ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

The Structure and Synthesis of Firefly Luciferin

Cite this: J. Am. Chem. Soc. 1963, 85, 3, 337–343
Publication Date (Print):February 1, 1963
https://doi.org/10.1021/ja00886a019
    ACS Legacy Archive

    Article Views

    4157

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 175 publications.

    1. Biao Zhang, Jun Cao, Si-Jie Liao, Peng-Cheng Zhou, Yu-Ting Shen, Wei Yu, Wei Li, Ai-Guo Shen. Simultaneous SERS Sensing of Cysteine and Homocysteine in Blood Based on the CBT-Cys Click Reaction: Toward Precisive Diagnosis of Schizophrenia. Analytical Chemistry 2024, 96 (13) , 5331-5339. https://doi.org/10.1021/acs.analchem.4c00395
    2. Daan Sondag, Jurriaan J. A. Heming, Dennis W. P. M. Löwik, Elena Krivosheeva, Denise Lejeune, Mark van Geffen, Cornelis van’t Veer, Waander L. van Heerde, Marjolijn C. J. Beens, Brian H. M. Kuijpers, Thomas J. Boltje, Floris P. J. T. Rutjes. Solid-Phase Synthesis of Caged Luminescent Peptides via Side Chain Anchoring. Bioconjugate Chemistry 2023, 34 (12) , 2234-2242. https://doi.org/10.1021/acs.bioconjchem.3c00381
    3. Dennis Gerbig, Peter R. Schreiner. Preparation and Spectroscopic Identification of the Cyclic CO2 Dimer 1,2-Dioxetanedione. Journal of the American Chemical Society 2023, 145 (41) , 22341-22346. https://doi.org/10.1021/jacs.3c08894
    4. Islam Mohamed Mostafa, Abubakar Abdussalam, Yuriy Tymofiiovych Zholudov, Dmytro Viktorovych Snizhko, Wei Zhang, Morteza Hosseini, Yiran Guan, Guobao Xu. Recent Applications and Future Perspectives of Chemiluminescent and Bioluminescent Imaging Technologies. Chemical & Biomedical Imaging 2023, 1 (4) , 297-314. https://doi.org/10.1021/cbmi.2c00002
    5. Minye Jin, Gülistan Koçer, Julieta I. Paez. Luciferin-Bioinspired Click Ligation Enables Hydrogel Platforms with Fine-Tunable Properties for 3D Cell Culture. ACS Applied Materials & Interfaces 2022, 14 (4) , 5017-5032. https://doi.org/10.1021/acsami.1c22186
    6. Mitchell P. Christy, Trevor Johnson, Clare D. McNerlin, John Woodard, Andrew T. Nelson, Bryant Lim, Tiffany L. Hamilton, Kaitlyn M. Freiberg, Dionicio Siegel. Total Synthesis of Micrococcin P1 through Scalable Thiazole Forming Reactions of Cysteine Derivatives and Nitriles. Organic Letters 2020, 22 (6) , 2365-2370. https://doi.org/10.1021/acs.orglett.0c00202
    7. Sierra J. Williams, Jennifer A. Prescher. Building Biological Flashlights: Orthogonal Luciferases and Luciferins for in Vivo Imaging. Accounts of Chemical Research 2019, 52 (11) , 3039-3050. https://doi.org/10.1021/acs.accounts.9b00391
    8. Samantha G. L. Keyser, Ashley Utz, Carolyn R. Bertozzi. Computation-Guided Rational Design of a Peptide Motif That Reacts with Cyanobenzothiazoles via Internal Cysteine–Lysine Relay. The Journal of Organic Chemistry 2018, 83 (14) , 7467-7479. https://doi.org/10.1021/acs.joc.8b00625
    9. Aurélien Godinat, Hyo Min Park, Stephen C. Miller, Ke Cheng, Douglas Hanahan, Laura E. Sanman, Matthew Bogyo, Allen Yu, Gennady F. Nikitin, Andreas Stahl, and Elena A. Dubikovskaya . A Biocompatible in Vivo Ligation Reaction and Its Application for Noninvasive Bioluminescent Imaging of Protease Activity in Living Mice. ACS Chemical Biology 2013, 8 (5) , 987-999. https://doi.org/10.1021/cb3007314
    10. Genevieve C. Van de Bittner, Carolyn R. Bertozzi, and Christopher J. Chang . Strategy for Dual-Analyte Luciferin Imaging: In Vivo Bioluminescence Detection of Hydrogen Peroxide and Caspase Activity in a Murine Model of Acute Inflammation. Journal of the American Chemical Society 2013, 135 (5) , 1783-1795. https://doi.org/10.1021/ja309078t
    11. Carolyn C. Woodroofe, Poncho L. Meisenheimer, Dieter H. Klaubert, Yumi Kovic, Justin C. Rosenberg, Curran E. Behney, Tara L. Southworth, and Bruce R. Branchini . Novel Heterocyclic Analogues of Firefly Luciferin. Biochemistry 2012, 51 (49) , 9807-9813. https://doi.org/10.1021/bi301411d
    12. David C. McCutcheon, Miranda A. Paley, Rachel C. Steinhardt, and Jennifer A. Prescher . Expedient Synthesis of Electronically Modified Luciferins for Bioluminescence Imaging. Journal of the American Chemical Society 2012, 134 (18) , 7604-7607. https://doi.org/10.1021/ja301493d
    13. Youcai Hu and John B. MacMillan . Erythrazoles A–B, Cytotoxic Benzothiazoles from a Marine-Derived Erythrobacter sp.. Organic Letters 2011, 13 (24) , 6580-6583. https://doi.org/10.1021/ol202944g
    14. Run Zhang, Xiaojing Yu, Zhiqiang Ye, Guilan Wang, Wenzhu Zhang and Jingli Yuan. Turn-on Luminescent Probe for Cysteine/Homocysteine Based on a Ruthenium(II) Complex. Inorganic Chemistry 2010, 49 (17) , 7898-7903. https://doi.org/10.1021/ic100810z
    15. Annie-Claude Gaumont, Mihaela Gulea and Jocelyne Levillain. Overview of the Chemistry of 2-Thiazolines. Chemical Reviews 2009, 109 (3) , 1371-1401. https://doi.org/10.1021/cr800189z
    16. Junming He, Pritha Ghosh, Christoph Nitsche. Biocompatible strategies for peptide macrocyclisation. Chemical Science 2024, 15 (7) , 2300-2322. https://doi.org/10.1039/D3SC05738K
    17. Chia‐Hao Chang, Danielle M. Fontaine, Sandra Gómez, Bruce R. Branchini, James C. Anderson. Synthesis and Bioluminescence of ‘V’‐Shaped Firefly Luciferin Analogues Based on A Novel Benzobisthiazole Core. Chemistry – A European Journal 2023, 29 (69) https://doi.org/10.1002/chem.202302204
    18. Rachel Blau, Omri Shelef, Doron Shabat, Ronit Satchi-Fainaro. Chemiluminescent probes in cancer biology. Nature Reviews Bioengineering 2023, 1 (9) , 648-664. https://doi.org/10.1038/s44222-023-00074-0
    19. Xinyi Hu, Runqun Tang, Lin Bai, Songqin Liu, Gaolin Liang, Xianbao Sun. CBT‐Cys click reaction for optical bioimaging in vivo. VIEW 2023, 4 (4) https://doi.org/10.1002/VIW.20220065
    20. Nouf E. Alshaikh, Mehvash Zaki, Abeer A. Sharfalddin, Najlaa S. Al-Radadi, Mostafa A. Hussien, Walid M.I. Hassan. Synthesis, structural characterization, DNA/HSA binding, molecular docking and anticancer studies of some D-Luciferin complexes. Arabian Journal of Chemistry 2023, 16 (7) , 104845. https://doi.org/10.1016/j.arabjc.2023.104845
    21. Kazuki Niwa, Hidehiro Kubota, Toshiteru Enomoto, Yoshiro Ichino, Yoshihiro Ohmiya. Quantitative Analysis of Bioluminescence Optical Signal. Biosensors 2023, 13 (2) , 223. https://doi.org/10.3390/bios13020223
    22. Daniel Rangel de Souza, Jaqueline Rodrigues Silva, Ariele Moreira, Vadim R. Viviani. Biosensing firefly luciferin synthesis in bacteria reveals a cysteine-dependent quinone detoxification route in Coleoptera. Scientific Reports 2022, 12 (1) https://doi.org/10.1038/s41598-022-17205-z
    23. Nathan Broudic, Alexandra Pacheco-Benichou, Corinne Fruit, Thierry Besson. Synthesis of 2-Cyanobenzothiazoles via Pd-Catalyzed/Cu-Assisted C-H Functionalization/Intramolecular C-S Bond Formation from N-Arylcyanothioformamides. Molecules 2022, 27 (23) , 8426. https://doi.org/10.3390/molecules27238426
    24. Fa‐Jie Chen, Jianmin Gao. Fast Cysteine Bioconjugation Chemistry. Chemistry – A European Journal 2022, 28 (66) https://doi.org/10.1002/chem.202201843
    25. Vardhan Satalkar, Enrico Benassi, Yuezhi Mao, Xiaoliang Pan, Chongzhao Ran, Xiaoyuan Chen, Yihan Shao. Computational investigation of substituent effects on the fluorescence wavelengths of oxyluciferin analogs. Journal of Photochemistry and Photobiology A: Chemistry 2022, 431 , 114018. https://doi.org/10.1016/j.jphotochem.2022.114018
    26. Yuechao Zhu, Xian Zhang, Qidong You, Zhengyu Jiang. Recent applications of CBT-Cys click reaction in biological systems. Bioorganic & Medicinal Chemistry 2022, 68 , 116881. https://doi.org/10.1016/j.bmc.2022.116881
    27. Yue Yuan, Jeff W. M. Bulte. Enzyme‐mediated intratumoral self‐assembly of nanotheranostics for enhanced imaging and tumor therapy. WIREs Nanomedicine and Nanobiotechnology 2022, 14 (4) https://doi.org/10.1002/wnan.1786
    28. Pei Zhao, Xiaokang Wu, Jie Li, Gaopan Dong, Yingai Sun, Zhao Ma, Minyong Li, Lupei Du. Discovery of alkene-conjugated luciferins for redshifted and improved bioluminescence imaging in vitro and in vivo. Organic & Biomolecular Chemistry 2022, 20 (20) , 4224-4230. https://doi.org/10.1039/D1OB02477A
    29. Hao-Han Yu, Qiu-Ping Deng, Qing-Hua Zheng, Yi Wang, Jian Shen, Jia-Hong Zhou. Hypericin nanoparticles for self-illuminated photodynamic cytotoxicity based on bioluminescence resonance energy transfer. International Journal of Pharmaceutics 2022, 620 , 121738. https://doi.org/10.1016/j.ijpharm.2022.121738
    30. Yuichi Oba, Darrin T Schultz. Firefly genomes illuminate the evolution of beetle bioluminescent systems. Current Opinion in Insect Science 2022, 50 , 100879. https://doi.org/10.1016/j.cois.2022.100879
    31. Hee-Jong Hwang, Young-Jin Son, Dahyun Kim, Jusuk Lee, Yun-Jeong Shin, Yonghoon Kwon, Marco A. Ciufolini. Diversity-oriented routes to thiopeptide antibiotics: total synthesis and biological evaluation of micrococcin P2. Organic & Biomolecular Chemistry 2022, 20 (9) , 1893-1899. https://doi.org/10.1039/D1OB02145A
    32. Yongsheng Gao, Douglas Vogus, Zongmin Zhao, Wei He, Vinu Krishnan, Jayoung Kim, Yujie Shi, Apoorva Sarode, Anvay Ukidve, Samir Mitragotri. Injectable hyaluronic acid hydrogels encapsulating drug nanocrystals for long‐term treatment of inflammatory arthritis. Bioengineering & Translational Medicine 2022, 7 (1) https://doi.org/10.1002/btm2.10245
    33. Navjeet Kaur. Phosphorus Pentasulfide in Heterocycle Synthesis. 2022, 245-306. https://doi.org/10.1007/978-981-16-4655-3_8
    34. Efrén V. García-Báez, Itzia I. Padilla-Martínez, Feliciano Tamay-Cach, Alejandro Cruz. Benzothiazoles from Condensation of o-Aminothiophenoles with Carboxylic Acids and Their Derivatives: A Review. Molecules 2021, 26 (21) , 6518. https://doi.org/10.3390/molecules26216518
    35. Aleksandra S. Tsarkova. Luciferins Under Construction: A Review of Known Biosynthetic Pathways. Frontiers in Ecology and Evolution 2021, 9 https://doi.org/10.3389/fevo.2021.667829
    36. Jia Yang, Rui Zheng, Hongwei An, Hao Wang. In vivo Self-assembled Peptide Nanoprobes for Disease Diagnosis. Chemical Research in Chinese Universities 2021, 37 (4) , 855-869. https://doi.org/10.1007/s40242-021-1130-6
    37. Lucia De Rosa, Rossella Di Stasi, Alessandra Romanelli, Luca Domenico D’Andrea. Exploiting Protein N-Terminus for Site-Specific Bioconjugation. Molecules 2021, 26 (12) , 3521. https://doi.org/10.3390/molecules26123521
    38. Ninganayaka Mahesha, Hemmige S. Yathirajan, Holalagudu A. Nagma Banu, Balakrishna Kalluraya, Sabine Foro, Christopher Glidewell. Different patterns of supramolecular aggregation in three amides containing N -(benzo[ d ]thiazolyl) substituents. Acta Crystallographica Section E Crystallographic Communications 2021, 77 (5) , 504-511. https://doi.org/10.1107/S2056989021003637
    39. Trevor C. Johnson, Mitchell P. Christy, Dionicio Siegel. Synthesis of the 26-Membered Core of Thiopeptide Natural Products by Scalable Thiazole-Forming Reactions of Cysteine Derivatives and Nitriles. Synthesis 2021, 53 (03) , 498-508. https://doi.org/10.1055/s-0040-1706478
    40. Zixuan Zhan, Yongcheng Dai, Qiuyan Li, Yi Lv. Small molecule-based bioluminescence and chemiluminescence probes for sensing and imaging of reactive species. TrAC Trends in Analytical Chemistry 2021, 134 , 116129. https://doi.org/10.1016/j.trac.2020.116129
    41. Meihui Zhuang, Zhuanghao Hou, Peiyao Chen, Gaolin Liang, Guangming Huang. Introducing charge tag via click reaction in living cells for single cell mass spectrometry. Chemical Science 2020, 11 (28) , 7308-7312. https://doi.org/10.1039/D0SC00259C
    42. Nobuo Kitada, Ryohei Saito, Rika Obata, Satoshi Iwano, Kazuma Karube, Atsushi Miyawaki, Takashi Hirano, Shojiro A. Maki. Development of near‐infrared firefly luciferin analogue reacted with wild‐type and mutant luciferases. Chirality 2020, 32 (7) , 922-931. https://doi.org/10.1002/chir.23236
    43. Spencer T. Adams, Stephen C. Miller. Enzymatic promiscuity and the evolution of bioluminescence. The FEBS Journal 2020, 287 (7) , 1369-1380. https://doi.org/10.1111/febs.15176
    44. Ziad Moussa, Zaher M. A. Judeh, Marwa A. M. Sh. El‐Sharief, Ahmed M. Sh. El‐Sharief. N ‐Arylcyanothioformamides: Preparation Methods and Application in the Synthesis of Bioactive Molecules. ChemistrySelect 2020, 5 (2) , 764-798. https://doi.org/10.1002/slct.201903534
    45. Radosław Podsiadły, Aleksandra Grzelakowska, Julia Modrzejewska, Przemysław Siarkiewicz, Daniel Słowiński, Marcin Szala, Małgorzata Świerczyńska. Recent progress in the synthesis of firefly luciferin derivatives. Dyes and Pigments 2019, 170 , 107627. https://doi.org/10.1016/j.dyepig.2019.107627
    46. Divya J. Jethava, Prachi T. Acharya, Mahesh S. Vasava, Manoj N. Bhoi, Zeel A. Bhavsar, Sanjay K. Rathwa, Dhanji P. Rajani, Hitesh D. Patel. Design, synthesis, biological evaluation and computational study of novel triazolo [4,3-a]pyrazin analogues. Journal of Molecular Structure 2019, 1184 , 168-192. https://doi.org/10.1016/j.molstruc.2019.01.091
    47. James C. Anderson, Chia-Hao Chang, Amit P. Jathoul, Aisha J. Syed. Synthesis and bioluminescence of electronically modified and rotationally restricted colour-shifting infraluciferin analogues. Tetrahedron 2019, 75 (3) , 347-356. https://doi.org/10.1016/j.tet.2018.11.061
    48. Dhiraj P. Murale, Seong Cheol Hong, Se‐young Jang, Jun‐Seok Lee. Reinvestigation of an O ‐Salicylaldehyde Ester Functional Group in Aqueous Buffer and Discovery of a Coumarin Scaffold Probe for Selective N‐Terminal Cysteine Labeling. ChemBioChem 2018, 19 (24) , 2545-2549. https://doi.org/10.1002/cbic.201800565
    49. Ghasem Shahmoradi, Saeid Amani. Synthesis, characterization and computational studies of 2-cyano-6-methoxybenzothiazole as a firefly-luciferin precursor. Heterocyclic Communications 2018, 24 (5) , 255-258. https://doi.org/10.1515/hc-2018-0047
    50. Lingyun Zhou, Tian Qiu, Fengting Lv, Libing Liu, Jianming Ying, Shu Wang. Self‐Assembled Nanomedicines for Anticancer and Antibacterial Applications. Advanced Healthcare Materials 2018, 7 (20) https://doi.org/10.1002/adhm.201800670
    51. Miaomiao Zhang, Gaolin Liang. Applications of CBT-Cys click reaction: past, present, and future. Science China Chemistry 2018, 61 (9) , 1088-1098. https://doi.org/10.1007/s11426-018-9277-6
    52. Mayu Hemmi, Yuma Ikeda, Yutaka Shindo, Takahiro Nakajima, Shigeru Nishiyama, Kotaro Oka, Moritoshi Sato, Yuki Hiruta, Daniel Citterio, Koji Suzuki. Highly Sensitive Bioluminescent Probe for Thiol Detection in Living Cells. Chemistry – An Asian Journal 2018, 13 (6) , 648-655. https://doi.org/10.1002/asia.201701774
    53. Lili Liang, Xueqian Zhang, Xiaoyu Su, Jianchun Li, Yong Tian, Hongbao Xue, Huiqin Xu. 99m Tc‐labeled oligomeric nanoparticles as potential agents for folate receptor‐positive tumor targeting. Journal of Labelled Compounds and Radiopharmaceuticals 2018, 61 (2) , 54-60. https://doi.org/10.1002/jlcr.3577
    54. Yuma Ikeda, Tsuyoshi Saitoh, Kazuki Niwa, Takahiro Nakajima, Nobuo Kitada, Shojiro A. Maki, Moritoshi Sato, Daniel Citterio, Shigeru Nishiyama, Koji Suzuki. An allylated firefly luciferin analogue with luciferase specific response in living cells. Chemical Communications 2018, 54 (14) , 1774-1777. https://doi.org/10.1039/C7CC09720D
    55. Samer Gnaim, Ori Green, Doron Shabat. The emergence of aqueous chemiluminescence: new promising class of phenoxy 1,2-dioxetane luminophores. Chemical Communications 2018, 54 (17) , 2073-2085. https://doi.org/10.1039/C8CC00428E
    56. ETELVINO J.H. BECHARA, CASSIUS V. STEVANI. Brazilian Bioluminescent Beetles: Reflections on Catching Glimpses of Light in the Atlantic Forest and Cerrado. Anais da Academia Brasileira de Ciências 2018, 90 (1 suppl 1) , 663-679. https://doi.org/10.1590/0001-3765201820170504
    57. Yong Yu, Xin Ting Zheng, Boon Wei Yee, Yen Nee Tan. Biomimicking synthesis of photoluminescent molecular lantern catalyzed by in-situ formation of nanogold catalysts. Materials Science and Engineering: C 2017, 77 , 1111-1116. https://doi.org/10.1016/j.msec.2017.04.029
    58. Yasuhiro Takenaka, Atsushi Yamaguchi, Yasushi Shigeri. A light in the dark: ecology, evolution and molecular basis of copepod bioluminescence. Journal of Plankton Research 2017, 39 (3) , 369-378. https://doi.org/10.1093/plankt/fbx016
    59. Aurélien Godinat, Hacer Karatas, Ghyslain Budin, Elena A. Dubikovskaya. Chemical Ligation for Molecular Imaging. 2017, 447-483. https://doi.org/10.1002/9781119044116.ch13
    60. James C. Anderson, Helen Grounds, Amit P. Jathoul, James A. H. Murray, Steven J. Pacman, Laurence Tisi. Convergent synthesis and optical properties of near-infrared emitting bioluminescent infra-luciferins. RSC Advances 2017, 7 (7) , 3975-3982. https://doi.org/10.1039/C6RA19541E
    61. Pengfei Zhao, Mingbin Zheng, Zhenyu Luo, Xiujun Fan, Zonghai Sheng, Ping Gong, Ze Chen, Baozhen Zhang, Dapeng Ni, Yifan Ma, Lintao Cai. Oxygen Nanocarrier for Combined Cancer Therapy: Oxygen‐Boosted ATP‐Responsive Chemotherapy with Amplified ROS Lethality. Advanced Healthcare Materials 2016, 5 (17) , 2161-2167. https://doi.org/10.1002/adhm.201600121
    62. Stephen C. Trowell, Helen Dacres, Mira M. Dumancic, Virginia Leitch, Rodney W. Rickards. Molecular basis for the blue bioluminescence of the Australian glow-worm Arachnocampa richardsae (Diptera: Keroplatidae). Biochemical and Biophysical Research Communications 2016, 478 (2) , 533-539. https://doi.org/10.1016/j.bbrc.2016.07.081
    63. Shusei Kanie, Toshio Nishikawa, Makoto Ojika, Yuichi Oba. One-pot non-enzymatic formation of firefly luciferin in a neutral buffer from p-benzoquinone and cysteine. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep24794
    64. Jacob R Hauser, Hester A Beard, Mary E Bayana, Katherine E Jolley, Stuart L Warriner, Robin S Bon. Economical and scalable synthesis of 6-amino-2-cyanobenzothiazole. Beilstein Journal of Organic Chemistry 2016, 12 , 2019-2025. https://doi.org/10.3762/bjoc.12.189
    65. Wanwipa Vongsangnak, Pramote Chumnanpuen, Ajaraporn Sriboonlert. Transcriptome analysis reveals candidate genes involved in luciferin metabolism in Luciola aquatilis (Coleoptera: Lampyridae). PeerJ 2016, 4 , e2534. https://doi.org/10.7717/peerj.2534
    66. Belgheis Adrom, Malek Taher Maghsoodlou, Nourallah Hazeri, Mojtaba Lashkari. Solvent-free synthesis of 1-(benzothiazolylamino)methyl-2-naphthols with maltose as green catalyst. Research on Chemical Intermediates 2015, 41 (10) , 7553-7560. https://doi.org/10.1007/s11164-014-1843-y
    67. Archana Krishnamoorthy, J. Brian Robertson, . Dual-Color Monitoring Overcomes the Limitations of Single Bioluminescent Reporters in Fast-Growing Microbes and Reveals Phase-Dependent Protein Productivity during the Metabolic Rhythms of Saccharomyces cerevisiae. Applied and Environmental Microbiology 2015, 81 (18) , 6484-6495. https://doi.org/10.1128/AEM.01631-15
    68. Weihang Zhou, Daisuke Nakamura, Yu Wang, Toshimitsu Mochizuki, Hidefumi Akiyama, Shojiro Takeyama. Effect of very high magnetic field on the optical properties of firefly light emitter oxyluciferin. Journal of Luminescence 2015, 165 , 15-18. https://doi.org/10.1016/j.jlumin.2015.04.009
    69. Ulli Rothweiler, Jonas Eriksson, Wenche Stensen, Frederick Leeson, Richard A. Engh, John S. Svendsen. Luciferin and derivatives as a DYRK selective scaffold for the design of protein kinase inhibitors. European Journal of Medicinal Chemistry 2015, 94 , 140-148. https://doi.org/10.1016/j.ejmech.2015.02.035
    70. David C. McCutcheon, William B. Porterfield, Jennifer A. Prescher. Rapid and scalable assembly of firefly luciferase substrates. Organic & Biomolecular Chemistry 2015, 13 (7) , 2117-2121. https://doi.org/10.1039/C4OB02529F
    71. Oleksandr Koniev, Alain Wagner. Developments and recent advancements in the field of endogenous amino acid selective bond forming reactions for bioconjugation. Chem. Soc. Rev. 2015, 44 (15) , 5495-5551. https://doi.org/10.1039/C5CS00048C
    72. Aurélien Godinat, Ghyslain Budin, Alma R. Morales, Hyo Min Park, Laura E. Sanman, Matthew Bogyo, Allen Yu, Andreas Stahl, Elena A. Dubikovskaya. A Biocompatible “Split Luciferin” Reaction and Its Application for Non‐Invasive Bioluminescent Imaging of Protease Activity in Living Animals. Current Protocols in Chemical Biology 2014, 6 (3) , 169-189. https://doi.org/10.1002/9780470559277.ch140047
    73. Thibaut Denoël, Astrid Zervosen, Thomas Gerards, Christian Lemaire, Bernard Joris, Didier Blanot, André Luxen. Stereoselective synthesis of lanthionine derivatives in aqueous solution and their incorporation into the peptidoglycan of Escherichia coli. Bioorganic & Medicinal Chemistry 2014, 22 (17) , 4621-4628. https://doi.org/10.1016/j.bmc.2014.07.023
    74. Yue Yuan, Gaolin Liang. A biocompatible, highly efficient click reaction and its applications. Org. Biomol. Chem. 2014, 12 (6) , 865-871. https://doi.org/10.1039/C3OB41241E
    75. Yuichi Oba, Naoki Yoshida, Shusei Kanie, Makoto Ojika, Satoshi Inouye, . Biosynthesis of Firefly Luciferin in Adult Lantern: Decarboxylation of ʟ-Cysteine is a Key Step for Benzothiazole Ring Formation in Firefly Luciferin Synthesis. PLoS ONE 2013, 8 (12) , e84023. https://doi.org/10.1371/journal.pone.0084023
    76. Miyabi Hiyama, Hidefumi Akiyama, Yu Wang, Nobuaki Koga. Theoretical study for absorption spectra of oxyluciferin in aqueous solutions. Chemical Physics Letters 2013, 577 , 121-126. https://doi.org/10.1016/j.cplett.2013.05.053
    77. Pierangela Ciuffreda, Silvana Casati, Giuseppe Meroni, Enzo Santaniello. A new synthesis of dehydroluciferin [2-(6′-hydroxy-2′-benzothiazolyl)-thiazole-4-carboxylic acid] from 1,4-benzoquinone. Tetrahedron 2013, 69 (29) , 5893-5897. https://doi.org/10.1016/j.tet.2013.05.019
    78. Mojtaba Lashkari, Nourallah Hazeri, Malek Taher Maghsoodlou, Sayyed Mostafa Habibi Khorassani, Niloufar Akbarzadeh Torbati, Asghar Hosseinian, Santiago García‐Granda, Laura Torre‐Fernández. Synthesis and Crystal Structure Study of Diethyl Aryl(benzo[ d ]thiazol‐2‐ylamino)methyl Phosphonates. Heteroatom Chemistry 2013, 24 (1) , 58-65. https://doi.org/10.1002/hc.21063
    79. Asghar Hosseinian, Hamid Reza Shaterian. NaHSO 4 .H 2 O Catalyzed Multicomponent Synthesis of 1-(Benzothiazolylamino) Methyl-2-Naphthols Under Solvent-Free Conditions. Phosphorus, Sulfur, and Silicon and the Related Elements 2012, 187 (9) , 1056-1063. https://doi.org/10.1080/10426507.2012.664221
    80. Nicholas R. Conley, Anca Dragulescu‐Andrasi, Jianghong Rao, W. E. Moerner. A Selenium Analogue of Firefly D ‐Luciferin with Red‐Shifted Bioluminescence Emission. Angewandte Chemie 2012, 124 (14) , 3406-3409. https://doi.org/10.1002/ange.201105653
    81. Nicholas R. Conley, Anca Dragulescu‐Andrasi, Jianghong Rao, W. E. Moerner. A Selenium Analogue of Firefly D ‐Luciferin with Red‐Shifted Bioluminescence Emission. Angewandte Chemie International Edition 2012, 51 (14) , 3350-3353. https://doi.org/10.1002/anie.201105653
    82. Massimiliano Anselmi, Simone Marocchi, Massimiliano Aschi, Andrea Amadei. Theoretical modeling of the spectroscopic absorption properties of luciferin and oxyluciferin: A critical comparison with recent experimental studies. Chemical Physics 2012, 392 (1) , 205-214. https://doi.org/10.1016/j.chemphys.2011.11.021
    83. Aldo Roda. A History of Bioluminescence and Chemiluminescence from Ancient Times to the Present. 2010, 1-50. https://doi.org/10.1039/9781849732024-00001
    84. J. Woodland Hastings. Progress and Perspectives on Bioluminescence: from Luminous Organisms to Molecular Mechanisms. 2010, 91-112. https://doi.org/10.1039/9781849732024-00091
    85. Jakub Hyvl, Jiri Srogl. Copper‐Catalyzed Activation of Disulfides as a Key Step in the Synthesis of Benzothiazole Moieties. European Journal of Organic Chemistry 2010, 2010 (15) , 2849-2851. https://doi.org/10.1002/ejoc.201000174
    86. Yue Huang, Haifeng Gan, Shang Li, Jinyi Xu, Xiaoming Wu, Hequan Yao. Oxidation of 4-carboxylate thiazolines to 4-carboxylate thiazoles by molecular oxygen. Tetrahedron Letters 2010, 51 (13) , 1751-1753. https://doi.org/10.1016/j.tetlet.2010.01.091
    87. Satoshi Inouye. Firefly luciferase: an adenylate-forming enzyme for multicatalytic functions. Cellular and Molecular Life Sciences 2010, 67 (3) , 387-404. https://doi.org/10.1007/s00018-009-0170-8
    88. E. Z. Utyanskaya. The role played by pentacovalent intermediates in the sequence of stages of the hydrolysis of 5′-ATP with metal ions. Russian Journal of Physical Chemistry B 2010, 4 (1) , 34-43. https://doi.org/10.1134/S1990793110010069
    89. Bin Zhang, Jianli Li, Wei Chen, Yunxia Wang, Zhen Shi. Synthesis, Crystal Structure of Co(II)(6‐methoxybenzothiazole‐ 2‐carboxylate) 2 (DMF) 2 and Its Application to Carbonylation of Benzyl Chloride. Chinese Journal of Chemistry 2010, 28 (1) , 111-114. https://doi.org/10.1002/cjoc.201090023
    90. Kei Odai, Satoko Nishiyama, Yasuhiko Yoshida, Naohisa Wada. 1H NMR spectrum and computational study of firefly luciferin in dimethyl sulfoxide. Journal of Molecular Structure: THEOCHEM 2009, 901 (1-3) , 60-65. https://doi.org/10.1016/j.theochem.2009.01.002
    91. Simone M. Marques, Joaquim C. G. Esteves da Silva. Firefly bioluminescence: A mechanistic approach of luciferase catalyzed reactions. IUBMB Life 2009, 61 (1) , 6-17. https://doi.org/10.1002/iub.134
    92. Lucille Le Bozec, Christopher J. Moody. Naturally Occurring Nitrogen–Sulfur Compounds. The Benzothiazole Alkaloids. Australian Journal of Chemistry 2009, 62 (7) , 639. https://doi.org/10.1071/CH09126
    93. Simone M. Marques, Joaquim C. G. Esteves da Silva. An optimized luciferase bioluminescent assay for coenzyme A. Analytical and Bioanalytical Chemistry 2008, 391 (6) , 2161-2168. https://doi.org/10.1007/s00216-008-2117-6
    94. Dennis E. Desjardin, Anderson G. Oliveira, Cassius V. Stevani. Fungi bioluminescence revisited. Photochemical & Photobiological Sciences 2008, 7 (2) , 170-182. https://doi.org/10.1039/b713328f
    95. Hugo Fraga. Firefly luminescence: A historical perspective and recent developments. Photochemical & Photobiological Sciences 2008, 7 (2) , 146-158. https://doi.org/10.1039/b719181b
    96. Yoriko Ando, Kazuki Niwa, Nobuyuki Yamada, Toshiteru Enomoto, Tsutomu Irie, Hidehiro Kubota, Yoshihiro Ohmiya, Hidefumi Akiyama. Firefly bioluminescence quantum yield and colour change by pH-sensitive green emission. Nature Photonics 2008, 2 (1) , 44-47. https://doi.org/10.1038/nphoton.2007.251
    97. Kazuki Niwa, Mitsuhiro Nakamura, Yoshihiro Ohmiya. Stereoisomeric bio‐inversion key to biosynthesis of firefly d ‐luciferin. FEBS Letters 2006, 580 (22) , 5283-5287. https://doi.org/10.1016/j.febslet.2006.08.073
    98. Hugo Fraga, Diogo Fernandes, Jiri Novotny, Rui Fontes, Joaquim C. G. Esteves da Silva. Firefly Luciferase Produces Hydrogen Peroxide as a Coproduct in Dehydroluciferyl Adenylate Formation. ChemBioChem 2006, 7 (6) , 929-935. https://doi.org/10.1002/cbic.200500443
    99. Mitsuhiro Nakamura, Kazuki Niwa, Shojiro Maki, Takashi Hirano, Yoshihiro Ohmiya, Haruki Niwa. Construction of a new firefly bioluminescence system using l-luciferin as substrate. Tetrahedron Letters 2006, 47 (7) , 1197-1200. https://doi.org/10.1016/j.tetlet.2005.12.033
    100. Hugo Fraga, Diogo Fernandes, Rui Fontes, Joaquim C. G. Esteves da Silva. Coenzyme A affects firefly luciferase luminescence because it acts as a substrate and not as an allosteric effector. The FEBS Journal 2005, 272 (20) , 5206-5216. https://doi.org/10.1111/j.1742-4658.2005.04895.x
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect