formation of N-6-Formamidopyrimidines. The Journal of Organic Chemistry 1997, 62 (23) , 8125-8130. https://doi.org/10.1021/jo971162p
    17. Jeremy K. Burdett and, Adam K. Mortara. Electronic Structure and Properties of Bunz' Polymers. Chemistry of Materials 1997, 9 (3) , 812-820. https://doi.org/10.1021/cm9604827
    18. E. D. Miller,, D. C. Nesting, and, J. V. Badding. Quenchable Transparent Phase of Carbon. Chemistry of Materials 1997, 9 (1) , 18-22. https://doi.org/10.1021/cm960288k
    19. Shigenori Iwai,, Masato Shimizu,, Hiroyuki Kamiya, and, Eiko Ohtsuka. Synthesis of a Phosphoramidite Coupling Unit of the Pyrimidine (6−4) Pyrimidone Photoproduct and Its Incorporation into Oligodeoxynucleotides. Journal of the American Chemical Society 1996, 118 (32) , 7642-7643. https://doi.org/10.1021/ja9603158
    20. Norman Goldberg,, Huang Tang,, Nancy Kroohs, and, Roald Hoffmann. MC4:  A Hypothetical Three-Dimensional Organometallic Net with Metal−Metal Bonding and Polyacetylene Substructures. Journal of the American Chemical Society 1996, 118 (42) , 10294-10302. https://doi.org/10.1021/ja961868l
    21. Jesús Bello‐García, Jesús A. Varela, Carlos Saá. K + ‐Mediated vs Pd‐Catalyzed Cyclotrimerization of 9,10‐Didehydrotribenzo[8]annulene (TribenzoCOTyne): Stereodivergent Access to (α,α,α)‐ and (α,α,β)‐Fragments of Cubic Graphite. Angewandte Chemie International Edition 2024, 63 (49) https://doi.org/10.1002/anie.202414017
    22. Xin Li, Zhen Xu, Donglei Bu, Jinming Cai, Huamei Chen, Qi Chen, Ting Chen, Fang Cheng, Lifeng Chi, Wenjie Dong, Zhenchao Dong, Shixuan Du, Qitang Fan, Xing Fan, Qiang Fu, Song Gao, Jing Guo, Weijun Guo, Yang He, Shimin Hou, Ying Jiang, Huihui Kong, Baojun Li, Dengyuan Li, Jie Li, Qing Li, Ruoning Li, Shuying Li, Yuxuan Lin, Mengxi Liu, Peinian Liu, Yanyan Liu, Jingtao Lü, Chuanxu Ma, Haoyang Pan, JinLiang Pan, Minghu Pan, Xiaohui Qiu, Ziyong Shen, Shijing Tan, Bing Wang, Dong Wang, Li Wang, Lili Wang, Tao Wang, Xiang Wang, Xingyue Wang, Xueyan Wang, Yansong Wang, Yu Wang, Kai Wu, Wei Xu, Na Xue, Linghao Yan, Fan Yang, Zhiyong Yang, Chi Zhang, Xue Zhang, Yang Zhang, Yao Zhang, Xiong Zhou, Junfa Zhu, Yajie Zhang, Feixue Gao, Yongfeng Wang. Recent progress on surface chemistry I: Assembly and reaction. Chinese Chemical Letters 2024, 35 (12) , 110055. https://doi.org/10.1016/j.cclet.2024.110055
    23. Jesús Bello‐García, Jesús A. Varela, Carlos Saá. K + ‐Mediated vs Pd‐Catalyzed Cyclotrimerization of 9,10‐Didehydrotribenzo[8]annulene (TribenzoCOTyne): Stereodivergent Access to (α,α,α)‐ and (α,α,β)‐Fragments of Cubic Graphite. Angewandte Chemie 2024, https://doi.org/10.1002/ange.202414017
    24. Ming Li, Menglei Li, Fawei Zheng. New three-dimensional orthorhombic graphene structures and their elastic properties. Physica B: Condensed Matter 2024, 678 , 415753. https://doi.org/10.1016/j.physb.2024.415753
    25. Hao Liu, Jia Wang, Guozhao Zhang, Dawei Jiang, Min Cao, Chunxiao Gao, Xiaojia Chen, Yonghao Han. Pressure effects on the electrical transport properties of benzene. Journal of Materials Chemistry C 2023, 11 (32) , 11066-11071. https://doi.org/10.1039/D3TC02200E
    26. Barbara Ejlli, Pascal Nußbaum, Frank Rominger, Jan Freudenberg, Uwe H. F. Bunz, Klaus Müllen. Benzo‐fused Tri[8]annulenes as Molecular Models of Cubic Graphite. Angewandte Chemie 2021, 133 (37) , 20382-20386. https://doi.org/10.1002/ange.202106233
    27. Barbara Ejlli, Pascal Nußbaum, Frank Rominger, Jan Freudenberg, Uwe H. F. Bunz, Klaus Müllen. Benzo‐fused Tri[8]annulenes as Molecular Models of Cubic Graphite. Angewandte Chemie International Edition 2021, 60 (37) , 20220-20224. https://doi.org/10.1002/anie.202106233
    28. Dongyuan Ni, Yaguang Guo, Yupeng Shen, Qian Wang. A New Porous Metallic Carbon Allotrope with Interlocking Pentagons for Sodium‐Ion Battery Anode Material. Advanced Theory and Simulations 2021, 4 (6) https://doi.org/10.1002/adts.202100025
    29. Zhen-Long Lv, Qing Lu, Duo-Hui Huang, Fu-Ti Liu. R10-graphene: A predicted two-dimensional metallic carbon. Diamond and Related Materials 2021, 114 , 108315. https://doi.org/10.1016/j.diamond.2021.108315
    30. Guang Yang, Ying Yang, Xihong Peng. Systematic theoretical study of carbon nanotubes rolled from a two-dimensional tetrahex-carbon nanosheet. Physical Review B 2020, 102 (23) https://doi.org/10.1103/PhysRevB.102.235409
    31. Qun Wei, Guang Yang, Xihong Peng. Auxetic Tetrahex Carbon with Ultrahigh Strength and a Direct Band Gap. Physical Review Applied 2020, 13 (3) https://doi.org/10.1103/PhysRevApplied.13.034065
    32. Alexandru T. Balaban. On pyrylium cations, molecular graphs, topological indices for QSAR, and various other structural problems. Structural Chemistry 2019, 30 (4) , 1129-1139. https://doi.org/10.1007/s11224-019-01341-w
    33. R. Gupta, S. Maisel, F. Rost, D. Weckbecker, M. Fleischmann, H. Soni, S. Sharma, A. Görling, S. Shallcross. Deformation induced pseudomagnetic fields in complex carbon architectures. Physical Review B 2019, 100 (8) https://doi.org/10.1103/PhysRevB.100.085135
    34. Raúl Guerrero-Avilés, Walter Orellana. Hydrogen storage on cation-decorated biphenylene carbon and nitrogenated holey graphene. International Journal of Hydrogen Energy 2018, 43 (51) , 22966-22975. https://doi.org/10.1016/j.ijhydene.2018.10.165
    35. Jie Liu, Xiaoyin Li, Qian Wang, Yoshiyuki Kawazoe, Puru Jena. A new 3D Dirac nodal-line semi-metallic graphene monolith for lithium ion battery anode materials. Journal of Materials Chemistry A 2018, 6 (28) , 13816-13824. https://doi.org/10.1039/C8TA04428G
    36. Saeed Rouhi. Modeling of tensile testing on perfect and defective graphenylene nanotubes using molecular dynamics simulations. Materials Research Express 2017, 4 (8) , 085012. https://doi.org/10.1088/2053-1591/aa7db2
    37. Saeed Rouhi, Ali Ghasemi. Investigation of the Elastic Properties of Graphenylene Using Molecular Dynamics Simulations. Materials Research 2017, 20 (1) , 1-9. https://doi.org/10.1590/1980-5373-mr-2015-0742
    38. Alexandru T. BALABAN. Chemistry-Mathematics-Philosophy Brew: a Personal Approach. Journal of Computer Chemistry, Japan 2017, 16 (2) , 33-37. https://doi.org/10.2477/jccj.2017-0023
    39. Shuli Wei, Da Li, Yunzhou Lv, Zhao Liu, Fubo Tian, Defang Duan, Bingbing Liu, Tian Cui. Strong covalent boron bonding induced extreme hardness of VB3. Journal of Alloys and Compounds 2016, 688 , 1101-1107. https://doi.org/10.1016/j.jallcom.2016.07.102
    40. Roald Hoffmann, Artyom A. Kabanov, Andrey A. Golov, Davide M. Proserpio. Homo Citans und Kohlenstoffallotrope: Für eine Ethik des Zitierens. Angewandte Chemie 2016, 128 (37) , 11122-11139. https://doi.org/10.1002/ange.201600655
    41. Roald Hoffmann, Artyom A. Kabanov, Andrey A. Golov, Davide M. Proserpio. Homo Citans and Carbon Allotropes: For an Ethics of Citation. Angewandte Chemie International Edition 2016, 55 (37) , 10962-10976. https://doi.org/10.1002/anie.201600655
    42. Guankui Long, Yecheng Zhou, Mengting Jin, Bin Kan, Yang Zhao, Angus Gray-Weale, De-en Jiang, Yongsheng Chen, Qichun Zhang. Theoretical investigation on two-dimensional non-traditional carbon materials employing three-membered ring and four-membered ring as building blocks. Carbon 2015, 95 , 1033-1038. https://doi.org/10.1016/j.carbon.2015.09.030
    43. Shunhong Zhang, Jian Zhou, Qian Wang, Xiaoshuang Chen, Yoshiyuki Kawazoe, Puru Jena. Penta-graphene: A new carbon allotrope. Proceedings of the National Academy of Sciences 2015, 112 (8) , 2372-2377. https://doi.org/10.1073/pnas.1416591112
    44. Alexandru T. Balaban. Ode to the Chemical Element Carbon. 2015, 1-18. https://doi.org/10.1007/978-94-017-9567-8_1
    45. Michael Bucknum. Spiro Quantum Chemistry. 2013, 1-35. https://doi.org/10.1201/b15459-3
    46. Silvia Bahmann, Torsten Weißbach, Jens Kortus. Crossed graphene: Stability and electronic structure. physica status solidi (RRL) – Rapid Research Letters 2013, 7 (9) , 639-642. https://doi.org/10.1002/pssr.201307226
    47. M. J. Bucknum, Dasari L. V. K. Prasad, E. A. Castro. Exocyclobutadieneite. Journal of Mathematical Chemistry 2013, 51 (3) , 868-880. https://doi.org/10.1007/s10910-012-0115-6
    48. . Polymorphism of Crystalline Phases. 2013, 25-59. https://doi.org/10.1002/9781118557617.ch2
    49. Alexandru T. Balaban. Diamond Hydrocarbons and Related Structures. 2013, 1-27. https://doi.org/10.1007/978-94-007-6371-5_1
    50. Qi Song, Bing Wang, Ke Deng, Xinliang Feng, Manfred Wagner, Julian D. Gale, Klaus Müllen, Linjie Zhi. Graphenylene, a unique two-dimensional carbon network with nondelocalized cyclohexatriene units. J. Mater. Chem. C 2013, 1 (1) , 38-41. https://doi.org/10.1039/C2TC00006G
    51. Yang-Xin Yu. Graphenylene: a promising anode material for lithium-ion batteries with high mobility and storage. Journal of Materials Chemistry A 2013, 1 (43) , 13559. https://doi.org/10.1039/c3ta12639k
    52. Michael J. Bucknum, Eduardo A. Castro, Bin Wen. Isoglitter. Journal of Mathematical Chemistry 2012, 50 (8) , 2281-2290. https://doi.org/10.1007/s10910-012-0030-x
    53. Junji Sakamoto, A. Dieter Schlüter. Two‐Dimensional Polymers. 2012, 841-900. https://doi.org/10.1002/9783527603978.mst0438
    54. Michael J. Bucknum, Eduardo A. Castro. High Pressure Synthesis of the Carbon Allotrope Hexagonite with Carbon Nanotubes in a Diamond Anvil Cell. 2011, 79-93. https://doi.org/10.1007/978-94-007-1733-6_5
    55. E. A. Belenkov, V. A. Ali-Pasha. 3D-graphite structure. Crystallography Reports 2011, 56 (1) , 101-106. https://doi.org/10.1134/S1063774511010044
    56. Sora Park, Kritsada Kittimanapun, Jeung Sun Ahn, Young-Kyun Kwon, David Tománek. Designing rigid carbon foams. Journal of Physics: Condensed Matter 2010, 22 (33) , 334220. https://doi.org/10.1088/0953-8984/22/33/334220
    57. Junji Sakamoto, Jeroen van Heijst, Oleg Lukin, A. Dieter Schlüter. Zweidimensionale Polymere: nur ein Traum von Synthetikern?. Angewandte Chemie 2009, 121 (6) , 1048-1089. https://doi.org/10.1002/ange.200801863
    58. Junji Sakamoto, Jeroen van Heijst, Oleg Lukin, A. Dieter Schlüter. Two‐Dimensional Polymers: Just a Dream of Synthetic Chemists?. Angewandte Chemie International Edition 2009, 48 (6) , 1030-1069. https://doi.org/10.1002/anie.200801863
    59. Ivan V. Stankevich, Anatolii L. Chistyakov, Alexandr A. Korlyukov. Dodecahedral Clusters and Novel Cubic Allotropic Forms of Carbon, Silicon, and Germanium: Computer Simulation. Fullerenes, Nanotubes and Carbon Nanostructures 2006, 14 (2-3) , 527-531. https://doi.org/10.1080/15363830600666530
    60. P. Delhaès, J.P. Issi, S. Bonnamy, P. Launois. Polymorphism and Structure of Carbons. 2006, 1-47. https://doi.org/10.1007/3-540-37586-4_1
    61. B. Ahmad, M. Ahmad, J.I. Akhter, N. Ahmad. Formation of diamond-like carbon balls, self aligned and nonaligned nanotubes at the tip of the cathode during the synthesis of fullerenes in the DC arc discharge experiment. Materials Letters 2005, 59 (12) , 1585-1588. https://doi.org/10.1016/j.matlet.2004.12.057
    62. John V. Badding, Thomas J. Scheidemantel. FLAPW investigation of the stability and equation of state of rectangulated carbon. Solid State Communications 2002, 122 (9) , 473-477. https://doi.org/10.1016/S0038-1098(02)00136-9
    63. Thomas Malkow. Critical observations in the research of carbon nitride. Materials Science and Engineering: A 2001, 302 (2) , 311-324. https://doi.org/10.1016/S0921-5093(01)01075-9
    64. Thomas Malkow. Critical observations in the research of carbon nitride. Materials Science and Engineering: A 2000, 292 (1) , 112-124. https://doi.org/10.1016/S0921-5093(00)00960-6
    65. Alexandra T. Balaban, Douglas J. Klein, William A. Seitz. Large “Pillow” Fullerenes as Graphite without Dangling Bonds. Fullerene Science and Technology 2000, 8 (3) , 249-265. https://doi.org/10.1080/10641220009351411
    66. G. Jungnickel, P. K. Sitch, T. Frauenheim, C. R. Cousins, C. D. Latham, B. R. Eggen, M. I. Heggie. Effective Doping in Novel sp 2 Bonded Carbon Allotropes. 2000, 271-285. https://doi.org/10.1002/9783527618217.ch9
    67. José Fayos. Possible 3D Carbon Structures as Progressive Intermediates in Graphite to Diamond Phase Transition. Journal of Solid State Chemistry 1999, 148 (2) , 278-285. https://doi.org/10.1006/jssc.1999.8448
    68. J. V. Badding. HIGH-PRESSURE SYNTHESIS, CHARACTERIZATION, AND TUNING OF SOLID STATE MATERIALS. Annual Review of Materials Science 1998, 28 (1) , 631-658. https://doi.org/10.1146/annurev.matsci.28.1.631
    69. Alexandru T. Balaban. Theoretical investigation of carbon nets and molecules. 1998, 381-404. https://doi.org/10.1016/S1380-7323(98)80014-9
    70. N. Tyutyulkov, F. Dietz, K. Müllen, M. Baumgarten. Structure and energy spectra of a two-dimensional dielectric carbon allotrope. Chemical Physics Letters 1997, 272 (1-2) , 111-114. https://doi.org/10.1016/S0009-2614(97)00465-X
    71. G. Benedek, L. Colombo, S. Gaito, E. Galvani, S. Serra. Prediction of new sp 2 and sp 2/ sp 3 hollow carbon crystals. The Journal of Chemical Physics 1997, 106 (6) , 2311-2316. https://doi.org/10.1063/1.473090
    72. John V. Badding. Solid‐state Carbon Nitrides. Advanced Materials 1997, 9 (11) , 877-886. https://doi.org/10.1002/adma.19970091105
    73. Michael J. Bucknum. Effects of spiroconjugation in the electronic band structure of glitter. Carbon 1997, 35 (1) , 1-16. https://doi.org/10.1016/S0008-6223(96)00119-4
    74. R.B. Heimann, S.E. Evsvukov, Y. Koga. Carbon allotropes: a suggested classification scheme based on valence orbital hybridization. Carbon 1997, 35 (10-11) , 1654-1658. https://doi.org/10.1016/S0008-6223(97)82794-7
    75. Rik R. Tykwinski, François Diederich, Paul Seiler, Volker Gramlich. 1,1,2,2‐Tetraethynylethanes: Synthons for Tetraethynylethenes and Modules for Acetylenic Molecular Scaffolding. Helvetica Chimica Acta 1996, 79 (3) , 634-645. https://doi.org/10.1002/hlca.19960790306
    76. Constantine P. Vlahacos, James O. Jensen. Structure of percubylcubane. Relationship to supercubane, S6 and O symmetries and chiral aspects. Journal of Molecular Structure: THEOCHEM 1996, 362 (2) , 225-234. https://doi.org/10.1016/0166-1280(95)04409-4
    77. François Diederich. Oligoacetylenes. 1995, 443-471. https://doi.org/10.1002/9783527615278.ch13
    78. Hongyao Zhu, Alexandru T. Balaban, Douglas J. Klein, Tomislav P. Živković. Conjugated-circuit computations on two-dimensional carbon networks. The Journal of Chemical Physics 1994, 101 (6) , 5281-5292. https://doi.org/10.1063/1.467382
    79. François Diederich. Carbon scaffolding: building acetylenic all-carbon and carbon-rich compounds. Nature 1994, 369 (6477) , 199-207. https://doi.org/10.1038/369199a0
    80. A.T. Balaban, D.J. Klein, X. Liu. Graphitic cones. Carbon 1994, 32 (2) , 357-359. https://doi.org/10.1016/0008-6223(94)90203-8
    81. A.T. Balaban, D.J. Klein, C.A. Folden. Diamond-graphite hybrids. Chemical Physics Letters 1994, 217 (3) , 266-270. https://doi.org/10.1016/0009-2614(93)E1379-U
    82. Mario Rasetti, Riccardo Zecchina. Generalized fullerene-like lattices, and itinerant interacting electrons. Physica A: Statistical Mechanics and its Applications 1993, 199 (3-4) , 539-570. https://doi.org/10.1016/0378-4371(93)90067-E
    83. Vyacheslav I Sokolov, Ivan V Stankevich. The fullerenes — new allotropic forms of carbon: molecular and electronic structure, and chemical properties. Russian Chemical Reviews 1993, 62 (5) , 419-435. https://doi.org/10.1070/RC1993v062n05ABEH000025
    84. Johan F. Prins. Non-CVD methods of diamond growth at low pressures. Diamond and Related Materials 1993, 2 (5-7) , 646-655. https://doi.org/10.1016/0925-9635(93)90197-A
    85. Ying-Duo Gao, William Herndon. Tubular graphic carbon structures. Molecular Physics 1992, 77 (3) , 585-599. https://doi.org/10.1080/00268979200102641
    86. François Diederich, Yves Rubin, F. Diederich, Y. Rubin. Strategien zum Aufbau molekularer und polymerer Kohlenstoffallotrope. Angewandte Chemie 1992, 104 (9) , 1123-1146. https://doi.org/10.1002/ange.19921040904
    87. François Diederich, Yves Rubin. Synthetic Approaches toward Molecular and Polymeric Carbon Allotropes. Angewandte Chemie International Edition in English 1992, 31 (9) , 1101-1123. https://doi.org/10.1002/anie.199211013
    88. Rob Phillips, David A. Drabold, Thomas Lenosky, Gary B. Adams, Otto F. Sankey. Electronic structure of schwarzite. Physical Review B 1992, 46 (3) , 1941-1943. https://doi.org/10.1103/PhysRevB.46.1941
    89. C. B. Collins, F. Davanloo, D. R. Jander, T. J. Lee, J. H. You, H. Park, J. C. Pivin, K. Glejbo/l, A. R. Thölén. Microstructural analyses of amorphic diamond, i -C, and amorphous carbon. Journal of Applied Physics 1992, 72 (1) , 239-245. https://doi.org/10.1063/1.352168
    90. José Elguero, Concepción Foces‐Foces, Antonio L. Llamas‐Saiz. Another Possible Carbon Allotrope. Bulletin des Sociétés Chimiques Belges 1992, 101 (9) , 795-799. https://doi.org/10.1002/bscb.19921010909
    91. C. Mailhiot, A. K. McMahan. Atmospheric-pressure stability of energetic phases of carbon. Physical Review B 1991, 44 (21) , 11578-11591. https://doi.org/10.1103/PhysRevB.44.11578
    92. C. B. Collins, F. Davanloo, D. R. Jander, T. J. Lee, H. Park, J. H. You. Microstructure of amorphic diamond films. Journal of Applied Physics 1991, 69 (11) , 7862-7870. https://doi.org/10.1063/1.347519
    93. Joel S. Miller. Molecular materials IV. Buckminsterfullerene—a molecular material for the future?. Advanced Materials 1991, 3 (5) , 262-265. https://doi.org/10.1002/adma.19910030512
    94. D. J. Klein, M. J. Cravey, G. E. Hite. Fractal Benzenoids. Polycyclic Aromatic Compounds 1991, 2 (2-3) , 163-182. https://doi.org/10.1080/10406639108048938
    95. F. Davanloo, E. M. Juengerman, D. R. Jander, T. J. Lee, C. B. Collins. Laser plasma diamond. Journal of Materials Research 1990, 5 (11) , 2398-2404. https://doi.org/10.1557/JMR.1990.2398
    96. F. Davanloo, E. M. Juengerman, D. R. Jander, T. J. Lee, C. B. Collins. Amorphic diamond films produced by a laser plasma source. Journal of Applied Physics 1990, 67 (4) , 2081-2087. https://doi.org/10.1063/1.345566
    97. Albert H. Alberts. Carbon Nets: “Dutch Diamond”. 1990, 396-401. https://doi.org/10.1007/978-94-009-0767-6_50
    98. A.T. Balaban. Carbon and its nets. Computers & Mathematics with Applications 1989, 17 (1-3) , 397-416. https://doi.org/10.1016/0898-1221(89)90170-3
    99. A.T. BALABAN. CARBON AND ITS NETS. 1989, 397-416. https://doi.org/10.1016/B978-0-08-037237-2.50033-7
    100. G. E. Hite, T. P. ?ivkovi?, D. J. Klein. Conjugated circuit theory for graphite. Theoretica Chimica Acta 1988, 74 (5) , 349-361. https://doi.org/10.1007/BF01025838
    Load all citations

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 1987, 109, 22, 6742–6751
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja00256a031
    Published October 1, 1987

    Article Views

    445

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.