ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Detection and investigation of allyl and benzyl radicals by photoelectron spectroscopy

Cite this: J. Am. Chem. Soc. 1978, 100, 11, 3290–3294
Publication Date (Print):May 1, 1978
https://doi.org/10.1021/ja00479a005
ACS Legacy Archive

Article Views

331

Altmetric

-

Citations

LEARN ABOUT THESE METRICS
PDF (589 KB)

Note: In lieu of an abstract, this is the article's first page.

Free first page

Cited By

This article is cited by 113 publications.

  1. Anja Röder, Jens Petersen, Kevin Issler, Ingo Fischer, Roland Mitrić, Lionel Poisson. Exploring the Excited-State Dynamics of Hydrocarbon Radicals, Biradicals, and Carbenes Using Time-Resolved Photoelectron Spectroscopy and Field-Induced Surface Hopping Simulations. The Journal of Physical Chemistry A 2019, 123 (50) , 10643-10662. https://doi.org/10.1021/acs.jpca.9b06346
  2. Vivek Bagchi, Patrina Paraskevopoulou, Purak Das, Lingyu Chi, Qiuwen Wang, Amitava Choudhury, Jennifer S. Mathieson, Leroy Cronin, Daniel B. Pardue, Thomas R. Cundari, George Mitrikas, Yiannis Sanakis, and Pericles Stavropoulos . A Versatile Tripodal Cu(I) Reagent for C–N Bond Construction via Nitrene-Transfer Chemistry: Catalytic Perspectives and Mechanistic Insights on C–H Aminations/Amidinations and Olefin Aziridinations. Journal of the American Chemical Society 2014, 136 (32) , 11362-11381. https://doi.org/10.1021/ja503869j
  3. Anton M. H. Rasmussen, Michael N. Groves, and Bjørk Hammer . Remote Activation of Chemical Bonds in Heterogeneous Catalysis. ACS Catalysis 2014, 4 (4) , 1182-1188. https://doi.org/10.1021/cs400875k
  4. Michael A. Duncan . Infrared Laser Spectroscopy of Mass-Selected Carbocations. The Journal of Physical Chemistry A 2012, 116 (47) , 11477-11491. https://doi.org/10.1021/jp309037d
  5. Adam J. Trevitt, Satchin Soorkia, John D. Savee, Talitha S. Selby, David L. Osborn, Craig A. Taatjes, and Stephen R. Leone . Branching Fractions of the CN + C3H6 Reaction Using Synchrotron Photoionization Mass Spectrometry: Evidence for the 3-Cyanopropene Product. The Journal of Physical Chemistry A 2011, 115 (46) , 13467-13473. https://doi.org/10.1021/jp208496r
  6. Taylor J. Mach, Rollin A. King, and T. Daniel Crawford. A Coupled Cluster Benchmark Study of the Electronic Spectrum of the Allyl Radical. The Journal of Physical Chemistry A 2010, 114 (33) , 8852-8857. https://doi.org/10.1021/jp102292x
  7. Adam J. Trevitt, Fabien Goulay, Craig A. Taatjes, David L. Osborn and Stephen R. Leone . Reactions of the CN Radical with Benzene and Toluene: Product Detection and Low-Temperature Kinetics. The Journal of Physical Chemistry A 2010, 114 (4) , 1749-1755. https://doi.org/10.1021/jp909633a
  8. Nicholas S. Shuman, William R. Stevens, Katherine Lower and Tomas Baer. Heat of Formation of the Allyl Ion by TPEPICO Spectroscopy. The Journal of Physical Chemistry A 2009, 113 (40) , 10710-10716. https://doi.org/10.1021/jp906691a
  9. Michel Sablier and, Toshihiro Fujii. Mass Spectrometry of Free Radicals. Chemical Reviews 2002, 102 (9) , 2855-2924. https://doi.org/10.1021/cr010295e
  10. Ingo Fischer and, Peter Chen. Allyl-A Model System for the Chemical Dynamics of Radicals. The Journal of Physical Chemistry A 2002, 106 (17) , 4291-4300. https://doi.org/10.1021/jp013708o
  11. Sreela Nandi,, Pamela A. Arnold,, Barry K. Carpenter,, Mark R. Nimlos,, David C. Dayton, and, G. Barney Ellison. Polarized Infrared Absorption Spectra of Matrix-Isolated Allyl Radicals. The Journal of Physical Chemistry A 2001, 105 (32) , 7514-7524. https://doi.org/10.1021/jp011163s
  12. Pamela A. Arnold,, Bogdan R. Cosofret,, Scott M. Dylewski,, Paul L. Houston, and, Barry K. Carpenter. Evidence of a Double Surface Crossing between Open- and Closed-Shell Surfaces in the Photodissociation of Cyclopropyl Iodide. The Journal of Physical Chemistry A 2001, 105 (10) , 1693-1701. https://doi.org/10.1021/jp0037504
  13. Dean B. Atkinson and, Jeffrey W. Hudgens. Chlorination Chemistry. 2. Rate Coefficients, Reaction Mechanism, and Spectrum of the Chlorine Adduct of Allene. The Journal of Physical Chemistry A 2000, 104 (4) , 811-818. https://doi.org/10.1021/jp9927247
  14. Dean B. Atkinson and, Jeffrey W. Hudgens. Chlorination Chemistry. 1. Rate Coefficients, Reaction Mechanisms, and Spectra of the Chlorine and Bromine Adducts of Propargyl Halides. The Journal of Physical Chemistry A 1999, 103 (40) , 7978-7989. https://doi.org/10.1021/jp991076o
  15. Paul G. Wenthold,, Mark L. Polak, and, W. C. Lineberger. Photoelectron Spectroscopy of the Allyl and 2-Methylallyl Anions. The Journal of Physical Chemistry 1996, 100 (17) , 6920-6926. https://doi.org/10.1021/jp953401n
  16. Chava Lifshitz. Tropylium Ion Formation from Toluene: Solution of an Old Problem in Organic Mass Spectrometry. Accounts of Chemical Research 1994, 27 (5) , 138-144. https://doi.org/10.1021/ar00041a004
  17. Grant T. Buckingham, Jessica P. Porterfield, Oleg Kostko, Tyler P. Troy, Musahid Ahmed, David J. Robichaud, Mark R. Nimlos, John W. Daily, G. Barney Ellison. The thermal decomposition of the benzyl radical in a heated micro-reactor. II. Pyrolysis of the tropyl radical. The Journal of Chemical Physics 2016, 145 (1) , 014305. https://doi.org/10.1063/1.4954895
  18. John D. Savee, Judit Zádor, Patrick Hemberger, Bálint Sztáray, Andras Bodi, David L. Osborn. Threshold photoelectron spectrum of the benzyl radical. Molecular Physics 2015, 113 (15-16) , 2217-2227. https://doi.org/10.1080/00268976.2015.1021398
  19. Shaodong Zhou, Maria Schlangen, Jilai Li, Xiao-Nan Wu, Helmut Schwarz. Carbon-Atom Extrusion from Halobenzenes and Its Coupling with a Methylene Ligand to Form Acetylene. Chemistry - A European Journal 2015, 21 (27) , 9629-9631. https://doi.org/10.1002/chem.201501871
  20. Grant T. Buckingham, Thomas K. Ormond, Jessica P. Porterfield, Patrick Hemberger, Oleg Kostko, Musahid Ahmed, David J. Robichaud, Mark R. Nimlos, John W. Daily, G. Barney Ellison. The thermal decomposition of the benzyl radical in a heated micro-reactor. I. Experimental findings. The Journal of Chemical Physics 2015, 142 (4) , 044307. https://doi.org/10.1063/1.4906156
  21. Kathrin H Fischer, Patrick Hemberger, Andras Bodi, Ingo Fischer. Photoionisation of the tropyl radical. Beilstein Journal of Organic Chemistry 2013, 9 , 681-688. https://doi.org/10.3762/bjoc.9.77
  22. Sampada Borkar, Bálint Sztáray, Andras Bodi. Dissociating C3H5Br+ ions: Almost all roads lead to the allyl cation. International Journal of Mass Spectrometry 2012, 330-332 , 100-108. https://doi.org/10.1016/j.ijms.2012.08.014
  23. O. S. Herrera, J. D. Nieto, A. C. Olleta, S. I. Lane. The photoinduced reaction of 2-iodothiophene in solutions of n-heptane, dichloromethane and methanol. Journal of Physical Organic Chemistry 2011, 24 (5) , 398-406. https://doi.org/10.1002/poc.1769
  24. Paul Rademacher. Photoelectron Spectra of Amines, Nitroso and Nitro Compounds. 2009https://doi.org/10.1002/9780470682531.pat0074
  25. Nils Hansen, James A. Miller, Phillip R. Westmoreland, Tina Kasper, Katharina Kohse-Höinghaus, Juan Wang, Terrill A. Cool. Isomer-specific combustion chemistry in allene and propyne flames. Combustion and Flame 2009, 156 (11) , 2153-2164. https://doi.org/10.1016/j.combustflame.2009.07.014
  26. Michael Gasser, Anna M. Schulenburg, Peter M. Dietiker, Andreas Bach, Frédéric Merkt, Peter Chen. Single-photon and resonance-enhanced multiphoton threshold ionization of the allyl radical. The Journal of Chemical Physics 2009, 131 (1) , 014304. https://doi.org/10.1063/1.3157185
  27. Adam J. Trevitt, Fabien Goulay, Giovanni Meloni, David L. Osborn, Craig A. Taatjes, Stephen R. Leone. Isomer-specific product detection of CN radical reactions with ethene and propene by tunable VUV photoionization mass spectrometry. International Journal of Mass Spectrometry 2009, 280 (1-3) , 113-118. https://doi.org/10.1016/j.ijms.2008.07.033
  28. Gary E. Douberly, Allen M. Ricks, Paul v. R. Schleyer, Michael A. Duncan. Infrared spectroscopy of gas phase C3H5+: The allyl and 2-propenyl cations. The Journal of Chemical Physics 2008, 128 (2) , 021102. https://doi.org/10.1063/1.2828553
  29. Xi Xing, Beth Reed, Kai-Chung Lau, C. Y. Ng, Xu Zhang, G. Barney Ellison. Vacuum ultraviolet laser pulsed field ionization-photoelectron study of allyl radical CH2CHCH2. The Journal of Chemical Physics 2007, 126 (17) , 171101. https://doi.org/10.1063/1.2737443
  30. Ingo Fischer, Thomas Schüßler, Hans-Jürgen Deyerl, Mohamed Elhanine, Christian Alcaraz. Photoionization and dissociative photoionization of the allyl radical, C3H5. International Journal of Mass Spectrometry 2007, 261 (2-3) , 227-233. https://doi.org/10.1016/j.ijms.2006.09.023
  31. Rui Yang, Bin Yang, Chao-qun Huang, Li-xia Wei, Jing Wang, Xiao-bin Shan, Liu-si Sheng, Yun-wu Zhang, Fei Qi, Chun-de Yao, Qi Li, Qing Ji. VUV Photoionization Study of the Allyl Radical from Premixed Gasoline/Oxygen Flame. Chinese Journal of Chemical Physics 2006, 19 (1) , 25-28. https://doi.org/10.1360/cjcp2006.19(1).25.4
  32. K. Mishima, M. Hayashi, S. H. Lin. Keldysh-type photoionization rate of large polyatomic molecules in the tunneling region. Physical Review A 2005, 71 (5) https://doi.org/10.1103/PhysRevA.71.053411
  33. Xu Zhang, Anders V. Friderichsen, Sreela Nandi, G. Barney Ellison, Donald E. David, J. Thomas McKinnon, Theodore G. Lindeman, David C. Dayton, Mark R. Nimlos. Intense, hyperthermal source of organic radicals for matrix-isolation spectroscopy. Review of Scientific Instruments 2003, 74 (6) , 3077-3086. https://doi.org/10.1063/1.1574397
  34. T. Schüßler, H.-J. Deyerl, S. Dümmler, I. Fischer, C. Alcaraz, M. Elhanine. The vacuum ultraviolet photochemistry of the allyl radical investigated using synchrotron radiation. The Journal of Chemical Physics 2003, 118 (20) , 9077-9080. https://doi.org/10.1063/1.1576387
  35. Yit-Tsong Chen. Molecular Rydberg States and Ionization Energy Studied by Two-Photon Resonant Ionization Spectroscopy. Journal of the Chinese Chemical Society 2002, 49 (5) , 703-722. https://doi.org/10.1002/jccs.200200104
  36. Bethany L. Kormos, Christopher J. Cramer. Adiabatic connection method for X??+?RX nucleophilic substitution reactions (X?=?F, Cl). Journal of Physical Organic Chemistry 2002, 15 (10) , 712-720. https://doi.org/10.1002/poc.548
  37. Ji Duck Kim, Gyoonhee Han, Lak Shin Jeong, Hyun-Ju Park, Ok Pyo Zee, Young Hoon Jung. Study of the stability of carbocations by chlorosulfonyl isocyanate reaction with ethers. Tetrahedron 2002, 58 (22) , 4395-4402. https://doi.org/10.1016/S0040-4020(02)00413-1
  38. Ingo Fischer. High-resolution photoelectron-spectroscopy of radicals. International Journal of Mass Spectrometry 2002, 216 (2) , 131-153. https://doi.org/10.1016/S1387-3806(02)00592-4
  39. Chi-Wei Liang, Chun-Cing Chen, Chia-Yin Wei, Yit-Tsong Chen. Two-photon resonant ionization spectroscopy of the allyl-h5 and allyl-d5 radicals:  Rydberg states and ionization energies. The Journal of Chemical Physics 2002, 116 (10) , 4162-4169. https://doi.org/10.1063/1.1450553
  40. José-Luis M. Abboud, Ibon Alkorta, Juan Z. Dávalos, Paul Müller, Esther Quintanilla. Thermodynamic Stabilities of Carbocations. 2002, 57-135. https://doi.org/10.1016/S0065-3160(02)37002-3
  41. Runhua Li, Jen-Chieh Wu, Jia-Lin Chang, Yit-Tsong Chen. Vibronic spectra of the allyl radical at 6–8 eV with resonance-enhanced multiphoton ionization technique. Science in China Series B: Chemistry 2001, 44 (4) , 360-365. https://doi.org/10.1007/BF02879810
  42. Wolfgang Kirmse. Carbene protonation. 2001, 1-51. https://doi.org/10.1016/S1079-350X(01)80003-4
  43. Pamela A Arnold, Barry K Carpenter. Computational studies on the ring openings of cyclopropyl radical and cyclopropyl cation. Chemical Physics Letters 2000, 328 (1-2) , 90-96. https://doi.org/10.1016/S0009-2614(00)00927-1
  44. T. Gilbert, Ingo Fischer, P. Chen. Zero kinetic energy photoelectron spectra of the allyl radical, C3H5. The Journal of Chemical Physics 2000, 113 (2) , 561-566. https://doi.org/10.1063/1.481831
  45. Thomas A Field, François Dulieu, Jean-Hugues Fillion, Jean-Louis Chotin, Stéphane Douin, Jean-Louis Lemaire, Sydney Leach. Fragmentation of three isotopic toluene monocations in the 15–100 eV photon energy range. Chemical Physics 1999, 250 (1) , 81-110. https://doi.org/10.1016/S0301-0104(99)00315-8
  46. David A. Fairley, Daniel B. Milligan, Louise M. Wheadon, Colin G. Freeman, Robert G.A.R. Maclagan, Murray J. McEwan. Flow tube and theoretical study of proton transfer reactions of C3H5+ ions. International Journal of Mass Spectrometry 1999, 185-187 , 253-261. https://doi.org/10.1016/S1387-3806(98)14123-4
  47. Thomas Schultz, Ingo Fischer. Time-resolved photoelectron spectroscopy of the allyl radical: The lifetimes of the ultraviolet bands. The Journal of Chemical Physics 1998, 109 (14) , 5812-5822. https://doi.org/10.1063/1.477203
  48. Domenico Stranges, Martin Stemmler, Xueming Yang, James D. Chesko, Arthur G. Suits, Yuan T. Lee. UV photodissociation dynamics of allyl radical by photofragment translational spectroscopy. The Journal of Chemical Physics 1998, 109 (13) , 5372-5382. https://doi.org/10.1063/1.477156
  49. Josep M. Oliva, Joseph Gerratt, David L. Cooper, Peter B. Karadakov, Mario Raimondi. Study of the electronic states of the allyl radical using spin-coupled valence bond theory. The Journal of Chemical Physics 1997, 106 (9) , 3663-3672. https://doi.org/10.1063/1.473460
  50. G. Barney Ellison, Gustavo E. Davico, Veronica M. Bierbaum, Charles H. DePuy. Thermochemistry of the benzyl and allyl radicals and ions. International Journal of Mass Spectrometry and Ion Processes 1996, 156 (1-2) , 109-131. https://doi.org/10.1016/S0168-1176(96)04383-2
  51. Gregory C. Eiden, Kueih‐Tzu Lu, Jay Badenhoop, Frank Weinhold, James C. Weisshaar. Threshold photoionization spectra of benzyl radical: Cation vibrational states and ab initio calculations. The Journal of Chemical Physics 1996, 104 (22) , 8886-8895. https://doi.org/10.1063/1.471624
  52. John C. Traeger, Barbara M. Kompe. Thermochemical Data for Free Radicals from Studies of Ions. 1996, 59-109. https://doi.org/10.1007/978-94-009-0099-8_3
  53. Ralf Fröchtenicht. Selective ionization using low-energy electrons applied to time-resolved detection of reaction products in molecular beams. International Journal of Mass Spectrometry and Ion Processes 1994, 135 (1) , 69-78. https://doi.org/10.1016/0168-1176(94)03981-X
  54. R. Fröchtenicht, H. Hippler, J. Troe, J.P. Toennies. Photon-induced unimolecular decay of the benzyl radical: first direct identification of the reaction pathway to C7H6. Journal of Photochemistry and Photobiology A: Chemistry 1994, 80 (1-3) , 33-37. https://doi.org/10.1016/1010-6030(93)01023-U
  55. E. G. Baskir, A. K. Maltsev, V. A. Korolev, V. N. Khabashesku, O. M. Nefedov. Generation and IR spectroscopic study of benzyl radical. Russian Chemical Bulletin 1993, 42 (8) , 1438-1440. https://doi.org/10.1007/BF00699953
  56. Antonios K. Zarkadis, Wilhelm P. Neumann, Dieter Dünnebacke, Alicia Peñeñory, Ralf Stapel, Ulrich Stewen. Sterically Hindered Free Radicals, 21. 1,2‐ and 1,4‐Additions of Diphenylmethyl Radicals to Substituted Acrylonitriles. Chemische Berichte 1993, 126 (5) , 1179-1185. https://doi.org/10.1002/cber.19931260518
  57. Richard D. Bowen, Andrew D. Wright, Peter J. Derrick. Unimolecular reactions of isolated organic ions: loss of carbon monoxide from the oxonium ion CH 2 CHCH 2 + OCH 2 via double hydrogen transfer. J. Chem. Soc., Perkin Trans. 2 1993, 25 (3) , 501-507. https://doi.org/10.1039/P29930000501
  58. Bruce C. Gilbert, John R. Lindsay Smith, Elizabeth C. Milne, Adrian C. Whitwood, Philip Taylor. Kinetic–EPR studies of the addition of aliphatic radicals to acrylic acid and related alkenes: the interplay of steric and electronic factors. J. Chem. Soc., Perkin Trans. 2 1993, 5 (11) , 2025-2031. https://doi.org/10.1039/P29930002025
  59. Károly Héberger, Manfred Walbiner, Hanns Fischer. Die Addition von Benzylradikalen an Alkene: Zur Rolle von Radikaldeformationen im Übergangszustand. Angewandte Chemie 1992, 104 (5) , 651-653. https://doi.org/10.1002/ange.19921040536
  60. Richard D. Bowen, Alex W. Colburn, Peter J. Derrick. Unimolecular reactions of isolated organic ions: The chemistry of the unsaturated oxonium ion. Organic Mass Spectrometry 1992, 27 (5) , 625-632. https://doi.org/10.1002/oms.1210270517
  61. Gregory C. Eiden, Frank Weinhold, James C. Weisshaar. Photoelectron spectroscopy of free radicals with cm −1 resolution: The benzyl cation. The Journal of Chemical Physics 1991, 95 (11) , 8665-8668. https://doi.org/10.1063/1.461249
  62. José M. Riveros, Zhiqing Zhu. A kinetic method of distinguishing isomeric C3H5+ cations. Rapid Communications in Mass Spectrometry 1991, 5 (9) , 387-390. https://doi.org/10.1002/rcm.1290050903
  63. Ezzat T. M. Selim, M. A. Fahmey, Hoda S. Ghonime. [C7H7]+ and [C6H5]+ fragment ions produced from methylphenol isomers by electron impact. Organic Mass Spectrometry 1991, 26 (2) , 55-58. https://doi.org/10.1002/oms.1210260202
  64. Tomas Baer. The Measurement and Interpretation of Onset Energies. 1991, 249-265. https://doi.org/10.1007/978-94-011-3518-4_16
  65. John C. Traeger, Barbara M. Kompe. Threshold C7H+7 formation from the benzyl halides by photoionization mass spectrometry. International Journal of Mass Spectrometry and Ion Processes 1990, 101 (2-3) , 111-120. https://doi.org/10.1016/0168-1176(90)87004-Z
  66. Dietmar Kuck. Mass spectrometry of alkylbenzenes and related compounds. Part I. Gas-phase ion chemistry of alkylbenzene radical cations. Mass Spectrometry Reviews 1990, 9 (2) , 187-233. https://doi.org/10.1002/mas.1280090203
  67. M. Chanon, M. Rajzmann, F. Chanon. One electron more, One electron less. What does it change? Activations Induced by electron Transfer. The electron, an activating messenger.. Tetrahedron 1990, 46 (18) , 6193-6299. https://doi.org/10.1016/S0040-4020(01)96001-6
  68. Susan Olesik, Tomas Baer, J. C. Morrow, Jeffrey J. Ridal, John Buschek, John L. Holmes. Dissociation dynamics of halotoluene ions, production of tolyl, benzyl and tropylium ([C7H7]+)ions. Organic Mass Spectrometry 1989, 24 (11) , 1008-1016. https://doi.org/10.1002/oms.1210241107
  69. C.-J. Pineda, H. D. Roth, A. M. Mujsce, M. L. Schilling, W. D. Reents. Gas phase reactivities of isomeric ions: Methylenediphenylcyclopropane and diphenylmethylenecyclopropane. Journal of Physical Organic Chemistry 1989, 2 (2) , 117-130. https://doi.org/10.1002/poc.610020205
  70. Vlasta Bonačić-Koutecký, Jaroslav Koutecký, Josef Michl. Neutrale und geladene Diradikale, Zwitterionen, Trichter auf der S1-Hyperfläche und Protonentranslokation; ihre Bedeutung für den Sehvorgang und andere photochemische und photophysikalische Prozesse. Angewandte Chemie 1987, 99 (3) , 216-236. https://doi.org/10.1002/ange.19870990308
  71. Daniel J. Driscoll, Kenneth D. Campbell, Jack H. Lunsford. Surface-Generated Gas-Phase Radicals: Formation, Detection, and Role in Catalysis. 1987, 139-186. https://doi.org/10.1016/S0360-0564(08)60093-0
  72. Danial D.M. Wayner, Joseph J. Dannenberg, David Griller. Oxidation potentials of α-aminoalkyl radicals: bond dissociation energies for related radical cations. Chemical Physics Letters 1986, 131 (3) , 189-191. https://doi.org/10.1016/0009-2614(86)80542-5
  73. Dietmar Kuck, Wolfgang Bather. Inter- and intra-annular proton exchange in gaseous benzylbenzenium ions (protonated diphenylmethane). Organic Mass Spectrometry 1986, 21 (8) , 451-457. https://doi.org/10.1002/oms.1210210802
  74. Tae‐Kyu Ha, H. Baumann, J. F. M. Oth. A b i n i t i o CI study of the electronic spectrum of the allyl radical (CH 2 –CH–CH 2 ). The Journal of Chemical Physics 1986, 85 (3) , 1438-1442. https://doi.org/10.1063/1.451234
  75. U. Ziegler, B. Ondruschka, H.-J. Köhler. Quantenchemische Berechnungen an Radikalen vom Allyltyp: Methylsubstituierte Allylradikale. Journal für Praktische Chemie 1986, 328 (5-6) , 886-892. https://doi.org/10.1002/prac.19863280530
  76. J.I.G. Cadogan, Clare L. Hickson, Hamish McNab. Short contact time reactions of large organic free radicals. Tetrahedron 1986, 42 (8) , 2135-2165. https://doi.org/10.1016/S0040-4020(01)90594-0
  77. J. Berkowitz, L. A. Curtiss, S. T. Gibson, J. P. Greene, G. L. Hillhouse, J. A. Pople. Photoionization mass spectrometric study and a b i n i t i o calculations of ionization and bonding in P–H compounds; heats of formation, bond energies, and the 3 B 1 – 1 A 1 separation in PH + 2. The Journal of Chemical Physics 1986, 84 (1) , 375-384. https://doi.org/10.1063/1.450147
  78. W.‐B. Tzeng, Y. Ono, S. H. Linn, C. Y. Ng. A study of the unimolecular decomposition of the (C 2 H 4 ) + 3 complex. The Journal of Chemical Physics 1985, 83 (6) , 2813-2817. https://doi.org/10.1063/1.449230
  79. G. Leroy, C. Wilante, D. Peeters, M.M. Uyewa. A Theoretical investigation of the properties of carbocations and carbanions. Journal of Molecular Structure: THEOCHEM 1985, 124 (1-2) , 107-131. https://doi.org/10.1016/0166-1280(85)87024-X
  80. Kazuyuki Onodera, Gen-ichi Furusawa, Masanobu Kojima, Masahiro Tsuchiya, Shin Aihara, Ryoichi Akaba, Hirochika Sakuragi, Katsumi Tokumaru. Mechanistic considerations on photoreaction of organic compounds via excitation of contact charge transfer complexes with oxygen. Tetrahedron 1985, 41 (11) , 2215-2220. https://doi.org/10.1016/S0040-4020(01)96595-0
  81. Daniel Lefort, Jacques Fossey, Michel Gruselle, Jean-Yves Nedelec, Jeanine Sorba. Reactivity and selectivity of homolytic substitution reactions on the peroxyacid group. Tetrahedron 1985, 41 (19) , 4237-4252. https://doi.org/10.1016/S0040-4020(01)97196-0
  82. P. Bischof, G. Friedrich. Pyrolyses of azoalkanes. photoelectron spectra of some hydrocarbon radicals. Tetrahedron Letters 1985, 26 (20) , 2427-2430. https://doi.org/10.1016/S0040-4039(00)94844-5
  83. Georges Leroy. The Theoretical Approach to Some Chemical Problems. 1985, 1-95. https://doi.org/10.1016/S0065-3276(08)60301-9
  84. Henri E. Audier, Arielle Milliet. Mechanism of CO loss for protonated 1-indanone and isomeric [C9H9O]+ ions. Organic Mass Spectrometry 1984, 19 (10) , 469-472. https://doi.org/10.1002/oms.1210191002
  85. John C. Traeger. A study of the allyl cation thermochemistry by photoionization mass spectrometry. International Journal of Mass Spectrometry and Ion Processes 1984, 58 , 259-271. https://doi.org/10.1016/0168-1176(84)80034-8
  86. A. K. Mal'tsev, V. A. Korolev, O. M. Nefedov. IR Spectroscopic study of matrix-isolated free allyl radicals and analysis of vibrational spectra and structure of ?-allyl organometallic compounds. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science 1984, 33 (3) , 510-521. https://doi.org/10.1007/BF00995688
  87. Y. Ono, S. H. Linn, W.‐B. Tzeng, C. Y. Ng. A study of the unimolecular decomposition of the (C 2 H 4 ) + 2 complex. The Journal of Chemical Physics 1984, 80 (4) , 1482-1489. https://doi.org/10.1063/1.446897
  88. J. H. Catanzarite, Y. Haas, H. Reisler, C. Wittig. Dissociation of benzylamine ions following infrared multiple photon absorption, electron impact ionization, and UV multiphoton ionization a). The Journal of Chemical Physics 1983, 78 (9) , 5506-5512. https://doi.org/10.1063/1.445478
  89. Rolf Bombach, Josef Dannacher, Jean-Pierre Stadelmann. The rate—energy functions for the formation of tropylium and benzylium ions from toluene molecular cations. Chemical Physics Letters 1983, 95 (3) , 259-261. https://doi.org/10.1016/0009-2614(83)87244-3
  90. Harold F. Winters, F. A. Houle. Gaseous products from the reaction of XeF 2 with silicon. Journal of Applied Physics 1983, 54 (3) , 1218-1223. https://doi.org/10.1063/1.332202
  91. G. Leroy. Stability of chemical species. International Journal of Quantum Chemistry 1983, 23 (1) , 271-308. https://doi.org/10.1002/qua.560230125
  92. Hans Bock, Shamsher Mohmand, Takakuni Hirabayashi, Günther Maier, Hans Peter Reisenauer. Gasphasen‐Reaktionen, 39. Photoelektronen‐spektroskopischer Nachweis und Matrix‐Isolierung von Thio‐ para ‐benzochinonen. Chemische Berichte 1983, 116 (1) , 273-281. https://doi.org/10.1002/cber.19831160131
  93. A. K. Mal'tsev, V. A. Korolov, O. M. Nefedov. First direct infrared study of the free allyl radical. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science 1982, 31 (10) , 2131-2131. https://doi.org/10.1007/BF00950680
  94. H. Bock. Photoelektronen-Spektroskopie an “in situ”-dargestellten Molekülen. Berichte der Bunsengesellschaft für physikalische Chemie 1982, 86 (9) , 825-832. https://doi.org/10.1002/bbpc.19820860911
  95. Gerhard Schaden. Pyrolysis reactions with preparative importance: An overview. Journal of Analytical and Applied Pyrolysis 1982, 4 (2) , 83-101. https://doi.org/10.1016/0165-2370(82)80001-6
  96. G. Leroy, D. Peeters, C. Wilante. Le calcul de l'energie de stabilisation des especes chimiques. Journal of Molecular Structure: THEOCHEM 1982, 88 (3-4) , 217-233. https://doi.org/10.1016/0166-1280(82)80171-1
  97. J. M. Dyke, N. Jonathan, A. Morris. Recent Progress in the Study of Transient Species with Vacuum Ultraviolet Photoelectron Spectroscopy. International Reviews in Physical Chemistry 1982, 2 (1) , 3-42. https://doi.org/10.1080/01442358209353327
  98. Hans Bock, Bahman Solouki. Photoelektronen-Spektren und Moleküleigenschaften: Echtzeit-Gasanalytik in strömenden Systemen. Angewandte Chemie 1981, 93 (5) , 425-442. https://doi.org/10.1002/ange.19810930504
  99. Georges Leroy. Structure and Properties of Free-Radicals. A Theoretical Contribution. 1981, 253-334. https://doi.org/10.1007/978-94-009-8472-1_13
  100. Michael C. Böhm, Rolf Gleiter, Christopher D. Batich. The Photoelectron Spectra of Ni, Pd, Pt-Diallyl. Helvetica Chimica Acta 1980, 63 (4) , 990-1005. https://doi.org/10.1002/hlca.19800630428
Load all citations

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect