ACS Publications. Most Trusted. Most Cited. Most Read
Molecular hydrogen complexes of the transition metals. 2. Preparation, structure, and reactivity of W(CO)3(PCy3)2 and W(CO)3(P-iso-Pr3)2, .eta.2-H2 complex precursors exhibiting metal.cntdot..cntdot..cntdot.hydrogen-carbon interaction
My Activity

Figure 1Loading Img
    Communication

    Molecular hydrogen complexes of the transition metals. 2. Preparation, structure, and reactivity of W(CO)3(PCy3)2 and W(CO)3(P-iso-Pr3)2, .eta.2-H2 complex precursors exhibiting metal.cntdot..cntdot..cntdot.hydrogen-carbon interaction
    Click to copy article linkArticle link copied!

    ACS Legacy Archive
    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 1986, 108, 9, 2294–2301
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja00269a027
    Published April 1, 1986

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Terms & Conditions

    Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 103 publications.

    1. Kaiji Uchida, Taku Kitayama, Shunya Tanaka, Shuta Adachi, Hiroaki Iguchi, Ryota Sakamoto, Shinya Takaishi. Flash Communication: High-Pressure Synthesis and Post-synthetic Elimination of N2 Molecule of the Chromium Dinitrogen Complex, [Cr(PCy3)2(CO)3(N2)]. Organometallics 2024, Article ASAP.
    2. Camilo Prada, Eugenia Dzib, Francisco Núñez-Zarur, Pedro Salvador, Gabriel Merino, Carmen J. Calzado, Jhon Zapata-Rivera. Mechanism of Dinitrogen Photoactivation by P2PPhFe Complexes: Thermodynamic and Kinetic Computational Studies. Inorganic Chemistry 2024, 63 (44) , 21364-21374. https://doi.org/10.1021/acs.inorgchem.4c04006
    3. Joseph Kfoury, Zsolt Benedek, Tibor Szilvási, Julianna Oláh. H2 and N2 Binding Affinities Are Coupled in Synthetic Fe Nitrogenases Limiting N2 Fixation. Organometallics 2022, 41 (10) , 1134-1146. https://doi.org/10.1021/acs.organomet.1c00681
    4. Juan M. Asensio, Donia Bouzouita, Piet W. N. M. van Leeuwen, Bruno Chaudret. σ-H–H, σ-C–H, and σ-Si–H Bond Activation Catalyzed by Metal Nanoparticles. Chemical Reviews 2020, 120 (2) , 1042-1084. https://doi.org/10.1021/acs.chemrev.9b00368
    5. Simone Raugei, Monte L. Helm, Sharon Hammes-Schiffer, Aaron M. Appel, Molly O’Hagan, Eric S. Wiedner, and R. Morris Bullock . Experimental and Computational Mechanistic Studies Guiding the Rational Design of Molecular Electrocatalysts for Production and Oxidation of Hydrogen. Inorganic Chemistry 2016, 55 (2) , 445-460. https://doi.org/10.1021/acs.inorgchem.5b02262
    6. Cheng Hou, Jingxing Jiang, Shidong Zhang, Guo Wang, Zhihan Zhang, Zhuofeng Ke, and Cunyuan Zhao . Hydrogenation of Carbon Dioxide Using Half-Sandwich Cobalt, Rhodium, and Iridium Complexes: DFT Study on the Mechanism and Metal Effect. ACS Catalysis 2014, 4 (9) , 2990-2997. https://doi.org/10.1021/cs500688q
    7. Dmitry G. Gusev . Assessing the Accuracy of M06-L Organometallic Thermochemistry. Organometallics 2013, 32 (15) , 4239-4243. https://doi.org/10.1021/om400412p
    8. Mark D. Doherty, David C. Grills, Kuo-Wei Huang, James T. Muckerman, Dmitry E. Polyansky, Rudi van Eldik, and Etsuko Fujita . Kinetics and Thermodynamics of Small Molecule Binding to Pincer-PCP Rhodium(I) Complexes. Inorganic Chemistry 2013, 52 (8) , 4160-4172. https://doi.org/10.1021/ic300672g
    9. Aaron Sattler and Gerard Parkin . Carbon−Sulfur Bond Cleavage and Hydrodesulfurization of Thiophenes by Tungsten. Journal of the American Chemical Society 2011, 133 (11) , 3748-3751. https://doi.org/10.1021/ja111034g
    10. Brandi M. Cossairt, Nicholas A. Piro and Christopher C. Cummins. Early-Transition-Metal-Mediated Activation and Transformation of White Phosphorus. Chemical Reviews 2010, 110 (7) , 4164-4177. https://doi.org/10.1021/cr9003709
    11. Runyu Tan and Datong Song. Platinum Complexes of η2-Thiophenes. Inorganic Chemistry 2010, 49 (5) , 2026-2028. https://doi.org/10.1021/ic902289h
    12. Susanne Büschel, Constantin Daniliuc, Peter G. Jones and Matthias Tamm. Ambiphilic Reactivity of a Phosphane-Functionalized Cycloheptatrienyl−Cyclopentadienyl Zirconium Sandwich Complex. Organometallics 2010, 29 (3) , 671-675. https://doi.org/10.1021/om9009763
    13. Treffly B. Ditri, Brian J. Fox, Curtis E. Moore, Arnold L. Rheingold and Joshua S. Figueroa. Effective Control of Ligation and Geometric Isomerism: Direct Comparison of Steric Properties Associated with Bis-mesityl and Bis-diisopropylphenyl m-Terphenyl Isocyanides. Inorganic Chemistry 2009, 48 (17) , 8362-8375. https://doi.org/10.1021/ic9010828
    14. Patrick Achord, Etsuko Fujita, James T. Muckerman, Brian Scott, George C. Fortman, Manuel Temprado, Xiaochen Cai, Burjor Captain, Derek Isrow, John J. Weir, James Eric McDonough and Carl D. Hoff . Experimental and Computational Studies of Binding of Dinitrogen, Nitriles, Azides, Diazoalkanes, Pyridine, and Pyrazines to M(PR3)2(CO)3 (M = Mo, W; R = Me, iPr).. Inorganic Chemistry 2009, 48 (16) , 7891-7904. https://doi.org/10.1021/ic900764e
    15. George C. Fortman, Derek Isrow, James E. McDonough, Paul von Ragué Schleyer, Henry F. Schaefer, III, Brian Scott, Gregory J. Kubas, Tamás Kégl, Ferenc Ungváry and Carl D. Hoff. Kinetic and Thermodynamic Studies of the Reactivity of (Trimethylsilyl)diazomethane with HMo(CO)3(C5R5) (R = H, Me). Estimation of the Mo−N2CH2SiMe3 Bond Strength and Experimental Determination of the Enthalpy of Formation of (Trimethylsilyl)diazomethane. Organometallics 2008, 27 (19) , 4873-4884. https://doi.org/10.1021/om800336p
    16. Tülay A. Ateşin and William D. Jones. A Deeper Look into Thiophene Coordination Prior to Oxidative Addition of the C−S Bond to Platinum(0): A Computational Study Using DFT and MO Methods. Organometallics 2008, 27 (1) , 53-60. https://doi.org/10.1021/om700679j
    17. Chang Hoon Lee,, David S. Laitar,, Peter Mueller, and, Joseph P. Sadighi. Generation of a Doubly Bridging CO2 Ligand and Deoxygenation of CO2 by an (NHC)Ni(0) Complex. Journal of the American Chemical Society 2007, 129 (45) , 13802-13803. https://doi.org/10.1021/ja075630g
    18. Gregory J. Kubas. Fundamentals of H2 Binding and Reactivity on Transition Metals Underlying Hydrogenase Function and H2 Production and Storage. Chemical Reviews 2007, 107 (10) , 4152-4205. https://doi.org/10.1021/cr050197j
    19. James E. McDonough,, John J. Weir,, Kengkaj Sukcharoenphon,, Carl D. Hoff,, Olga P. Kryatova,, Elena V. Rybak-Akimova,, Brian L. Scott,, Gregory J. Kubas,, Arjun Mendiratta, and, Christopher C. Cummins. Comparison of Thermodynamic and Kinetic Aspects of Oxidative Addition of PhE−EPh (E = S, Se, Te) to Mo(CO)3(PR3)2, W(CO)3(PR3)2, and Mo(N[tBu]Ar)3 Complexes. The Role of Oxidation State and Ancillary Ligands in Metal Complex Induced Chalcogenyl Radical Generation. Journal of the American Chemical Society 2006, 128 (31) , 10295-10303. https://doi.org/10.1021/ja063250+
    20. Suzanne Burling,, Gabriele Kociok-Köhn,, Mary F. Mahon,, Michael K. Whittlesey, and, Jonathan M. J. Williams. Ruthenium Hydride Complexes of 1,2-Dicyclohexylimidazol-2-ylidene. Organometallics 2005, 24 (24) , 5868-5878. https://doi.org/10.1021/om050600c
    21. Attila Kovacs and, Gernot Frenking. Stability and Bonding Situation of Electron-Deficient Transition-Metal Complexes. Theoretical Study of the CO-Labilizing Effect of Ligands L in [W(CO)5L] (L = C2H2, NCH, N2, C2H4, OH2, SH2, NH3, F-, Cl-, OH-, SH-) and [W(CO)4L]2- (L2- = O2C2H22-, S2C2H22-) and the Structure of the 16-Valence-Electron Complexes [W(CO)4L] and [W(CO)3L]2- . Organometallics 2001, 20 (12) , 2510-2524. https://doi.org/10.1021/om0101893
    22. Feliu Maseras and, Agustí Lledós, , Eric Clot and, Odile Eisenstein. Transition Metal Polyhydrides:  From Qualitative Ideas to Reliable Computational Studies. Chemical Reviews 2000, 100 (2) , 601-636. https://doi.org/10.1021/cr980397d
    23. Michael A. Reynolds,, Ilia A. Guzei,, Bradley C. Logsdon,, Leonard M. Thomas,, Robert A. Jacobson, and, Robert J. Angelici. Transition Metal Complexes of Chromium, Molybdenum, Tungsten, and Manganese Containing η1(S)-2,5-Dimethylthiophene, Benzothiophene, and Dibenzothiophene Ligands. Organometallics 1999, 18 (20) , 4075-4081. https://doi.org/10.1021/om990322f
    24. Wayne A. King,, Brian L. Scott,, Juergen Eckert, and, Gregory J. Kubas. Reversible Displacement of Polyagostic Interactions in 16e [Mn(CO)(R2PC2H4PR2)2]+ by H2, N2, and SO2. Binding and Activation of η2-H2 trans to CO Is Nearly Invariant to Changes in Charge and cis Ligands. Inorganic Chemistry 1999, 38 (6) , 1069-1084. https://doi.org/10.1021/ic981263l
    25. Alan C. Cooper,, Eric Clot,, John C. Huffman,, William E. Streib,, Feliu Maseras,, Odile Eisenstein, and, Kenneth G. Caulton. Computational and Experimental Test of Steric Influence on Agostic Interactions:  A Homologous Series for Ir(III). Journal of the American Chemical Society 1999, 121 (1) , 97-106. https://doi.org/10.1021/ja981727e
    26. Thomas Gröer,, Gerhard Baum, and, Manfred Scheer. Complexes with a Monohapto Bound Phosphorus Tetrahedron and Phosphaalkyne1. Organometallics 1998, 17 (26) , 5916-5919. https://doi.org/10.1021/om9806794
    27. Jaume Tomàs and, Agustí Lledós, , Yves Jean. A Theoretical Insight into the Ability of Group 6 ML5 Metal Fragments to Break the H−H Bond. Organometallics 1998, 17 (23) , 4932-4939. https://doi.org/10.1021/om980308n
    28. Andreas Toupadakis, , Gregory J. Kubas,, Wayne A. King,, Brian L. Scott, and, Jean Huhmann-Vincent. Comparative Binding of H2, N2, and Related Ligands to [Mn(CO)3(PCy3)2]+ and Other 16e Electrophiles. N2 Does Not Coordinate, and H2 Is the Most Versatile Weak Ligand. Organometallics 1998, 17 (24) , 5315-5323. https://doi.org/10.1021/om980560v
    29. Jaume Tomàs and, Agustí Lledós, , Yves Jean. The Kubas Complex Revisited. A Theoretical Study of Dihydrogen Addition and Structure of the Dihydride Form. Organometallics 1998, 17 (2) , 190-195. https://doi.org/10.1021/om9704051
    30. Bruce R. Bender,, Gregory J. Kubas,, Llewellyn H. Jones,, Basil I. Swanson,, Juergen Eckert,, Kenneth B. Capps, and, Carl D. Hoff. Why Does D2 Bind Better Than H2? A Theoretical and Experimental Study of the Equilibrium Isotope Effect on H2 Binding in a M(η2-H2) Complex. Normal Coordinate Analysis of W(CO)3(PCy3)2(η2-H2). Journal of the American Chemical Society 1997, 119 (39) , 9179-9190. https://doi.org/10.1021/ja971009c
    31. Claudio Bianchini,, Juan A. Casares,, Robert Osman,, David I. Pattison,, Maurizio Peruzzini,, Robin N. Perutz, and, Fabrizio Zanobini. C−H Bond Cleavage in Thiophenes by [P(CH2CH2PPh2)3Ru]. UV Flash Kinetic Spectroscopy Discloses the Ruthenium−Thiophene Adduct Which Precedes C−H Insertion. Organometallics 1997, 16 (21) , 4611-4619. https://doi.org/10.1021/om9703898
    32. Alan C. Cooper,, William E. Streib,, Odile Eisenstein, and, Kenneth G. Caulton. tert-Butyl Is Superior to Phenyl as an Agostic Donor to 14-Electron Ir(III). Journal of the American Chemical Society 1997, 119 (38) , 9069-9070. https://doi.org/10.1021/ja970763v
    33. Chunbang Li,, Montserrat Oliván,, Steven P. Nolan, and, Kenneth G. Caulton. Ligand (L) Influence on CO Binding Enthalpies to Ru(CO)2L2. Organometallics 1997, 16 (19) , 4223-4225. https://doi.org/10.1021/om970220u
    34. Matthew D. Butts,, Jeffrey C. Bryan,, Xiao-Liang Luo, and, Gregory J. Kubas. Comparison of H−H versus Si−H σ-Bond Coordination and Activation on 16e Metal Fragments. Organosilane, N2, and Ethylene Addition to the Agostic Complex W(CO)3(PR3)2 and Dynamic NMR Behavior of the Latter. Inorganic Chemistry 1997, 36 (15) , 3341-3353. https://doi.org/10.1021/ic960870a
    35. Chunbang Li,, Masamichi Ogasawara,, Steven P. Nolan, and, Kenneth G. Caulton. Estimating the Effective Steric Impact of PtBu2Me, PiPr3, and PCy3. Organometallics 1996, 15 (23) , 4900-4903. https://doi.org/10.1021/om960380q
    36. Piero Leoni,, Marco Pasquali,, Milena Sommovigo,, Alberto Albinati,, Paul S. Pregosin, and, Heinz Rüegger. Proton Lability in Highly Hindered Dinuclear Palladium(I) μ-Phosphido−Secondary Phosphine Complexes. Crystal Structures of [Pd2(μ-PBut2)(PCy2H)3(CO)]BF4 and [Pd2(μ-PBut2)(PCy2H)2(μ,η2,η2-isoprene)]BF4. Organometallics 1996, 15 (8) , 2047-2052. https://doi.org/10.1021/om9509148
    37. Dmitry G. Gusev,, Roger L. Kuhlman,, Kenton B. Renkema,, Odile Eisenstein, and, Kenneth G. Caulton. Structure and H2-Loss Energies of OsHX(H2)(CO)L2 Complexes (L = P(t-Bu)2Me, P(i-Pr)3; X = Cl, I, H):  Attempted Correlation of 1J(H−D), T1min, and ΔG⧧. Inorganic Chemistry 1996, 35 (23) , 6775-6783. https://doi.org/10.1021/ic960693d
    38. Robert H. Morris. Insights into the chemistry of Kubas’ chromium dihydrogen complexes. Inorganica Chimica Acta 2024, 569 , 122147. https://doi.org/10.1016/j.ica.2024.122147
    39. Thomas Vielhaber, Kirill Faust, Thomas Bögl, Wolfgang Schöfberger, Christoph Topf. A triphos-modified tungsten piano-stool complex for the homogeneous (conjugate) hydrogenation of ketones and esters. Journal of Catalysis 2022, 416 , 352-363. https://doi.org/10.1016/j.jcat.2022.11.021
    40. Thomas Vielhaber, Christian Heizinger, Christoph Topf. Homogeneous pressure hydrogenation of quinolines effected by a bench-stable tungsten-based pre-catalyst. Journal of Catalysis 2021, 404 , 451-461. https://doi.org/10.1016/j.jcat.2021.10.020
    41. Magne Torbjörnsson, Ulf Ryde. Comparison of the accuracy of DFT methods for reactions with relevance to nitrogenase. Electronic Structure 2021, 3 (3) , 034005. https://doi.org/10.1088/2516-1075/ac1a63
    42. Bilal Ahmad Shiekh, Damanjit Kaur, Sourav Kumar. Bio-mimetic self-assembled computationally designed catalysts of Mo and W for hydrogenation of CO 2 /dehydrogenation of HCOOH inspired by the active site of formate dehydrogenase. Physical Chemistry Chemical Physics 2019, 21 (38) , 21370-21380. https://doi.org/10.1039/C9CP03406D
    43. Yaru Dang, Na Zhang, Zheng Sun, Qingzhong Li, Xiaoyan Li. New insights into the dihydrogen bonds (MHδ−···Hδ+X) in CpM(PMe3)(L)2H···HX (M=Cr, Mo, W; L=PMe3, CO; X=F, OH, NH2). Structural Chemistry 2019, 30 (5) , 1819-1830. https://doi.org/10.1007/s11224-019-01313-0
    44. Carsten Lenczyk, Dipak Kumar Roy, Bijoy Ghosh, Johannes Schwarzmann, Ashwini K. Phukan, Holger Braunschweig. First Bis(σ)‐borane Complexes of Group 6 Transition Metals: Experimental and Theoretical Studies. Chemistry – A European Journal 2019, 25 (36) , 8585-8589. https://doi.org/10.1002/chem.201901075
    45. Mark D. Allendorf, Zeric Hulvey, Thomas Gennett, Alauddin Ahmed, Tom Autrey, Jeffrey Camp, Eun Seon Cho, Hiroyasu Furukawa, Maciej Haranczyk, Martin Head-Gordon, Sohee Jeong, Abhi Karkamkar, Di-Jia Liu, Jeffrey R. Long, Katie R. Meihaus, Iffat H. Nayyar, Roman Nazarov, Donald J. Siegel, Vitalie Stavila, Jeffrey J. Urban, Srimukh Prasad Veccham, Brandon C. Wood. An assessment of strategies for the development of solid-state adsorbents for vehicular hydrogen storage. Energy & Environmental Science 2018, 11 (10) , 2784-2812. https://doi.org/10.1039/C8EE01085D
    46. Kobra Azizi, Robert Madsen. Molybdenum‐Catalyzed Dehydrogenative Synthesis of Imines from Alcohols and Amines. ChemCatChem 2018, 10 (17) , 3703-3708. https://doi.org/10.1002/cctc.201800677
    47. Ian Dance. Evaluations of the accuracies of DMol3 density functionals for calculations of experimental binding enthalpies of N 2 , CO, H 2 , C 2 H 2 at catalytic metal sites. Molecular Simulation 2018, 44 (7) , 568-581. https://doi.org/10.1080/08927022.2017.1413711
    48. Gregory J. Kubas. Activation of dihydrogen and coordination of molecular H2 on transition metals. Journal of Organometallic Chemistry 2014, 751 , 33-49. https://doi.org/10.1016/j.jorganchem.2013.07.041
    49. Edwin F. van der Eide, Ping Yang, R. Morris Bullock. Isolation of Two Agostic Isomers of an Organometallic Cation: Different Structures and Colors. Angewandte Chemie 2013, 125 (39) , 10380-10384. https://doi.org/10.1002/ange.201305032
    50. Edwin F. van der Eide, Ping Yang, R. Morris Bullock. Isolation of Two Agostic Isomers of an Organometallic Cation: Different Structures and Colors. Angewandte Chemie International Edition 2013, 52 (39) , 10190-10194. https://doi.org/10.1002/anie.201305032
    51. Gregory J. Kubas. The Art and Beauty of Inorganic Synthesis on the Path to Discovery: Transition Metal Coordination and Activation of Sulfur Dioxide and Dihydrogen. Comments on Inorganic Chemistry 2012, 33 (3-4) , 102-121. https://doi.org/10.1080/02603594.2013.772896
    52. Mary Grellier, Sylviane Sabo-Etienne. Dehydrogenation processes via C–H activation within alkylphosphines. Chem. Commun. 2012, 48 (1) , 34-42. https://doi.org/10.1039/C1CC14676A
    53. Bing Xu, Qiang Wang, Xuefeng Wang. Understanding the agostic bonding for group 4 metal methylidene complexes: A DFT approach. Computational and Theoretical Chemistry 2011, 976 (1-3) , 36-41. https://doi.org/10.1016/j.comptc.2011.07.035
    54. Zhi‐Xiong Zhao, Hao‐Yang Wang, Yin‐Long Guo. Studies on CH 3 CN‐assisted decomposition of 1 st Grubbs catalyst by electrospray ionization tandem mass spectrometry. Rapid Communications in Mass Spectrometry 2011, 25 (22) , 3401-3410. https://doi.org/10.1002/rcm.5240
    55. Saikat Dutta. Phosphine supported metal-dihydrogen complexes: Elongation of H−H bond to reversible release of H2. Comptes Rendus Chimie 2011, 14 (11) , 1029-1053. https://doi.org/10.1016/j.crci.2011.08.007
    56. Alexander Dybov, Olivier Blacque, Heinz Berke. Molybdenum Nitrosyl Complexes and Their Application in Catalytic Imine Hydrogenation Reactions. European Journal of Inorganic Chemistry 2011, 2011 (5) , 652-659. https://doi.org/10.1002/ejic.201000973
    57. T. Arun Luiz, Adinarayana Doddi, Babu Varghese, M. N. Sudheendra Rao. Synthesis and X-ray structural characterization of mono(aminophosphine) derivatives of molybdenum hexacarbonyl, Mo(CO)5L {L = P(NC5H10)3, P(Ph)(NC4H8O)2 or P(Ph){N(i-C3H7)2}(NC4H8O)}. Transition Metal Chemistry 2008, 33 (6) , 745-750. https://doi.org/10.1007/s11243-008-9106-7
    58. Gregory J. Kubas. Dihydrogen complexes as prototypes for the coordination chemistry of saturated molecules. Proceedings of the National Academy of Sciences 2007, 104 (17) , 6901-6907. https://doi.org/10.1073/pnas.0609707104
    59. G.J. Kubas. Dihydrogen and Other σ Bond Complexes. 2007, 671-698. https://doi.org/10.1016/B0-08-045047-4/00026-1
    60. Gregory J. Kubas. The Extraordinary Dynamic Behavior and Reactivity of Dihydrogen and Hydride in the Coordination Sphere of Transition Metals. 2006, 603-637. https://doi.org/10.1002/9783527611546.ch20
    61. David C. Grills, Kuo-Wei Huang, James T. Muckerman, Etsuko Fujita. Kinetic studies of the photoinduced formation of transition metal–dinitrogen complexes using time-resolved infrared and UV–vis spectroscopy. Coordination Chemistry Reviews 2006, 250 (13-14) , 1681-1695. https://doi.org/10.1016/j.ccr.2006.01.002
    62. D. Michael P. Mingos. The relevance of the complementary spherical electron density model to organometallic intermediates involved in homogeneous catalysis. Journal of Organometallic Chemistry 2006, 691 (14) , 3165-3175. https://doi.org/10.1016/j.jorganchem.2006.03.042
    63. Maria Filby, Antony J Deeming, Graeme Hogarth, Mo-yin (Venus) Lee. Small bite-angle diphosphines — Synthesis and structure of low-valent complexes of bis(di- ortho -tolylphosphino)methane (dotpm) and related ligands. Canadian Journal of Chemistry 2006, 84 (2) , 319-329. https://doi.org/10.1139/v05-254
    64. Gregory J. Kubas. Catalytic Processes Involving Dihydrogen Complexes and Other Sigma-bond Complexes. Catalysis Letters 2005, 104 (1-2) , 79-101. https://doi.org/10.1007/s10562-005-7440-3
    65. Oktay Demircan, Saim Özkar, Dinçer Ülkü, Leyla Tatar Yildirim. Reaction of pentacarbonyl(η2-bis(trimethylsilyl)ethyne)tungsten(0) with tricyclohexylphosphine: X-ray structure of pentacarbonyltricyclohexylphosphinetungsten(0). Journal of Organometallic Chemistry 2003, 688 (1-2) , 68-74. https://doi.org/10.1016/j.jorganchem.2003.08.032
    66. C.G. Young. Molybdenum. 2003, 415-527. https://doi.org/10.1016/B0-08-043748-6/03033-4
    67. T. Okamura, N. Ueyama. Tungsten. 2003, 529-573. https://doi.org/10.1016/B0-08-043748-6/03034-6
    68. . C-H Bond Coordination and Activation. 2002, 365-415. https://doi.org/10.1007/0-306-47597-9_12
    69. . Background and Discovery of Dihydrogen Coordination. 2002, 17-31. https://doi.org/10.1007/0-306-47597-9_2
    70. . Synthesis and General Properties of Dihydrogen Complexes. 2002, 33-57. https://doi.org/10.1007/0-306-47597-9_3
    71. . Bonding and Activation of Dihydrogen and σ Ligands: Theory versus Experiment. 2002, 59-141. https://doi.org/10.1007/0-306-47597-9_4
    72. Markus Ehses, Antonio Romerosa, Maurizio Peruzzini. Metal-Mediated Degradation and Reaggregation of White Phosphorus. 2002, 107-140. https://doi.org/10.1007/3-540-45731-3_5
    73. Gregory J Kubas. Metal–dihydrogen and σ-bond coordination: the consummate extension of the Dewar–Chatt–Duncanson model for metal–olefin π bonding. Journal of Organometallic Chemistry 2001, 635 (1-2) , 37-68. https://doi.org/10.1016/S0022-328X(01)01066-X
    74. Alexander P. Sadimenko. Organometallic compounds of furan, thiophene, and their benzannulated derivatives. 2001, 1-64. https://doi.org/10.1016/S0065-2725(01)78002-6
    75. Luca Rosi, Franco Piacenti, Mario Bianchi, Piero Frediani, Antonella Salvini. Cobalt-Catalyzed Hydroformylation of Olefins in the Presence of Xenon: New Experimental Evidence for Metal–Xenon Adducts. European Journal of Inorganic Chemistry 1999, 1999 (1) , 67-68. https://doi.org/10.1002/(SICI)1099-0682(199901)1999:1<67::AID-EJIC67>3.0.CO;2-X
    76. Wolfdieter A Schenk, Michael Stubbe, Michael Hagel. Enantioselective organic syntheses using chiral transition metal complexes V. (2S,3S)-Bis(dibenzophospholyl)butane, a rigid (S,S)-CHIRAPHOS analog. Journal of Organometallic Chemistry 1998, 560 (1-2) , 257-263. https://doi.org/10.1016/S0022-328X(98)00461-6
    77. José E. Cortés-Figueroa, Lara Santiago, Madeline S. León, Marilyn P. De Jesús. MECHANISM OF PIPERIDINE (PIP) DISSOCIATION FROM cis -(TRICYCLOHEXYLPHOSPHINE) (pip)Tetracarbonyl molybdenum(0). Journal of Coordination Chemistry 1997, 41 (3) , 249-259. https://doi.org/10.1080/00958979708023575
    78. Wenbin Yao, Odile Eisenstein, Robert H. Crabtree. Interactions between CH and NH bonds and d8 square planar metal complexes: hydrogen bonded or agostic?. Inorganica Chimica Acta 1997, 254 (1) , 105-111. https://doi.org/10.1016/S0020-1693(97)84386-1
    79. Steven D. Looman, Sören Giese, Atta M. Arif, Thomas G. Richmond. π-Basicity of the (diamine)tricarbonyltungsten(0) fragment stabilizing η2-aldehyde complexes at tungsten(0). Polyhedron 1996, 15 (16) , 2809-2811. https://doi.org/10.1016/0277-5387(96)00038-1
    80. M. Iglesias, A. Santos. New molybdenum(0)-fullerene complexes resulting from interaction of C60 with tetracarbonyldiacetyldihydrazonemolybdenum(0) and dicarbonyldiacetyldihydrazonebis(triphenylphosphine)molybdenum(0). Inorganica Chimica Acta 1996, 248 (1) , 67-72. https://doi.org/10.1016/0020-1693(95)04983-5
    81. C. Diaz V, C. Leal. New complexes [CpFe(DPPE)Thiophenes]PF6. Polyhedron 1996, 15 (17) , 2825-2829. https://doi.org/10.1016/0277-5387(95)00571-4
    82. Frank Hilgers, Wolfgang Bruns, Jan Fiedler, Wolfgang Kaim. UV-vis, IR and EPR spectroelectrochemical study of the EC redox transition [(PR3)n(CO)3(R′-pz)M]+/0; M = Mo, W; R′-pz = N-alkylpyrazinium; R = isopropyl, cyclohexyl; n = 1 or 2. Journal of Organometallic Chemistry 1996, 511 (1-2) , 273-280. https://doi.org/10.1016/0022-328X(95)05933-G
    83. Chris L. Haynes, P.B. Armentrout. Guided ion-beam determination of the Co+-H2 bond dissociation energy. Chemical Physics Letters 1996, 249 (1-2) , 64-70. https://doi.org/10.1016/0009-2614(95)01337-7
    84. Omar Laboy, Elsie I. Parés-Matos, José E. Cortés-Figueroa. DISPLACEMENT OF PIPERIDINE (PIP) FROM CIS-(TRICYCLOHEXYLPHOSPHINE) (PIP)TETRACARBONYL TUNGSTEN(0). Journal of Coordination Chemistry 1995, 36 (4) , 273-287. https://doi.org/10.1080/00958979508022678
    85. ANATOLII N. STARTSEV. The Mechanism of HDS Catalysis. Catalysis Reviews 1995, 37 (3) , 353-423. https://doi.org/10.1080/01614949508006446
    86. Seok Kyun Noh. Reactions of agostic manganese complexes with molecular hydrogen. Inorganica Chimica Acta 1995, 230 (1-2) , 211-214. https://doi.org/10.1016/0020-1693(94)04302-C
    87. Marcus Watson, Simon Woodward, Gráinne Conole, Margalith Kessler, Georgia Sykara. A case of severe steric aggravation: X-ray structural analysis of cis-Mo(CO)4(PCy3)2 (CY = cyclo-C6H11). Polyhedron 1994, 13 (15-16) , 2455-2458. https://doi.org/10.1016/S0277-5387(00)88162-0
    88. Reinaldo Pis Diez, Alicia H Jubert. A molecular orbital picture of thiophene hydrodesulfurization. Part 2. Thiophene adsorption. Journal of Molecular Catalysis 1993, 83 (1-2) , 219-235. https://doi.org/10.1016/0304-5102(93)87021-Y
    89. Wolfgang Bruns, Hans-Dieter Hausen, Wolfgang Kaim, Andreas Schulz. Wolfram(0)-komplexe des π-aciden N-methylpyrazinium-kations und des N-methylpyrazinium-radikals. Kristall- und molekülstruktur von [(C4H4N2-Me)W(CO)3(PCy3)2] (PF6), Cy  cyclohexyl. Journal of Organometallic Chemistry 1993, 444 (1-2) , 121-130. https://doi.org/10.1016/0022-328X(93)83064-3
    90. Wolfgang Bruns, Wolfgang Kaim, Eberhard Waldhör, Michael Krejčik. Spectroelectrochemical characterization of a pyrazine-bridged mixed-valent (4d 5 /4d 6 ) organometallic analogue of the Creutz–Taube ion. J. Chem. Soc., Chem. Commun. 1993, 95 (24) , 1868-1869. https://doi.org/10.1039/C39930001868
    91. Philip G. Jessop, Robert H. Morris. Reactions of transition metal dihydrogen complexes. Coordination Chemistry Reviews 1992, 121 , 155-284. https://doi.org/10.1016/0010-8545(92)80067-2
    92. Valerio Zanotti, V. Rutar, Robert J. Anelici. W(CO)3(PMTA = MeN (CH2CH2NME2)2) as a starting material for syntheses of W(CO)3(PR3)3, W(CO)3(η6-arene,) and the protonated W(H)(CO)3(PR3)+3 complexes. Journal of Organometallic Chemistry 1991, 414 (2) , 177-191. https://doi.org/10.1016/0022-328X(91)86100-5
    93. Thomas B. Rauchfuss. The Coordination Chemistry of Thiophenes. 1991, 259-329. https://doi.org/10.1002/9780470166406.ch5
    94. Wolfgang Bruns, Wolfgang Kaim. Bindungscharakteristik der H2-koordinierenden Fragmente W(CO)3(PR3)2. Aussergewöhnliche optische und elektrochemische Eigenschaften zweikerniger Pyrazinkomplexe. Journal of Organometallic Chemistry 1990, 390 (2) , c45-c49. https://doi.org/10.1016/0022-328X(90)85044-Y
    95. Masahiko Saburi, Ko Aoyagi, Tamotsu Takahashi, Yasuzo Uchida. Chelate Size Dependence of Dihydrogen-Hydride Exchange in Ruthenium(II) Molecular Hydrogen Complexes with Diphosphines [RuH(η2-H2)(P-P)2]PF6 (P-P = Ph2P(CH2)nPPh2; n = 2,3,4). Chemistry Letters 1990, 19 (4) , 601-604. https://doi.org/10.1246/cl.1990.601
    96. Gregory J. Kubas, Carl Hoff. Molecular Hydrogen Complexes of Mo and W. 1990, 1-8. https://doi.org/10.1002/9780470132586.ch1
    97. Gregory G. Hlatky, Robert H. Crabtree, Kimberly A. Kubat‐Martin, G. J. Kubas. Molybdenum and Tungsten Phosphine Polyhydrides. 1990, 8-14. https://doi.org/10.1002/9780470132586.ch2
    98. Kom‐Bei Shiu, Kuen‐Song Liou. Organotransition‐Metal Complexes of Multidentate Ligands 3. The Unexpected Derivatives of Bis(3,5‐Dimethylpyrazol‐1‐YL)Methanetetracarbonylmolybdenlim(0) and‐Tungsten(0) Complexes. Journal of the Chinese Chemical Society 1988, 35 (3) , 187-189. https://doi.org/10.1002/jccs.198800027
    99. Gregory J. Kubas. Molecular Hydrogen Coordination to Transition Metals. Comments on Inorganic Chemistry 1988, 7 (1) , 17-40. https://doi.org/10.1080/02603598808072297
    100. Maurice Brookhart, Malcolm L. H. Green, Luet‐Lok Wong. Carbon‐Hydrogen‐Transition Metal Bonds. 1988, 1-124. https://doi.org/10.1002/9780470166376.ch1
    Load all citations

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 1986, 108, 9, 2294–2301
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja00269a027
    Published April 1, 1986

    Article Views

    994

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.