ACS Publications. Most Trusted. Most Cited. Most Read
Oxidation of NADH involving rate-limiting one-electron transfer
My Activity

Figure 1Loading Img
    Article

    Oxidation of NADH involving rate-limiting one-electron transfer
    Click to copy article linkArticle link copied!

    ACS Legacy Archive
    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 1984, 106, 23, 7233–7239
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja00335a062
    Published November 1, 1984

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Terms & Conditions

    Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 143 publications.

    1. Enric H. Adillon, Jonas C. Peters. A Carborane-Derived Proton-Coupled Electron Transfer Reagent. Journal of the American Chemical Society 2024, 146 (44) , 30204-30211. https://doi.org/10.1021/jacs.4c09007
    2. Erick L. Bastos, Frank H. Quina, Maurício S. Baptista. Endogenous Photosensitizers in Human Skin. Chemical Reviews 2023, 123 (16) , 9720-9785. https://doi.org/10.1021/acs.chemrev.2c00787
    3. Rishi G. Agarwal, Scott C. Coste, Benjamin D. Groff, Abigail M. Heuer, Hyunho Noh, Giovanny A. Parada, Catherine F. Wise, Eva M. Nichols, Jeffrey J. Warren, James M. Mayer. Free Energies of Proton-Coupled Electron Transfer Reagents and Their Applications. Chemical Reviews 2022, 122 (1) , 1-49. https://doi.org/10.1021/acs.chemrev.1c00521
    4. Yingcan Zhao, Jiayi Xu, Xingyu Jiang. DNA Cleavage by Chemically Exfoliated Molybdenum Disulfide Nanosheets. Environmental Science & Technology 2021, 55 (6) , 4037-4044. https://doi.org/10.1021/acs.est.1c00115
    5. Jin-Dong Yang, Bao-Long Chen, Xiao-Qing Zhu. New Insight into the Mechanism of NADH Model Oxidation by Metal Ions in Nonalkaline Media. The Journal of Physical Chemistry B 2018, 122 (27) , 6888-6898. https://doi.org/10.1021/acs.jpcb.8b03453
    6. Gongyi Hong, Ruth Pachter, Thorsten Ritz. Coupling Drosophila melanogaster Cryptochrome Light Activation and Oxidation of the Kvβ Subunit Hyperkinetic NADPH Cofactor. The Journal of Physical Chemistry B 2018, 122 (25) , 6503-6510. https://doi.org/10.1021/acs.jpcb.8b03493
    7. MinHui Wang, Christian Wölfer, Lado Otrin, Ivan Ivanov, Tanja Vidaković-Koch, Kai Sundmacher. Transmembrane NADH Oxidation with Tetracyanoquinodimethane. Langmuir 2018, 34 (19) , 5435-5443. https://doi.org/10.1021/acs.langmuir.8b00443
    8. Jeffrey J. Warren and James M. Mayer . Moving Protons and Electrons in Biomimetic Systems. Biochemistry 2015, 54 (10) , 1863-1878. https://doi.org/10.1021/acs.biochem.5b00025
    9. Na Song, Ming-Tian Zhang, Robert A. Binstead, Zhen Fang, and Thomas J. Meyer . Multiple Pathways in the Oxidation of a NADH Analogue. Inorganic Chemistry 2014, 53 (8) , 4100-4105. https://doi.org/10.1021/ic500072e
    10. Mitk’El B. Santiago-Berríos, Chasterie Declet-Flores, Amanda David, Solmarie Borrero, Meredith M. Vélez, Agustín Díaz-Díaz, Ana R. Guadalupe, and Jorge L. Colón . Direct Intercalation of Bis-2,2′,2″,6-terpyridylcobalt(III) into Zirconium Phosphate Layers for Biosensing Applications. Langmuir 2012, 28 (9) , 4447-4452. https://doi.org/10.1021/la2035104
    11. Jeffrey J. Warren, Tristan A. Tronic, and James M. Mayer. Thermochemistry of Proton-Coupled Electron Transfer Reagents and its Implications. Chemical Reviews 2010, 110 (12) , 6961-7001. https://doi.org/10.1021/cr100085k
    12. Raj Kumar Bera, Ashok Kumar Das and C. Retna Raj. Enzyme-Cofactor-Assisted Photochemical Synthesis of Ag Nanostructures and Shape-Dependent Optical Sensing of Hg(II) Ions. Chemistry of Materials 2010, 22 (15) , 4505-4511. https://doi.org/10.1021/cm1013762
    13. Devens Gust, Thomas A. Moore and Ana L. Moore. Solar Fuels via Artificial Photosynthesis. Accounts of Chemical Research 2009, 42 (12) , 1890-1898. https://doi.org/10.1021/ar900209b
    14. Enrico Baciocchi, Massimo Bietti, Massimo Di Fusco, Osvaldo Lanzalunga and Daniele Raponi . Electron-Transfer Properties of Short-Lived N-Oxyl Radicals. Kinetic Study of the Reactions of Benzotriazole-N-oxyl Radicals with Ferrocenes. Comparison with the Phthalimide-N-oxyl Radical. The Journal of Organic Chemistry 2009, 74 (15) , 5576-5583. https://doi.org/10.1021/jo900951c
    15. Ekaterina V. Bakhmutova-Albert, Dale W. Margerum, Jameson G. Auer and Bruce M. Applegate. Chlorine Dioxide Oxidation of Dihydronicotinamide Adenine Dinucleotide (NADH). Inorganic Chemistry 2008, 47 (6) , 2205-2211. https://doi.org/10.1021/ic7019022
    16. Enrico Baciocchi,, Massimo Bietti,, Massimo Di Fusco, and, Osvaldo Lanzalunga. A Kinetic Study of the Electron-Transfer Reaction of the Phthalimide-N-oxyl Radical (PINO) with Ferrocenes. The Journal of Organic Chemistry 2007, 72 (23) , 8748-8754. https://doi.org/10.1021/jo071211q
    17. Junpei Yuasa,, Shunsuke Yamada, and, Shunichi Fukuzumi. A Mechanistic Dichotomy in Scandium Ion-Promoted Hydride Transfer of an NADH Analogue:  Delicate Balance between One-Step Hydride-Transfer and Electron-Transfer Pathways. Journal of the American Chemical Society 2006, 128 (46) , 14938-14948. https://doi.org/10.1021/ja064708a
    18. Xiao-Qing Zhu,, Jian-Yu Zhang, and, Jin-Pei Cheng. Negative Kinetic Temperature Effect on the Hydride Transfer from NADH Analogue BNAH to the Radical Cation of N-Benzylphenothiazine in Acetonitrile. The Journal of Organic Chemistry 2006, 71 (18) , 7007-7015. https://doi.org/10.1021/jo061145c
    19. Makiko Tanaka,, Kei Ohkubo, and, Shunichi Fukuzumi. DNA Cleavage by UVA Irradiation of NADH with Dioxygen via Radical Chain Processes. The Journal of Physical Chemistry A 2006, 110 (38) , 11214-11218. https://doi.org/10.1021/jp064130r
    20. Jerzy Gȩbicki,, Andrzej Marcinek, and, Jacek Zielonka. Transient Species in the Stepwise Interconversion of NADH and NAD+. Accounts of Chemical Research 2004, 37 (6) , 379-386. https://doi.org/10.1021/ar030171j
    21. Jacek Zielonka,, Andrzej Marcinek,, Jan Adamus, and, Jerzy Gȩbicki. Direct Observation of NADH Radical Cation Generated in Reactions with One-Electron Oxidants. The Journal of Physical Chemistry A 2003, 107 (46) , 9860-9864. https://doi.org/10.1021/jp035803y
    22. Shunichi Fukuzumi,, Junpei Yuasa, and, Tomoyoshi Suenobu. Scandium Ion-Promoted Reduction of Heterocyclic NN Double Bond. Hydride Transfer vs Electron Transfer. Journal of the American Chemical Society 2002, 124 (42) , 12566-12573. https://doi.org/10.1021/ja026592y
    23. Shunichi Fukuzumi,, Yoshinori Fujii, and, Tomoyoshi Suenobu. Metal Ion-Catalyzed Cycloaddition vs Hydride Transfer Reactions of NADH Analogues with p-Benzoquinones. Journal of the American Chemical Society 2001, 123 (42) , 10191-10199. https://doi.org/10.1021/ja016370k
    24. Jin-Pei Cheng,, Yun Lu,, Xiaoqing Zhu, and, Linjing Mu. Energetics of Multistep versus One-step Hydride Transfer Reactions of Reduced Nicotinamide Adenine Dinucleotide (NADH) Models with Organic Cations and p-Quinones. The Journal of Organic Chemistry 1998, 63 (18) , 6108-6114. https://doi.org/10.1021/jo9715985
    25. Alexander Scheeline,, Dean L. Olson,, Erik P. Williksen, and, Gregg A. Horras, , Margaret L. Klein and, Raima Larter. The Peroxidase−Oxidase Oscillator and Its Constituent Chemistries. Chemical Reviews 1997, 97 (3) , 739-756. https://doi.org/10.1021/cr960081a
    26. Yasuo Matsubara, Osamu Ishitani. Photochemical formation of hydride using transition metal complexes and its application to photocatalytic reduction of the coenzyme NAD(P)+ and its model compounds. Coordination Chemistry Reviews 2023, 477 , 214955. https://doi.org/10.1016/j.ccr.2022.214955
    27. Alberto Bianco, Mirko Zaffagnini, Giacomo Bergamini. Mediator-free NADH photochemical regeneration with the aid of the amino acid l -cysteine. Sustainable Energy & Fuels 2022, 6 (19) , 4393-4397. https://doi.org/10.1039/D2SE01045C
    28. Bula Singh, Ranendu Sekhar Das. PCET to bound-superoxide by NADH and NADHX in aqueous-acid media: a kinetic inspection. Journal of Chemical Sciences 2021, 133 (4) https://doi.org/10.1007/s12039-021-01994-3
    29. Haiyan Song, Xigui Zhou, Zhiguang Zhu. An integrated NAD+-dependent dehydrogenase-based biosensor for xylose fermentation sample analysis. Biosensors and Bioelectronics 2021, 193 , 113573. https://doi.org/10.1016/j.bios.2021.113573
    30. Alexander D. Ryabov. Mechanistic puzzles from Iron(III) TAML activators including substrate inhibition, zero-order and dual catalysis. 2021, 183-225. https://doi.org/10.1016/bs.adioch.2020.12.005
    31. Elie Hembe Mukaya, Xavier Yangkou Mbianda. Macromolecular Prodrugs Containing Organoiron-Based Compounds in Cancer Research: A Review. Mini-Reviews in Medicinal Chemistry 2020, 20 (9) , 726-738. https://doi.org/10.2174/1389557519666191107142926
    32. Hui Wu, Jianzhe Li, Dawei Yang, Peng Tong, Jinfeng Zhao, Baomin Wang, Jingping Qu. CO 2 fixation and transformation on a thiolate-bridged dicobalt scaffold under oxidising conditions. Inorganic Chemistry Frontiers 2019, 6 (8) , 2185-2193. https://doi.org/10.1039/C9QI00423H
    33. Khaled Al Khalyfeh, Jonas F. Nawroth, Martin Uhlemann, Ulrich Stoeck, Lars Giebeler, Rainer Jordan, Alexander Hildebrandt. Anionic polymerization of multi-vinylferrocenes. Journal of Organometallic Chemistry 2017, 853 , 149-158. https://doi.org/10.1016/j.jorganchem.2017.10.009
    34. Kai Liu, Chengqian Yuan, Qianli Zou, Zengchun Xie, Xuehai Yan. Self‐Assembled Zinc/Cystine‐Based Chloroplast Mimics Capable of Photoenzymatic Reactions for Sustainable Fuel Synthesis. Angewandte Chemie 2017, 129 (27) , 7984-7988. https://doi.org/10.1002/ange.201704678
    35. Kai Liu, Chengqian Yuan, Qianli Zou, Zengchun Xie, Xuehai Yan. Self‐Assembled Zinc/Cystine‐Based Chloroplast Mimics Capable of Photoenzymatic Reactions for Sustainable Fuel Synthesis. Angewandte Chemie International Edition 2017, 56 (27) , 7876-7880. https://doi.org/10.1002/anie.201704678
    36. Fan-kun Meng, Xiao-qing Zhu. Elemental steps of the thermodynamics of dihydropyrimidine: a new class of organic hydride donors. Organic & Biomolecular Chemistry 2017, 15 (1) , 197-206. https://doi.org/10.1039/C6OB02195F
    37. Michael Quinones, Yazhou Zhang, Penelope Riascos, Huey‐Min Hwang, Winfred G. Aker, Xiaojia He, Ruomei Gao. Effects of Light Energy and Reducing Agents on C 60 ‐Mediated Photosensitizing Reactions. Photochemistry and Photobiology 2014, 90 (2) , 374-379. https://doi.org/10.1111/php.12206
    38. Veronika Urbanova, Gert-Wieland Kohring, Tobias Klein, Zhijie Wang, Olcay Mert, Mustafa Emrullahoglu, Kerem Buran, Ayhan S. Demir, Mathieu Etienne, Alain Walcarius. Sol-gel Approaches for Elaboration of Polyol Dehydrogenase-Based Bioelectrodes. Zeitschrift für Physikalische Chemie 2013, 227 (5) , 667-689. https://doi.org/10.1524/zpch.2013.0324
    39. Jesse A. Miller, Lisa Alexander, Dylan I. Mori, Alexander D. Ryabov, Terrence J. Collins. In situ enzymatic generation of H2O2 from O2 for use in oxidative bleaching and catalysis by TAML activators. New Journal of Chemistry 2013, 37 (11) , 3488. https://doi.org/10.1039/c3nj00525a
    40. Eman Al-Jawadi, Sascha Pöller, Raoudha Haddad, Wolfgang Schuhmann. NADH oxidation using modified electrodes based on lactate and glucose dehydrogenase entrapped between an electrocatalyst film and redox catalyst-modified polymers. Microchimica Acta 2012, 177 (3-4) , 405-410. https://doi.org/10.1007/s00604-012-0797-2
    41. Carmen Creanga, Nabil El Murr. Development of new disposable NADH biosensors based on NADH oxidase. Journal of Electroanalytical Chemistry 2011, 656 (1-2) , 179-184. https://doi.org/10.1016/j.jelechem.2010.11.030
    42. Farhana S. Saleh, Mohammad R. Rahman, Takeyoshi Okajima, Lanqun Mao, Takeo Ohsaka. Determination of formal potential of NADH/NAD+ redox couple and catalytic oxidation of NADH using poly(phenosafranin)-modified carbon electrodes. Bioelectrochemistry 2011, 80 (2) , 121-127. https://doi.org/10.1016/j.bioelechem.2010.07.001
    43. Christopher C. Moser, J.L. Ross Anderson, P. Leslie Dutton. Guidelines for tunneling in enzymes. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2010, 1797 (9) , 1573-1586. https://doi.org/10.1016/j.bbabio.2010.04.441
    44. Ponnusamy Sami, Natarajan Mariselvi, Kandasamy Venkateshwari, Arunachalam Sarathi, Kasi Rajasekaran. Studies on electron transfer reactions: Reduction of heteropoly 10-tungstodivanadophosphate by thioglycolic acid in aqueous medium. Journal of Chemical Sciences 2010, 122 (3) , 335-340. https://doi.org/10.1007/s12039-010-0038-3
    45. Ponnusamy Sami, Kandasamy Venkateshwari, Natarajan Mariselvi, Arunachalam Sarathi, Kasi Rajasekaran. Studies on electron transfer reactions: reduction of heteropoly 10-tungstodivanadophosphate by l-cysteine in aqueous acid medium. Transition Metal Chemistry 2010, 35 (2) , 137-142. https://doi.org/10.1007/s11243-009-9306-9
    46. Ponnusamy Sami, Kasi Rajasekaran. Studies on electron transfer reactions of Keggin-type mixed addenda heteropolytungstovanadophosphates with NADH. Journal of Chemical Sciences 2009, 121 (2) , 155-161. https://doi.org/10.1007/s12039-009-0017-8
    47. Michael Hambourger, Gerdenis Kodis, Michael D. Vaughn, Gary F. Moore, Devens Gust, Ana L. Moore, Thomas A. Moore. Solar energy conversion in a photoelectrochemical biofuel cell. Dalton Transactions 2009, 107 (45) , 9979. https://doi.org/10.1039/b912170f
    48. Junpei Yuasa, Shunichi Fukuzumi. A mechanistic dichotomy in concerted versus stepwise pathways in hydride and hydrogen transfer reactions of NADH analogues. Journal of Physical Organic Chemistry 2008, 21 (10) , 886-896. https://doi.org/10.1002/poc.1367
    49. Takeshi Matsumoto, Takamasa Otsuki, Yoshimi Sueishi, Shunzo Yamamoto. Effects of Anionic Surfactants on the Hydride-Transfer Reaction of NADH with Methylene Blue: In Premicellar and Micellar Regions. Bulletin of the Chemical Society of Japan 2008, 81 (2) , 291-297. https://doi.org/10.1246/bcsj.81.291
    50. Michael Hambourger, Paul A. Liddell, Devens Gust, Ana L. Moore, Thomas A. Moore. Parameters affecting the chemical work output of a hybrid photoelectrochemical biofuel cell. Photochemical & Photobiological Sciences 2007, 6 (4) , 431-437. https://doi.org/10.1039/b616444g
    51. Hua‐Jian Xu, You‐Cheng Liu, Yao Fu. A Study on the Reaction of 1‐(3‐Pyridyl)‐2,2‐di‐substituted Ethylenes with 1‐Benzyl‐1,4‐dihydronicotinamide. Chinese Journal of Chemistry 2007, 25 (1) , 95-97. https://doi.org/10.1002/cjoc.200790025
    52. Stephen J. Connon. Asymmetric organocatalytic reductions mediated by dihydropyridines. Organic & Biomolecular Chemistry 2007, 5 (21) , 3407. https://doi.org/10.1039/b711499k
    53. Touma B. Issa, Pritam Singh, Murray V. Baker. Potentiometric measurement of state-of-charge of lead-acid battery by using a bridged ferrocene surface modified electrode. Journal of Power Sources 2006, 158 (2) , 1034-1038. https://doi.org/10.1016/j.jpowsour.2005.11.034
    54. Simona Serban, Nabil El Murr. Redox-flexible NADH oxidase biosensor: A platform for various dehydrogenase bioassays and biosensors. Electrochimica Acta 2006, 51 (24) , 5143-5149. https://doi.org/10.1016/j.electacta.2006.03.052
    55. Michael Hambourger, Alicia Brune, Devens Gust, Ana L. Moore, Thomas A. Moore. Enzyme‐assisted Reforming of Glucose to Hydrogen in a Photoelectrochemical Cell ¶. Photochemistry and Photobiology 2005, 81 (4) , 1015-1020. https://doi.org/10.1111/j.1751-1097.2005.tb01477.x
    56. Eberhard W. Neuse. Macromolecular Ferrocene Compounds as Cancer Drug Models. Journal of Inorganic and Organometallic Polymers and Materials 2005, 15 (1) , 3-31. https://doi.org/10.1007/s10904-004-2371-9
    57. Michael Hambourger, Alicia Brune, Devens Gust, Ana L. Moore, Thomas A. Moore. Enzyme-assisted Reforming of Glucose to Hydrogen in a Photoelectrochemical Cell¶. Photochemistry and Photobiology 2005, 81 (4) , 1015. https://doi.org/10.1562/2005-05-15-RC-528R.1
    58. Simona Serban, Nabil El Murr. Synergetic effect for NADH oxidation of ferrocene and zeolite in modified carbon paste electrodes. Biosensors and Bioelectronics 2004, 20 (2) , 161-166. https://doi.org/10.1016/j.bios.2004.01.030
    59. Frank Hollmann, Andreas Schmid. Electrochemical Regeneration of Oxidoreductases for Cell-free Biocatalytic Redox Reactions. Biocatalysis and Biotransformation 2004, 22 (2) , 63-88. https://doi.org/10.1080/10242420410001692778
    60. Narimantas Č≐nas, Žilvinas Anusevičius, Henrikas Nivinskas, Lina Misevičien≐, Jonas Šarlauskas. Structure-Activity Relationships in Two-Electron Reduction of Quinones. 2004, 258-277. https://doi.org/10.1016/S0076-6879(04)82015-9
    61. Riccarda Antiochia, Irma Lavagnini, Franco Magno. The Interference of Oxygen on Diaphorase from Clostridium kluveri in the Mediated Electrocatalytic Oxidation of Reduced Dihydronicotinamide Adenine Dinucleotide. Electroanalysis 2003, 15 (21) , 1713-1718. https://doi.org/10.1002/elan.200302769
    62. Xiao‐Qing Zhu, Hai‐Rong Li, Qian Li, Teng Ai, Jin‐Yong Lu, Yuan Yang, Jin‐Pei Cheng. Determination of the C4H Bond Dissociation Energies of NADH Models and Their Radical Cations in Acetonitrile. Chemistry – A European Journal 2003, 9 (4) , 871-880. https://doi.org/10.1002/chem.200390108
    63. Iris Schröder, Eberhard Steckhan, Andreas Liese. In situ NAD+ regeneration using 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonate) as an electron transfer mediator. Journal of Electroanalytical Chemistry 2003, 541 , 109-115. https://doi.org/10.1016/S0022-0728(02)01420-1
    64. Anh N. Woodmansee, James A. Imlay. Reduced Flavins Promote Oxidative DNA Damage in Non-respiringEscherichia coli by Delivering Electrons to Intracellular Free Iron. Journal of Biological Chemistry 2002, 277 (37) , 34055-34066. https://doi.org/10.1074/jbc.M203977200
    65. Lo Gorton, Elena Domínguez. Electrochemistry of NAD ( P ) + / NAD ( P ) H. 2002https://doi.org/10.1002/9783527610426.bard090004
    66. Eugenii Katz, Andrew N. Shipway, Itamar Willner. Mediated Electron‐transfer between Redox‐enzymes and Electrode Supports. 2002https://doi.org/10.1002/9783527610426.bard090017
    67. P.N. Bartlett, E. Simon, C.S. Toh. Modified electrodes for NADH oxidation and dehydrogenase-based biosensors. Bioelectrochemistry 2002, 56 (1-2) , 117-122. https://doi.org/10.1016/S1567-5394(02)00047-6
    68. Andreas Schmid, Frank Hollmann, Bruno Bühler. Oxidation of Alcohols. 2002, 1108-1170. https://doi.org/10.1002/9783527618262.ch16b
    69. James A. Imlay. How oxygen damages microbes: Oxygen tolerance and obligate anaerobiosis. 2002, 111-153. https://doi.org/10.1016/S0065-2911(02)46003-1
    70. Florentina D. Munteanu, Lauro T. Kubota, Lo Gorton. Effect of pH on the catalytic electrooxidation of NADH using different two-electron mediators immobilised on zirconium phosphate. Journal of Electroanalytical Chemistry 2001, 509 (1) , 2-10. https://doi.org/10.1016/S0022-0728(01)00376-X
    71. Victor Roşca, Liana Mureşan, Ionel Catalin Popescu, Castelia Cristea, Ioan Alexandru Silberg. Gold electrodes modified with 16H,18H-Dibenzo[c,l]-7,9-dithia-16,18-diazapentacene for electrocatalytic oxidation of NADH. Electrochemistry Communications 2001, 3 (8) , 439-445. https://doi.org/10.1016/S1388-2481(01)00197-7
    72. Christiana A. Pessôa, Yoshitaka Gushikem, Lauro T. Kubota. Ferrocenecarboxylic acid adsorbed on Nb2O5 film grafted on a SiO2 surface: NADH oxidation study. Electrochimica Acta 2001, 46 (16) , 2499-2505. https://doi.org/10.1016/S0013-4686(01)00453-4
    73. Michael Kirsch, Herbert de Groot. Ascorbate Is a Potent Antioxidant against Peroxynitrite-induced Oxidation Reactions. Journal of Biological Chemistry 2000, 275 (22) , 16702-16708. https://doi.org/10.1074/jbc.M909228199
    74. Michael Kirsch, Herbert de Groot. Reaction of Peroxynitrite with Reduced Nicotinamide Nucleotides, the Formation of Hydrogen Peroxide. Journal of Biological Chemistry 1999, 274 (35) , 24664-24670. https://doi.org/10.1074/jbc.274.35.24664
    75. Riccarda Antiochia, Irma Lavagnini, Franco Magno. Electrocatalytic Oxidation of Dihydronicotinamide Adenine Dinucleotide with Ferrocene Carboxylic Acid by Diaphorase fromClostridium kluveri. Remarks on the Kinetic Approaches Usually Adopted. Electroanalysis 1999, 11 (2) , 129-133. https://doi.org/10.1002/(SICI)1521-4109(199902)11:2<129::AID-ELAN129>3.0.CO;2-S
    76. Philip N. Bartlett, Emma N.K. Wallace. The Application of Approximate Analytical Models in the Development of Modified Electrodes for NADH Oxidation. 1999, 35-89. https://doi.org/10.1016/S0069-8040(99)80007-7
    77. Gregg Caldwell, Maria G. Meirim, Eberhard W. Neuse, Constance E. J. van Rensburg. Antineoplastic activity of polyaspartamide-ferrocene conjugates. Applied Organometallic Chemistry 1998, 12 (12) , 793-799. https://doi.org/10.1002/(SICI)1099-0739(199812)12:12<793::AID-AOC714>3.0.CO;2-C
    78. El Said El-Sherbini, Alessandro Finazzi-Agrò, Silvano Tortorella, Antonio Casini. Reactions of Pyridine Coenzyme Dimers and Monomers with Viologens. Archives of Biochemistry and Biophysics 1998, 354 (1) , 65-72. https://doi.org/10.1006/abbi.1998.0669
    79. Bineta Keita, Khalid Essaadi, Abderrahman Belhouari, Louis Nadjo, Roland Contant, Yves Justum. Catalysis of the oxidation of NADH by heteropolyanions: a kinetic study. Comptes Rendus de l'Académie des Sciences - Series IIC - Chemistry 1998, 1 (5-6) , 343-350. https://doi.org/10.1016/S1387-1609(98)80172-2
    80. Jin-Pei Cheng, Yun Lu. Kinetic, thermodynamic and mechanistic studies on the reduction of carbenium ions by NAD(P)H analogues. Journal of Physical Organic Chemistry 1997, 10 (7) , 577-584. https://doi.org/10.1002/(SICI)1099-1395(199707)10:7<577::AID-POC920>3.0.CO;2-T
    81. Christopher R. Lambert, Irene E. Kochevar. Electron Transfer Quenching of the Rose Bengal Triplet State. Photochemistry and Photobiology 1997, 66 (1) , 15-25. https://doi.org/10.1111/j.1751-1097.1997.tb03133.x
    82. R. Antiochia, A.E.G. Cass, G. Palleschi. Purification and sensor applications of an oxygen insensitive, thermophilic diaphorase. Analytica Chimica Acta 1997, 345 (1-3) , 17-28. https://doi.org/10.1016/S0003-2670(96)00618-6
    83. Ioanis Katakis, Elena Dom�nguez. Catalytic electrooxidation of NADH for dehydrogenase amperometric biosensors. Mikrochimica Acta 1997, 126 (1-2) , 11-32. https://doi.org/10.1007/BF01242656
    84. Satoshi Obika, Toshihiko Nishiyama, Satoshi Tatematsu, Kazuyuki Miyashita, Takeshi Imanishi. Studies on novel and chiral 1,4-dihydropyridines. IV. Mechanistic aspects of the asymmetric reduction with chiral NADH model compounds, (S)-3-(p-tolylsulfinyl)-1,4-dihydropyridines. Tetrahedron 1997, 53 (9) , 3073-3082. https://doi.org/10.1016/S0040-4020(97)00072-0
    85. Maria Jesús Lobo, Arturo J. Miranda, Paulino Tuñón. Amperometric biosensors based on NAD(P)‐dependent dehydrogenase enzymes. Electroanalysis 1997, 9 (3) , 191-202. https://doi.org/10.1002/elan.1140090302
    86. R. Antiochia, G. Palleschi. A Tri-Enzyme Electrode Probe for the Sequential Determination of Fructose and Glucose in the Same Sample. Analytical Letters 1997, 30 (4) , 683-697. https://doi.org/10.1080/00032719708006418
    87. Satoshi Obika, Toshihiko Nishiyama, Satoshi Tatematsu, Kazuyuki Miyashita, Takeshi Imanishi. Stereospecific 4-Hydrogen Transfer in the Asymmetric Reduction Using ( S S)-3-( p -Tolylsulfinyl)-1,4-dihydropyridines, NADH Model Compounds. Chemistry Letters 1996, 25 (10) , 853-854. https://doi.org/10.1246/cl.1996.853
    88. B. Keita, K. Essaadi, L. Nadjo, R. Contant, Y. Justum. Oxidation kinetics of NADH by heteropolyanions. Journal of Electroanalytical Chemistry 1996, 404 (2) , 271-279. https://doi.org/10.1016/0022-0728(95)04360-8
    89. Hanns‐Ludwig Schmidt, Wolfgang Schuhmann, Tu München, Friedrich W. Scheller, Florian Schubert. Specific Features of Biosensors. 1995, 717-817. https://doi.org/10.1002/9783527619269.ch1b
    90. Min Tian, Shaojun Dong. Study on electrocatalytic oxidation of NADH by ferrocene derivatives and determination of catalytic rate constant at microdisk electrode. Electroanalysis 1995, 7 (11) , 1063-1067. https://doi.org/10.1002/elan.1140071113
    91. Bernd Gründig, Gunther Wittstock, Ulrich Rüdel, Beate Strehlitz. Mediator-modified electrodes for electrocatalytic oxidation of NADH. Journal of Electroanalytical Chemistry 1995, 395 (1-2) , 143-157. https://doi.org/10.1016/0022-0728(95)04090-B
    92. Bineta Keita, Khalid Essaadi, Louis Nadjo, Michel Desmadril. Rate-limiting one-electron transfer in the oxidation of NADH by polyoxometalates. Chemical Physics Letters 1995, 237 (5-6) , 411-418. https://doi.org/10.1016/0009-2614(95)00331-W
    93. . Oxidation Reactions. 1995, 667-807. https://doi.org/10.1002/9783527619429.ch11
    94. Juan Cano, Angel Benito, Ramón Martínez-Máñez, Juan Soto, Jordi Payá, Francesc Lloret, Miguel Julve, M. Dolores Marcos, Ekkehard Sinn. Ferrocene containing chelating ligands 3. Synthesis, spectroscopic characterization, electrochemical behaviour and interaction with metal ions of new ligands obtained by condensation of ferrocenecarboxaldehyde with 2-amino-benzoic acid derivatives. Crystal structures of 2-ferrocenylmethylamino-5-methyl-benzoic acid and 2-bis(ferrocenylmethyl)ammonium-5-methyl-benzoic acid perchlorate. Inorganica Chimica Acta 1995, 231 (1-2) , 45-56. https://doi.org/10.1016/0020-1693(94)04318-P
    95. Eberhard W. Neuse. Macromolecular metal compounds in cancer research: Concepts and synthetic approaches. Macromolecular Symposia 1994, 80 (1) , 111-128. https://doi.org/10.1002/masy.19940800109
    96. K. Essaadi, B. Keita, L. Nadjo, R. Contant. Oxidation of NADH by oxometalates. Journal of Electroanalytical Chemistry 1994, 367 (1-2) , 275-278. https://doi.org/10.1016/0022-0728(93)03281-S
    97. Eberhard Steckhan. Electroenzymatic synthesis. 1994, 83-111. https://doi.org/10.1007/3-540-57729-7_3
    98. Iwao Suzuki, Qiang Chen, Akihiko Ueno, Tetsuo Osa. Ferrocene-Appended Cyclodextrins. The Effects of Temperature, Organic Solvent, Length of Spacer, and Cavity Size on the Complexation Behavior. Bulletin of the Chemical Society of Japan 1993, 66 (5) , 1472-1481. https://doi.org/10.1246/bcsj.66.1472
    99. Waldemar Adam, André Schönberger. Application of the Marcus Theory on the Reaction of Substituted Dibenzoyl Peroxides with Hydroquinones: Evidence for an Inner‐Sphere Electron Transfer (ET) Mechanism. Chemische Berichte 1992, 125 (9) , 2149-2153. https://doi.org/10.1002/cber.19921250925
    100. Shunichi Fukuzumi, Yoshihiro Tokuda. Direct Determination for the pKa Values of Radical Cations of NADH Analogues. Chemistry Letters 1992, 21 (9) , 1721-1724. https://doi.org/10.1246/cl.1992.1721
    Load all citations

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 1984, 106, 23, 7233–7239
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja00335a062
    Published November 1, 1984

    Article Views

    796

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.