Determination of anisotropy of molecular motion with carbon-13 spin-lattice relaxation times
Note: In lieu of an abstract, this is the article's first page.
Cited By
This article is cited by 39 publications.
- Piotr Bernatowicz,, Jozef Kowalewski, and, Dick Sandström. NMR Relaxation Study of the Protonated Form of 1,8-Bis(dimethylamino)naphthalene in Isotropic Solution: Anisotropic Motion outside of Extreme Narrowing and Ultrafast Proton Transfer. The Journal of Physical Chemistry A 2005, 109
(1)
, 57-63. https://doi.org/10.1021/jp045454n
- Dehua Wang, Xiaolong Xu, Nianyong Deng, Lianqang Pen, Wenbin Zhang, Ruth E. Stark. Theory and application of fully anisotropic overall molecular tumbling, with restricted group internal rotation:
13
C NMR relaxation studies of sodium taurocholate and ginsenoside‐Re. Magnetic Resonance in Chemistry 1995, 33
(5)
, 342-348. https://doi.org/10.1002/mrc.1260330505
- R.M.G. Roberts, J.F. Warmsley. Carbon-13 spin-lattice relaxation in iron sandwich complexes and related species. Journal of Organometallic Chemistry 1991, 405
(3)
, 347-355. https://doi.org/10.1016/0022-328X(91)86293-Y
- Y. Brunel, C. Coulombeau, S. Lavaitte, J. Reisse. Internal rotation of CH
3
groups and entropy difference between diastereoisomers: A
13
C NMR study via relaxation time measurements. Journal of Physical Organic Chemistry 1991, 4
(2)
, 113-120. https://doi.org/10.1002/poc.610040208
- Jozef Kowalewski. Nuclear Spin Relaxation in Diamagnetic Fluids Part 2. Organic Systems and Solutions of Macromolecules and Aggregates. 1991, 289-374. https://doi.org/10.1016/S0066-4103(08)60279-3
- Hideaki Fujiwara, Masayuki Watanabe, Yong-Zhong Da, Douwan Zheng, Yoshio Sasaki. Interpretation of the Carbon-13 Nuclear Magnetic Resonance Relaxation Time Data by the Computer-Assisted Method of Analysis: Application to Strychnine in Solution. Analytical Sciences 1990, 6
(1)
, 21-25. https://doi.org/10.2116/analsci.6.21
- Andreas Dölle, Thorsten Bluhm. Orientation of the rotational diffusion principal axis system determined by nuclear relaxation data. Progress in Nuclear Magnetic Resonance Spectroscopy 1989, 21
(1-2)
, 175-201. https://doi.org/10.1016/0079-6565(89)80003-2
- Christian Pattaroni, Jürgen Lauterwein. 13
C spin—lattice relaxation in all‐
trans
retinal: Effect of the chemical shift anisotropy. Magnetic Resonance in Chemistry 1987, 25
(9)
, 745-751. https://doi.org/10.1002/mrc.1260250902
- Photis Dais. Rotational dynamics of molecules containing phenyl groups. A
13
C spin‐lattice relaxation study. Magnetic Resonance in Chemistry 1987, 25
(2)
, 141-146. https://doi.org/10.1002/mrc.1260250211
- Raimo Uusvuori, Mauri Lounasmaa. Carbon‐13 spin–lattice relaxation of tropane alkaloids. II—models for isotropic, axially symmetric and fully anisotropic overall rotational diffusion with diffusional or three‐state jump internal motion, and their application to the
N
‐methyl groups of tropine and pseudotropine. Magnetic Resonance in Chemistry 1986, 24
(12)
, 1048-1068. https://doi.org/10.1002/mrc.1260241208
- Andreas Dölle, Thorsten Bluhm. Motional dynamics in liquid 1,2,3,4-tetrahydro-5,6-dimethyl-1,4-methanonaphthalene. Molecular Physics 1986, 59
(4)
, 721-736. https://doi.org/10.1080/00268978600102361
- Chin Yu, Charles L. Dumoulin, George C. Levy. Analysis of the proton, carbon, and nitrogen NMR spectra of
cis,cis
‐ and
cis,trans
‐1,3,5‐triaminocyclohexane. Magnetic Resonance in Chemistry 1985, 23
(11)
, 952-958. https://doi.org/10.1002/mrc.1260231114
- Wacław Kołodziejski, Pierre Laszlo. Motional Anisotropy of 1‐Phenyladamantane. Helvetica Chimica Acta 1985, 68
(5)
, 1193-1195. https://doi.org/10.1002/hlca.19850680515
- Karl-Ludwig Oehme, Frank Seifert, Georg Rudakoff, Wolfgang Carius, Wolfgang Hölzer, Otto Schröter. Molecular reorientation of liquid benzene. Anisotropic Raman scattering of the CH and CD stretching modes in the deuterated molecules. Chemical Physics 1985, 92
(1)
, 169-175. https://doi.org/10.1016/0301-0104(85)80016-1
- Th. Bluhm. Anisotropic rotational motion and internal rotation in liquid methylbenzenes. Molecular Physics 1984, 52
(6)
, 1335-1354. https://doi.org/10.1080/00268978400101961
- Raimo Uusvuori, Mauri Lounasmaa. Carbon‐13 spin–lattice relaxation of tropane alkaloids. Anisotropic rotational motion of tropine and pseudotropine. Organic Magnetic Resonance 1984, 22
(5)
, 286-295. https://doi.org/10.1002/mrc.1270220504
- Stanley N. Deming, Stephen L. Morgan. Teaching the fundamentals of experimental design. Analytica Chimica Acta 1983, 150 , 183-198. https://doi.org/10.1016/S0003-2670(00)85470-7
- René T. Boeré, R. Garth Kidd. Rotational Correlation Times in Nuclear Magnetic Relaxation. 1983, 319-385. https://doi.org/10.1016/S0066-4103(08)60310-5
- Claude Delseth, Jean‐Pierre Kintzingcr. 17
O‐RMN. d'éthers, de cétones et d'esters cycliques. Détermination de constante de couplage quadrupolaire. Helvetica Chimica Acta 1982, 65
(7)
, 2273-2279. https://doi.org/10.1002/hlca.19820650731
- L. Nicolas, M. Beugelmans-Verrier, J. Guilhem. Interaction entre groupes aromatique et polaire voisins—III. Tetrahedron 1981, 37
(22)
, 3847-3860. https://doi.org/10.1016/S0040-4020(01)98883-0
- Richard S. Hutton, Heinz D. Roth, Marcia L. Manion Schilling. Magnetic field dependence of nuclear spin polarization as a criterion for the triplet-Overhauser mechanism. The Journal of Chemical Physics 1980, 72
(8)
, 4368-4375. https://doi.org/10.1063/1.439727
- Anders Ericsson, Jozef Kowalewski, Tommy Liljefors, Peter Stilbs. Internal rotation of methyl groups in terpenes. Variable-temperature carbon-13 spin-lattice relaxation time measurements and force-field calculations. Journal of Magnetic Resonance (1969) 1980, 38
(1)
, 9-22. https://doi.org/10.1016/0022-2364(80)90173-0
- Reinhard Gerhards, Wolfgang Dietrich, Gerhard Bergmann, Helmut Duddeck. Dipolar relaxation times and signal assignment in 13C NMR spectra of 2-substituted adamantanes. Journal of Magnetic Resonance (1969) 1979, 36
(2)
, 189-197. https://doi.org/10.1016/0022-2364(79)90093-3
- Robin K. Harris, Roger H. Newman. Anisotropic molecular rotation in solution: the interpretation of carbon-13
T
1
data for triptycene and 9H-fluorene. Molecular Physics 1979, 38
(5)
, 1315-1327. https://doi.org/10.1080/00268977900102451
- H. E. Bleich, J. A. Glasel, M. Latina, J. Visintainer. Study of the rotational diffusion properties of peptides in solution. Biopolymers 1979, 18
(11)
, 2849-2860. https://doi.org/10.1002/bip.1979.360181113
- F. W. Wehrli, T. Nishida. The Use of Carbon-13 Nuclear Magnetic Resonance Spectroscopy in Natural Products Chemistry. 1979, 1-229. https://doi.org/10.1007/978-3-7091-3265-4_1
- Peter Stilbs, Michael E Moseley. The applicability of Woessner's equations for the analysis of 13C spin-lattice relaxation data. Journal of Magnetic Resonance (1969) 1979, 33
(1)
, 209-210. https://doi.org/10.1016/0022-2364(79)90205-1
- Hans‐Herbert Schuh, Hanns Fischer. The kinetics of the bimolecular self‐reaction of
t
‐butyl radicals in solution. II. Disproportionation/combination ratios. Helvetica Chimica Acta 1978, 61
(7)
, 2463-2481. https://doi.org/10.1002/hlca.19780610718
- Michael E. Moseley, Peter Stilbs. 13C nuclear spin-lattice relaxation study of anisotropic solvent rotational diffusion in the polystyrene/trans-decalin system. Polymer 1978, 19
(10)
, 1133-1136. https://doi.org/10.1016/0032-3861(78)90058-7
- Stefan Berger. Nuclear Magnetic Relaxation: Recent Problems and Progress. 1978, 239-265. https://doi.org/10.1016/S0065-3160(08)60089-1
- C.‐H. Niu, L. G. Pease, E. R. Blout. Cyclic peptides. XVIII.
13
C spin‐lattice relaxation times of (
X
‐pro‐
Y
)
2
cyclic hexapeptides. Biopolymers 1978, 17
(1)
, 115-123. https://doi.org/10.1002/bip.1978.360170109
- Roxanne Deslauriers, Ian C. P. Smith. Intramolecular and overall motion of proline: The influence of viscosity on carbon‐13 spin‐lattice relaxation times. Biopolymers 1977, 16
(6)
, 1245-1257. https://doi.org/10.1002/bip.1977.360160607
- Alan J. Benesi, John T. Geric. Molecular motion in free and cross-linked dextrans. Carbohydrate Research 1977, 53
(2)
, 278-283. https://doi.org/10.1016/S0008-6215(00)88100-8
- Brian E. Mann. Dynamic 13C NMR spectroscopy. Progress in Nuclear Magnetic Resonance Spectroscopy 1977, 11
(2)
, 95-114. https://doi.org/10.1016/0079-6565(77)80004-6
- R.K Harris, R.H Newman. Choice of pulse spacings for accurate T1 and NOE measurements in NMR spectroscopy. Journal of Magnetic Resonance (1969) 1976, 24
(3)
, 449-456. https://doi.org/10.1016/0022-2364(76)90122-0
- T. E. Bull. Extended diffusion of a symmetric top molecule with internal rotation. The Journal of Chemical Physics 1976, 65
(11)
, 4802-4815. https://doi.org/10.1063/1.432951
- Roxanne Deslauriers, Z. Grzonka, Roderich Walter. Influence of
D
and
L
amino‐acid residues on the conformation of peptides in solution: A carbon‐13 nuclear magnetic resonance study of
cyclo
(prolyl‐leucyl). Biopolymers 1976, 15
(9)
, 1677-1683. https://doi.org/10.1002/bip.1976.360150905
- I.D Campbell, Ray Freeman, D.L Turner. NMR study of transient complexes in solution by means of a motional anisotropy probe. Journal of Magnetic Resonance (1969) 1975, 20
(1)
, 172-176. https://doi.org/10.1016/0022-2364(75)90164-X
- STEFAN BERGER, FRITZ R. KREISSL, DAVID M. GRANT, JOHN D. ROBERTS. ChemInform Abstract: DETERMINATION OF ANISOTROPY OF MOLECULAR MOTION WITH (13)C SPIN‐LATTICE RELAXATION TIMES. Chemischer Informationsdienst 1975, 6
(24)
https://doi.org/10.1002/chin.197524102