ACS Publications. Most Trusted. Most Cited. Most Read
Nature of chlorotris(triphenylphosphine)rhodium in solution and its reaction with hydrogen
My Activity

Figure 1Loading Img
    article

    Nature of chlorotris(triphenylphosphine)rhodium in solution and its reaction with hydrogen
    Click to copy article linkArticle link copied!

    ACS Legacy Archive
    Other Access Options

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 1972, 94, 9, 3240–3242
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja00764a061
    Published May 1, 1972

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 95 publications.

    1. Ke Zhang, Charles B. Musgrave III, Diane A. Dickie, William A. Goddard III, T. Brent Gunnoe. Capping Arene Ligated Rhodium-Catalyzed Olefin Hydrogenation: A Model Study of the Ligand Influence on a Catalytic Process That Incorporates Oxidative Addition and Reductive Elimination. Organometallics 2022, 41 (22) , 3373-3386. https://doi.org/10.1021/acs.organomet.2c00317
    2. Haifeng Yang, Zheng Huang, Dan Lehnherr, Yu-hong Lam, Sumei Ren, Neil A. Strotman. Efficient Aliphatic Hydrogen-Isotope Exchange with Tritium Gas through the Merger of Photoredox and Hydrogenation Catalysts. Journal of the American Chemical Society 2022, 144 (11) , 5010-5022. https://doi.org/10.1021/jacs.1c13265
    3. Sebastian Sandl, Thomas M. Maier, Nicolaas P. van Leest, Susanne Kröncke, Uttam Chakraborty, Serhiy Demeshko, Konrad Koszinowski, Bas de Bruin, Franc Meyer, Michael Bodensteiner, Carmen Herrmann, Robert Wolf, Axel Jacobi von Wangelin. Cobalt-Catalyzed Hydrogenations via Olefin Cobaltate and Hydride Intermediates. ACS Catalysis 2019, 9 (8) , 7596-7606. https://doi.org/10.1021/acscatal.9b01584
    4. Avijit Maiti, Debdeep Mandal, Isabell Omlor, Debabrata Dhara, Lukas Klemmer, Volker Huch, Michael Zimmer, David Scheschkewitz, Anukul Jana. Equilibrium Coordination of NHCs to Si(IV) Species and Donor Exchange in Donor–Acceptor Stabilized Si(II) and Ge(II) Compounds. Inorganic Chemistry 2019, 58 (7) , 4071-4075. https://doi.org/10.1021/acs.inorgchem.9b00246
    5. Jonas C. Ott, Hubert Wadepohl, Markus Enders, Lutz H. Gade. Taking Solution Proton NMR to Its Extreme: Prediction and Detection of a Hydride Resonance in an Intermediate-Spin Iron Complex. Journal of the American Chemical Society 2018, 140 (50) , 17413-17417. https://doi.org/10.1021/jacs.8b11330
    6. J. Johan Verendel, Oscar Pàmies, Montserrat Diéguez, and Pher G. Andersson . Asymmetric Hydrogenation of Olefins Using Chiral Crabtree-type Catalysts: Scope and Limitations. Chemical Reviews 2014, 114 (4) , 2130-2169. https://doi.org/10.1021/cr400037u
    7. Keiji Tamura, Makoto Furutachi, Naoya Kumagai, and Masakatsu Shibasaki . An Enantioselective Synthesis of Voriconazole. The Journal of Organic Chemistry 2013, 78 (22) , 11396-11403. https://doi.org/10.1021/jo4019528
    8. Mariano D. Cristaldi, María I. Cabrera, Ernesto C. Martínez, and Ricardo J. A. Grau . Finding the Simplest Mechanistic Kinetic Model Describing the Homogeneous Catalytic Hydrogenation of Avermectin to Ivermectin. Industrial & Engineering Chemistry Research 2011, 50 (8) , 4252-4263. https://doi.org/10.1021/ie101289h
    9. Peter B. Kettler. Platinum Group Metals in Catalysis:  Fabrication of Catalysts and Catalyst Precursors. Organic Process Research & Development 2003, 7 (3) , 342-354. https://doi.org/10.1021/op034017o
    10. Sarbajit Banerjee and, Stanislaus S. Wong. Structural Characterization, Optical Properties, and Improved Solubility of Carbon Nanotubes Functionalized with Wilkinson's Catalyst. Journal of the American Chemical Society 2002, 124 (30) , 8940-8948. https://doi.org/10.1021/ja026487o
    11. Melisa Su Yordanlı, Roberto Escobar, Jessica Meza, Deniz Akgül, Yuxin Zhao, Alper Uzun, F. Ahu Akin, Viktorya Aviyente, Abdurrahman C. Atesin, Tülay A. Ateşin. DFT Study of the Mechanism of Selective Hydrogenation of Acetylene by Rhodium Single‐Atom Catalyst Supported on HY Zeolite. ChemPhysChem 2025, 55 https://doi.org/10.1002/cphc.202400867
    12. Mai T. Huynh, Zoltan Kovacs. Homogeneous Catalysts for Hydrogenative PHIP Used in Biomedical Applications. Analysis & Sensing 2025, 5 (1) https://doi.org/10.1002/anse.202400044
    13. Chunlei Wang, Panukorn Sombut, Lena Puntscher, Zdenek Jakub, Matthias Meier, Jiri Pavelec, Roland Bliem, Michael Schmid, Ulrike Diebold, Cesare Franchini, Gareth S. Parkinson. CO‐induzierte Dimer‐Dissoziation verursacht Gem‐Dicarbonyl‐Bildung auf einem Einzelatom‐Katalysator‐Modell. Angewandte Chemie 2024, 136 (16) https://doi.org/10.1002/ange.202317347
    14. Chunlei Wang, Panukorn Sombut, Lena Puntscher, Zdenek Jakub, Matthias Meier, Jiri Pavelec, Roland Bliem, Michael Schmid, Ulrike Diebold, Cesare Franchini, Gareth S. Parkinson. CO‐Induced Dimer Decay Responsible for Gem‐Dicarbonyl Formation on a Model Single‐Atom Catalyst. Angewandte Chemie International Edition 2024, 63 (16) https://doi.org/10.1002/anie.202317347
    15. Hermann Sicius. Cobalt Group: Elements of the Ninth Subgroup. 2024, 717-755. https://doi.org/10.1007/978-3-662-68921-9_14
    16. Hermann Sicius. Cobaltgruppe: Elemente der neunten Nebengruppe. 2023, 729-768. https://doi.org/10.1007/978-3-662-65664-8_14
    17. Hermann Sicius. Cobaltgruppe: Elemente der neunten Nebengruppe. 2022, 1-40. https://doi.org/10.1007/978-3-662-55944-4_14-2
    18. Sacha Legrand, Milja Hannu‐Kuure, Ari Kärkkäinen. Design, preparation, and characterization of new high‐refractive index hybrid organic–inorganic polysiloxanes: Innovative coatings for optoelectronic applications. Journal of Applied Polymer Science 2021, 138 (8) https://doi.org/10.1002/app.49877
    19. Jian-Qiu Zhang, Jingjing Ye, Tianzeng Huang, Hiroyuki Shinohara, Hiroyoshi Fujino, Li-Biao Han. Conversion of triphenylphosphine oxide to organophosphorus via selective cleavage of C-P, O-P, and C-H bonds with sodium. Communications Chemistry 2020, 3 (1) https://doi.org/10.1038/s42004-019-0249-6
    20. Marius A. Stoffels, Felix J. R. Klauck, Thomas Hamadi, Frank Glorius, Jens Leker. Technology Trends of Catalysts in Hydrogenation Reactions: A Patent Landscape Analysis. Advanced Synthesis & Catalysis 2020, 362 (6) , 1258-1274. https://doi.org/10.1002/adsc.201901292
    21. Charles W.E. Tomlinson, Andrew Whiting. The development of methodologies for high-throughput retinoic acid binding assays in drug discovery and beyond. 2020, 539-560. https://doi.org/10.1016/bs.mie.2020.02.008
    22. Liwen Han, Lizhen Wang, Zhongwu Guo. An extensive review of studies on mycobacterium cell wall polysaccharide-related oligosaccharides – part II: Synthetic studies on complex arabinofuranosyl oligosaccharides carrying other functional motifs and related derivatives and analogs. Journal of Carbohydrate Chemistry 2019, 38 (5-6) , 335-382. https://doi.org/10.1080/07328303.2019.1630840
    23. László T. Mika, István T. Horváth. Fluorous Catalysis. 2018, 219-268. https://doi.org/10.1002/9781119288152.ch10
    24. Debabrata Dhara, Pankaj Kalita, Subhadip Mondal, Ramakirushnan Suriya Narayanan, Kaustubh R. Mote, Volker Huch, Michael Zimmer, Cem B. Yildiz, David Scheschkewitz, Vadapalli Chandrasekhar, Anukul Jana. Reactivity enhancement of a diphosphene by reversible N-heterocyclic carbene coordination. Chemical Science 2018, 9 (18) , 4235-4243. https://doi.org/10.1039/C8SC00348C
    25. Meng Guan Tay, Thareni Lokanathan, Kok Tong Ong, Ruwaida Asyikin Abu Talip, Ying Ying Chia. Structural Prediction of Bis { (di- p -anisole)-1,4-azabutadiene } -bis[triphenylphosphine]ruthenium(II) Using 31 P NMR Spectroscopy. International Journal of Inorganic Chemistry 2016, 2016 , 1-5. https://doi.org/10.1155/2016/7095624
    26. Jesus E. Perea‐Buceta, Israel Fernández, Sami Heikkinen, Kirill Axenov, Alistair W. T. King, Teemu Niemi, Martin Nieger, Markku Leskelä, Timo Repo. Diverting Hydrogenations with Wilkinson's Catalyst towards Highly Reactive Rhodium(I) Species. Angewandte Chemie 2015, 127 (48) , 14529-14533. https://doi.org/10.1002/ange.201506216
    27. Jesus E. Perea‐Buceta, Israel Fernández, Sami Heikkinen, Kirill Axenov, Alistair W. T. King, Teemu Niemi, Martin Nieger, Markku Leskelä, Timo Repo. Diverting Hydrogenations with Wilkinson's Catalyst towards Highly Reactive Rhodium(I) Species. Angewandte Chemie International Edition 2015, 54 (48) , 14321-14325. https://doi.org/10.1002/anie.201506216
    28. Jones Limberger, Bárbara C. Leal, Adriano L. Monteiro, Jairton Dupont. Charge-tagged ligands: useful tools for immobilising complexes and detecting reaction species during catalysis. Chemical Science 2015, 6 (1) , 77-94. https://doi.org/10.1039/C4SC02151G
    29. . Physical Methods. 2014, 259-289. https://doi.org/10.1002/9781118788301.ch10
    30. . Homogeneous Catalysis. 2014, 224-258. https://doi.org/10.1002/9781118788301.ch9
    31. Vernon D. Parker, Zhao Li, Weifang Hao. Is the Single-Transition-State Model Appropriate for the Fundamental Reactions of Organic Chemistry? Experimental Methods and Data Treatment, Pertinent Reactions, and Complementary Computational Studies. 2014, 1-79. https://doi.org/10.1016/B978-0-12-800256-8.00001-1
    32. Jingwei Luo, Allen G. Oliver, J. Scott McIndoe. A detailed kinetic analysis of rhodium-catalyzed alkyne hydrogenation. Dalton Transactions 2013, 42 (31) , 11312. https://doi.org/10.1039/c3dt51212f
    33. László T. Mika, István T. Horváth. Fluorous Catalysis. 2012, 137-184. https://doi.org/10.1002/9780470711828.ch6
    34. Joyce C. Leung, Michael J. Krische. Catalytic intermolecular hydroacylation of C–C π-bonds in the absence of chelation assistance. Chemical Science 2012, 3 (7) , 2202. https://doi.org/10.1039/c2sc20350b
    35. Torsten Gutmann, Tomasz Ratajczyk, Sonja Dillenberger, Yeping Xu, Anna Grünberg, Hergen Breitzke, Ute Bommerich, Thomas Trantzschel, Johannes Bernarding, Gerd Buntkowsky. New investigations of technical rhodium and iridium catalysts in homogeneous phase employing para-hydrogen induced polarization. Solid State Nuclear Magnetic Resonance 2011, 40 (2) , 88-90. https://doi.org/10.1016/j.ssnmr.2011.08.002
    36. A. J. Birch, D. H. Williamson. Homogeneous Hydrogenation Catalysts in Organic Synthesis. 2011, 1-186. https://doi.org/10.1002/0471264180.or024.01
    37. Danielle M. Chisholm, Allen G. Oliver, J. Scott McIndoe. Mono-alkylated bisphosphines as dopants for ESI-MS analysis of catalytic reactions. Dalton Trans. 2010, 39 (2) , 364-373. https://doi.org/10.1039/B913225B
    38. Adrian B. Chaplin, Paul J. Dyson. On the Influence of “Arm‐on, Arm‐off” Processes on Alkene Hydrogenation Catalysed by a Rhodium Triphos Complex. European Journal of Inorganic Chemistry 2007, 2007 (31) , 4973-4979. https://doi.org/10.1002/ejic.200700496
    39. Magnus Gustafsson, Torbjörn Frejd. Regioselectivity in the rhodium catalysed 1,4-hydrosilylation of isoprene. Aspects on reaction conditions and ligands. Journal of Organometallic Chemistry 2004, 689 (2) , 438-443. https://doi.org/10.1016/j.jorganchem.2003.09.054
    40. Robert H. Crabtree, Dong-Heon Lee. Activation of Substrates with Non-Polar Single Bonds. 2003, 65-113. https://doi.org/10.1016/S1873-0418(03)80004-0
    41. Robert H. Crabtree. Homogeneous Catalysts and Catalysis. 2002https://doi.org/10.1002/0471227617.eoc099
    42. Christof Merckle, Simone Haubrich, Janet Blümel. Immobilized rhodium hydrogenation catalysts. Journal of Organometallic Chemistry 2001, 627 (1) , 44-54. https://doi.org/10.1016/S0022-328X(01)00696-9
    43. Lutz Dahlenburg, Konrad Herbst, A Zahl. Funktionelle Phosphane. Journal of Organometallic Chemistry 2000, 616 (1-2) , 19-28. https://doi.org/10.1016/S0022-328X(00)00519-2
    44. Drew Rutherford, Jerrick J.J. Juliette, Christian Rocaboy, István T. Horváth, J.A. Gladysz. Transition metal catalysis in fluorous media: application of a new immobilization principle to rhodium-catalyzed hydrogenation of alkenes. Catalysis Today 1998, 42 (4) , 381-388. https://doi.org/10.1016/S0920-5861(98)00120-5
    45. Jim D. Atwood. Oxidative Addition and Reductive Elimination Reactions of Group VIII: Cobalt, Rhodium, and Iridium. 1998, 249-252. https://doi.org/10.1002/9780470145296.ch210
    46. Hans‐Günther Beckers, Ulrich Flörke, Hans‐Jürgen Haupt. The First Clusters with a Y‐Shaped Arrangement of Ligands at Three‐Coordinate Rh I Atoms in the Solid State: [M 1 M 2 {μ‐P(C 6 H 11 ) 2 }(CO) 8 Rh(PPh 3 )] (M 1 , M 2 = Mn, Re). Angewandte Chemie International Edition in English 1995, 34 (12) , 1325-1327. https://doi.org/10.1002/anie.199513251
    47. Hans‐Günther Beckers, Ulrich Flörke, Hans‐Jürgen Haupt. Erste Cluster mit im Festkörper Y‐förmig dreifach koordinierten Rh I ‐Atomen: [M 1 M 2 {μ‐P(C 6 H 11 ) 2 }(CO) 8 Rh(PPh 3 )] (M 1 , M 2 = Mn, Re). Angewandte Chemie 1995, 107 (12) , 1464-1466. https://doi.org/10.1002/ange.19951071219
    48. Robert B. Jordan. Mechanismen metallorganischer Reaktionen. 1994, 124-174. https://doi.org/10.1007/978-3-322-92783-5_5
    49. Andrzej F. Borowski, David J. Cole-Hamilton. Structures and properties of anthranilato- and N-phenylanthranilato-rhodium(I) complexes containing triphenylphosphine ligands. Polyhedron 1993, 12 (14) , 1757-1765. https://doi.org/10.1016/S0277-5387(00)84609-4
    50. D.T. Gokak, R.N. Ram. Synthesis and catalytic activity of polymer-supported Rh(I) complex. Journal of Molecular Catalysis 1989, 49 (3) , 285-298. https://doi.org/10.1016/0304-5102(89)85018-7
    51. Gordon K. Anderson, Ravi Kumar. A 31P1H NMR study of the reactions of [Rh2(μ-Cl)2(cod)2] with unsymmetrical, bidentate ligands and hydrogen. Inorganica Chimica Acta 1988, 146 (1) , 89-92. https://doi.org/10.1016/S0020-1693(00)80031-6
    52. Michael G. Pravica, Daniel P. Weitekamp. Net NMR alignment by adiabatic transport of parahydrogen addition products to high magnetic field. Chemical Physics Letters 1988, 145 (4) , 255-258. https://doi.org/10.1016/0009-2614(88)80002-2
    53. Chantal Larpent, Henri Patin. Formation and behaviour of stable cis-fac and cis-mer water-soluble rhodium(III) dihydrides. Journal of Organometallic Chemistry 1987, 335 (2) , C13-C16. https://doi.org/10.1016/0022-328X(87)87118-8
    54. Chantel Larpent, Henri Patin. Hydrosoluble transition‐metal coordination compounds of triphenylphosphine m ‐trisulfonate. Applied Organometallic Chemistry 1987, 1 (6) , 529-534. https://doi.org/10.1002/aoc.590010606
    55. M.L. Deem. Coordination chemistry with alkanes: homogeneous solutions for reactive sp3 CH bonds. Coordination Chemistry Reviews 1986, 74 , 101-125. https://doi.org/10.1016/0010-8545(86)85003-2
    56. Iwao Ojima, Kenji Hirai. Asymmetric Hydrosilylation and Hydrocarbonylation. 1985, 103-146. https://doi.org/10.1016/B978-0-08-092493-9.50009-8
    57. M. L. Deem. Polyethers and Organorhodiums: A Study of Oxidative Addition and Transfer Hydrogenation. 1984, 287-305. https://doi.org/10.1007/978-1-4613-2737-0_16
    58. Jim D. Atwood, Thomas S. Janik, Michael F. Pyszczek, Patrick S. Sullivan. CARBONYLATION AND DECARBONYLATION CYCLES OF ALKYL COMPLEXES IN CATALYTIC REACTIONS*. Annals of the New York Academy of Sciences 1983, 415 (1) , 259-267. https://doi.org/10.1111/j.1749-6632.1983.tb47365.x
    59. Chad A. Tolman, Jack W. Faller. Mechanistic Studies of Catalytic Reactions Using Spectroscopic and Kinetic Techniques. 1983, 13-109. https://doi.org/10.1007/978-1-4613-3623-5_2
    60. Albert Modelli, Francesco Scagnolari, Giuseppe Innorta, Sandro Torroni, Antonio Foffani. Polymer-bound phosphonic ligands in substitution reactions: the anchoring mechanism of RhCl(PPh3)3. Inorganica Chimica Acta 1983, 76 , L147-L148. https://doi.org/10.1016/S0020-1693(00)81484-X
    61. Manuel Carvalho, Larry F. Wieserman, David M. Hercules. Spectroscopic Characterization of Wilkinson's Catalyst Using X-ray Photoelectron Spectroscopy (ESCA). Applied Spectroscopy 1982, 36 (3) , 290-296. https://doi.org/10.1366/0003702824638476
    62. Jesus M. Gil Figueroa, John M. Winterbottom. Hydrogenation of ethyne catalysed by supported solutions of tris‐(triphenylphosphine)chlororhodium (I). Journal of Chemical Technology and Biotechnology 1982, 32 (7-12) , 857-867. https://doi.org/10.1002/jctb.5030320722
    63. L. Moggi, A. Juris, D. Sandrini, M. F. Manfrin. Photocatalysis by transition-metal coordination compounds in homogeneous phase. The role of ligand photodissociation. Reviews of Chemical Intermediates 1981, 4 (1-4) , 171-223. https://doi.org/10.1007/BF03052415
    64. F. H. Jardine. Chlorotris(Triphenylphosphine)Rhodium(I): Its Chemical and Catalytic Reactions. 1981, 63-202. https://doi.org/10.1002/9780470166291.ch2
    65. Howard C. Clark, Claude Billard, Chun S. Wong. Mixed ligand platinum complexes as hydrogenation catalysts. Journal of Organometallic Chemistry 1980, 190 (4) , C105-C107. https://doi.org/10.1016/S0022-328X(00)90642-9
    66. B. Cornils. Hydroformylation Oxo Synthesis, Roelen Reaction. 1980, 1-225. https://doi.org/10.1007/978-3-642-67452-5_1
    67. A. Dedieu, A. Strich, A. Rossi. Theoretical Study of a Homogeneous Catalytic Reaction: The Chlorotris-(Triphenylphosphine)Rhodium(I)-Catalyzed Hydrogenation of Olefins. 1980, 193-211. https://doi.org/10.1007/978-94-010-9716-1_9
    68. Michael J. Wovkulich, Jim D. Atwood. Ligand dissociation from mono-substituted derivatives of hexacarbonylchromium (Cr(CO)5L, L  P(C6H5)3, P(C4H9)3, P(OCH3)3, P(OC6H5)3, and As(C6H5)3). Journal of Organometallic Chemistry 1980, 184 (1) , 77-89. https://doi.org/10.1016/S0022-328X(00)94365-1
    69. Yoshimi Ohtani, Akihiko Yamagishi, Masatoshi Fujimoto. The Rates of the Hydrogenation of the Coordinated Styrene and Acrylonitrile in a Rhodium-Olefin Complex [RhClH2(ol)(PPh3)2]. Bulletin of the Chemical Society of Japan 1979, 52 (1) , 69-72. https://doi.org/10.1246/bcsj.52.69
    70. L. M. Koroleva, A. I. Lutsenko, V. K. Latov, P. V. Petrovskii, �. I. Fedin, V. M. Belikov. 31P NMR spectroscopic study of the structures of mixed-hydride complexes of rhodium with triphenylphosphine and d-?-methylbenzylamine, homogeneous asymmetric hydrogenation catalysts. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science 1978, 27 (9) , 1783-1786. https://doi.org/10.1007/BF00929224
    71. E. L. Muetterties. Oberflächenchemie aus der Sicht eines Komplexchemikers. Angewandte Chemie 1978, 90 (8) , 577-591. https://doi.org/10.1002/ange.19780900804
    72. E. L. Muetterties. A Coordination Chemist's View of Surface Science. Angewandte Chemie International Edition in English 1978, 17 (8) , 545-558. https://doi.org/10.1002/anie.197805453
    73. L. M. Koroleva, E. V. Borisov, V. K. Latov, V. M. Belikov. Mixed hydride complexes of rhodium with triphenylphosphine and d-?-methylbenzylamine as catalysts for homogeneous asymmetric hydrogenation reactions. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science 1978, 27 (8) , 1542-1547. https://doi.org/10.1007/BF00925037
    74. H.L.M. van Gaal, F.L.A. van den Bekerom. Three-coordinate RhX[P(C6H11)3]2, their reactions with N2 and O2, and the trans-influence in RhX[P(C6H11)3]2L (X = anionic, L = neutral ligand). Journal of Organometallic Chemistry 1977, 134 (2) , 237-248. https://doi.org/10.1016/S0022-328X(00)81423-0
    75. Yoshimi Ohtani, Masatoshi Fujimoto, Akihiko Yamagishi. Kinetic Study of Oxidative Addition and Replacement Reactions of Chlorotris(triphenylphosphine)rhodium(I) in Benzene. Bulletin of the Chemical Society of Japan 1977, 50 (6) , 1453-1459. https://doi.org/10.1246/bcsj.50.1453
    76. E. L. Muetterties. Molecular Metal Clusters. Science 1977, 196 (4292) , 839-848. https://doi.org/10.1126/science.196.4292.839
    77. V. Z. Sharf, L. Kh. Freidlin, V. N. Krutii. Mechanism of transfer of hydrogen from an alcohol to a ketone in the presence of complexes RhCl(PPh)3 and RuCl2(PPh3)3. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science 1977, 26 (4) , 666-670. https://doi.org/10.1007/BF01108177
    78. Iwao Ojima, Keiji Yamamoto, Makoto Kumada. Asymmetric Hydrosilylation by Means of Homogeneous Catalysts with Chiral Ligands. 1977, 185-228. https://doi.org/10.1007/978-94-010-1199-0_3
    79. J. Halpern, T. Okamoto, A. Zakhariev. Mechanism of the chlorotris(triphenylphosphine) rhodium(I)-catalyzed hydrogenation of alkenes. The reaction of chlorodihydridotris(triphenyl-phosphine)rhodium(III) with cyclohexene. Journal of Molecular Catalysis 1977, 2 (1) , 65-68. https://doi.org/10.1016/0304-5102(77)80006-0
    80. Yoshiharu IZUMI, Akira TAI. Mechanisms of Stereo-Differentiating Reactions. 1977, 178-211. https://doi.org/10.1016/B978-0-12-377850-5.50010-6
    81. G.L. Geoffroy, J.R. Lehman. Hydride Complexes of Ruthenium, Rhodium, and Iridium. 1977, 189-290. https://doi.org/10.1016/S0065-2792(08)60040-0
    82. Iwao Ojima, Tetsuo Kogure, Miyoko Kumagai, Shuji Horiuchi, Toshikazu Sato. Reduction of carbonyl compounds via hydrosilylation. Journal of Organometallic Chemistry 1976, 122 (1) , 83-97. https://doi.org/10.1016/S0022-328X(00)92750-5
    83. Yoshimi Ohtani, Masatoshi Fujimoto, Akihiko Yamagishi. Kinetic Study on Dimerization of Chlorotris(triphenylphosphine)rhodium(I) in Benzene. Bulletin of the Chemical Society of Japan 1976, 49 (7) , 1871-1873. https://doi.org/10.1246/bcsj.49.1871
    84. G. Reichenbach, S. Santini, G. Dolcetti. Dissociation of nitrosyltris(triphenylphosphine)rhodium in solution. Journal of Inorganic and Nuclear Chemistry 1976, 38 (8) , 1572-1573. https://doi.org/10.1016/0022-1902(76)90035-X
    85. W. Winter. Zur unterscheidung der valenzisomeren bei cyclobutadienylrhodium- bzw. rhodacyclopentadien -t-phosphin- komplexen mit hilfe der 31P-NMR-spektroskopie. Journal of Organometallic Chemistry 1975, 92 (1) , 97-106. https://doi.org/10.1016/S0022-328X(00)91106-9
    86. J. L. Hendrikse, J. W. E. Coenen, A. W. P. G. Peters Rit. Some spectroscopic and freezing point depression measurements on the homogeneous hydrogenation catalyst CoH3(PPh3)3. Reaction Kinetics and Catalysis Letters 1975, 2 (1-2) , 1-9. https://doi.org/10.1007/BF02060946
    87. Jack Halpern. Mechanisms of Homogeneous Catalytic Hydrogenation and Related Processes. 1975, 109-117. https://doi.org/10.1007/978-1-4684-2142-2_9
    88. J.P. JESSON, E.L. MUETTERTIES. Dynamic Molecular Processes in Inorganic and Organometallic Compounds. 1975, 253-316. https://doi.org/10.1016/B978-0-12-378850-4.50054-7
    89. Iwao Ojima, Yoichiro Nagai. ASYMMETRIC REDUCTION OF KETONES VIA HYDROSILYLATION CATALYZED BY A RHODIUM(I) COMPLEX WITH CHIRAL PHOSPHINE LIGANDS. II. ON THE MECHANISM OF THE INDUCTION OF ASYMMETRY. Chemistry Letters 1974, 3 (3) , 223-228. https://doi.org/10.1246/cl.1974.223
    90. . References. 1974, 295-311. https://doi.org/10.1016/B978-0-12-336150-9.50016-1
    91. M.M. TAQUI KHAN, ARTHUR E. MARTELL. Activation of Molecular Hydrogen. 1974, 1-77. https://doi.org/10.1016/B978-0-12-406101-9.50005-6
    92. G. Dolcetti, N. W. Hoffman. Homogeneous hydrogenation of organic compounds catalyzed by transition metal complexes and salts. Inorganica Chimica Acta 1974, 9 , 269-303. https://doi.org/10.1016/S0020-1693(00)89918-1
    93. C. A. Tolman, J. P. Jesson. Homogeneous Catalysis. Science 1973, 181 (4099) , 501-505. https://doi.org/10.1126/science.181.4099.501
    94. Iwao Ojima, Tetsuo Kogure, Yoichiro Nagai. ASYMMETRIC REDUCTION OF KETONES VIA HYDROSILYLATION CATALYZED BY A RHODIUM(I) COMPLEX WITH CHIRAL PHOSPHINE LIGANDS. Chemistry Letters 1973, 2 (6) , 541-544. https://doi.org/10.1246/cl.1973.541
    95. P. MEAKIN, J. P. JESSON, C. A. TOLMAN. ChemInform Abstract: NATUR VON CHLORO‐TRIS‐(TRIPHENYLPHOSPHIN)‐RHODIUM IN LOESUNG UND SEINE RK. MIT WASSERSTOFF. Chemischer Informationsdienst 1972, 3 (29) https://doi.org/10.1002/chin.197229421

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 1972, 94, 9, 3240–3242
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja00764a061
    Published May 1, 1972

    Article Views

    1956

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.