ACS Publications. Most Trusted. Most Cited. Most Read
New route to the preparation and configurational correlation of optically active phosphine oxides
My Activity

Figure 1Loading Img
    Article

    New route to the preparation and configurational correlation of optically active phosphine oxides
    Click to copy article linkArticle link copied!

    ACS Legacy Archive
    Other Access Options

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 1967, 89, 18, 4784–4786
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja00994a037
    Published August 1, 1967

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 88 publications.

    1. Nidal Saleh, Céline Besnard, Jérôme Lacour. Concave P-Stereogenic Phosphorodiamidite Ligands for Enantioselective Rh(I) Catalysis. Organic Letters 2024, 26 (11) , 2202-2206. https://doi.org/10.1021/acs.orglett.4c00371
    2. Soumyadeep Chakrabortty, Katharina Konieczny, Jan-Ole Moritz, Shasha Zheng, Sergey Tin, Bernd H. Müller, Johannes G. de Vries. Rh-Catalyzed Enantioselective Hydrogenation of Di- and Tri-Substituted Enamides Enabled by Easily Tunable P-Stereogenic N-Phosphinyl Phosphoramidite Ligands. ACS Catalysis 2023, 13 (18) , 12030-12040. https://doi.org/10.1021/acscatal.3c03336
    3. Catherine Gazolla Santana, Michael J. Krische. From Hydrogenation to Transfer Hydrogenation to Hydrogen Auto-Transfer in Enantioselective Metal-Catalyzed Carbonyl Reductive Coupling: Past, Present, and Future. ACS Catalysis 2021, 11 (9) , 5572-5585. https://doi.org/10.1021/acscatal.1c01109
    4. Yu Zhang, Shao-Zhen Nie, Jing-Jing Ye, Ji-Ping Wang, Meng-Meng Zhou, Chang-Qiu Zhao, Qiang Li. Functional Phosphine Derivatives Having Stationary and Flexible Chiralities: Their Preparation and Chirality Controlling. The Journal of Organic Chemistry 2019, 84 (13) , 8423-8439. https://doi.org/10.1021/acs.joc.9b00346
    5. Hsin Y. Su and Mark S. Taylor . P-Stereogenic β-Aminophosphines: Preparation and Applications in Enantioselective Organocatalysis. The Journal of Organic Chemistry 2017, 82 (6) , 3173-3182. https://doi.org/10.1021/acs.joc.7b00199
    6. Kamalraj V. Rajendran, Kirill V. Nikitin, and Declan G. Gilheany . Hammond Postulate Mirroring Enables Enantiomeric Enrichment of Phosphorus Compounds via Two Thermodynamically Interconnected Sequential Stereoselective Processes. Journal of the American Chemical Society 2015, 137 (29) , 9375-9381. https://doi.org/10.1021/jacs.5b04415
    7. John M. Brown . Rhodium Asymmetric Hydrogenation Observed during its Exponential Growth Phase. Organometallics 2014, 33 (21) , 5912-5923. https://doi.org/10.1021/om500780c
    8. María Casimiro, Laura Roces, Santiago García-Granda, María José Iglesias, and Fernando López Ortiz . Directed Ortho-Lithiation of Aminophosphazenes: An Efficient Route to the Stereoselective Synthesis of P-Chiral Compounds. Organic Letters 2013, 15 (10) , 2378-2381. https://doi.org/10.1021/ol400971q
    9. Zhengxu S. Han, Navneet Goyal, Melissa A. Herbage, Joshua D. Sieber, Bo Qu, Yibo Xu, Zhibin, Li, Jonathan T. Reeves, Jean-Nicolas Desrosiers, Shengli Ma, Nelu Grinberg, Heewon Lee, Hari P. R. Mangunuru, Yongda Zhang, Dhileep Krishnamurthy, Bruce Z. Lu, Jinhua J. Song, Guijun Wang, and Chris H. Senanayake . Efficient Asymmetric Synthesis of P-Chiral Phosphine Oxides via Properly Designed and Activated Benzoxazaphosphinine-2-oxide Agents. Journal of the American Chemical Society 2013, 135 (7) , 2474-2477. https://doi.org/10.1021/ja312352p
    10. Harry Adams, Rebecca C. Collins, Simon Jones, and Christopher J. A. Warner . Enantioselective Preparation of P-Chiral Phosphine Oxides. Organic Letters 2011, 13 (24) , 6576-6579. https://doi.org/10.1021/ol202916j
    11. Michelle L. Coote, Elizabeth H. Krenske, Keith A. Porter, Michelle L. Weir, Anthony C. Willis, Xiangting Zhou and S. Bruce Wild. Asymmetric Synthesis of a Tertiary Arsine by Nucleophilic Addition to a Chiral Phosphine-Stabilized Arsenium Salt. Organometallics 2008, 27 (19) , 5099-5107. https://doi.org/10.1021/om8006272
    12. Michael B. Tollefson,, James J. Li, and, Peter Beak. The Endocyclic Restriction Test:  Investigation of the Geometries of Nucleophilic Substitution at Phosphorus(III) and Phosphorus(V). Journal of the American Chemical Society 1996, 118 (38) , 9052-9061. https://doi.org/10.1021/ja961375g
    13. Sandip Kundu, Mousumi Layek, Sk Mehebub Rahaman, Priya Karmakar, Bidyut Saha. A general overview on hydrogenation catalytic systems. 2025, 3-27. https://doi.org/10.1016/B978-0-443-15656-4.00003-3
    14. Jianjian Liu, Rui Deng, Xuyang Liang, Mali Zhou, Pengcheng Zheng, Yonggui Robin Chi. Carbene‐Catalyzed and Pnictogen Bond‐Assisted Access to P III ‐Stereogenic Compounds. Angewandte Chemie 2024, 136 (28) https://doi.org/10.1002/ange.202404477
    15. Jianjian Liu, Rui Deng, Xuyang Liang, Mali Zhou, Pengcheng Zheng, Yonggui Robin Chi. Carbene‐Catalyzed and Pnictogen Bond‐Assisted Access to P III ‐Stereogenic Compounds. Angewandte Chemie International Edition 2024, 63 (28) https://doi.org/10.1002/anie.202404477
    16. Tanja Huber, Jonathan O. Bauer. A Powerful P−N Connection: Preparative Approaches, Reactivity, and Applications of P ‐Stereogenic Aminophosphines. Chemistry – A European Journal 2024, 30 (18) https://doi.org/10.1002/chem.202303760
    17. Kyzgaldak Ramazanova, Soumyadeep Chakrabortty, Bernd H. Müller, Peter Lönnecke, Johannes G. de Vries, Evamarie Hey-Hawkins. Synthesis of P -stereogenic 1-phosphanorbornane-derived phosphine–phosphite ligands and application in asymmetric catalysis. RSC Advances 2023, 13 (49) , 34439-34444. https://doi.org/10.1039/D3RA07630J
    18. Pep Rojo, Antoni Riera, Xavier Verdaguer. Bulky P-stereogenic ligands. A success story in asymmetric catalysis. Coordination Chemistry Reviews 2023, 489 , 215192. https://doi.org/10.1016/j.ccr.2023.215192
    19. Elżbieta Łastawiecka, Sylwia Sowa, Katarzyna Szwaczko, Kamil Dziuba, Marek Stankevič, Adam Włodarczyk. Chiral Organophosphorus Compounds in Asymmetric Synthesis. 2022, 389-440. https://doi.org/10.1002/9783527834204.ch12
    20. De-Hua Zhai, Bing-Xia Yan, Zhan-Cai Li, Zhu Lin, Qiang Li, Yan-Lan Wang, Hong-Xing Zheng, Chang-Qiu Zhao. The stereoselective conversion of epimerized alkoxyl phosphine–borane to P,C, axial -stereogenic tertiary phosphine via cleavage of P–O bond. Organic & Biomolecular Chemistry 2022, 20 (13) , 2615-2620. https://doi.org/10.1039/D2OB00351A
    21. Anirban Mondal, Niklas O. Thiel, Ruth Dorel, Ben L. Feringa. P-chirogenic phosphorus compounds by stereoselective Pd-catalysed arylation of phosphoramidites. Nature Catalysis 2022, 5 (1) , 10-19. https://doi.org/10.1038/s41929-021-00697-9
    22. Soumyadeep Chakrabortty, Ahmad A. Almasalma, Johannes G. de Vries. Recent developments in asymmetric hydroformylation. Catalysis Science & Technology 2021, 11 (16) , 5388-5411. https://doi.org/10.1039/D1CY00737H
    23. John M. Brown. The Historical Development of Asymmetric Hydrogenation. 2021, 1-24. https://doi.org/10.1002/9783527822294.ch1
    24. Debarshi Chakraborty, Hadi Gholami, Aritra Sarkar, Leo A. Joyce, James E. Jackson, Babak Borhan. A chiroptical approach for the absolute stereochemical determination of P -stereogenic centers. Chemical Science 2021, 12 (5) , 1750-1755. https://doi.org/10.1039/D0SC02940H
    25. Mao-Ran Qiu, Hong-Xing Zheng, Jing-Jing Ye, Bing-Xia Yan, Chang-Qiu Zhao, Qiang Li. Stereoselective preparation of P,axial -stereogenic allenyl bisphosphine oxides via chirality-transfer. Organic & Biomolecular Chemistry 2020, 18 (16) , 3017-3021. https://doi.org/10.1039/D0OB00390E
    26. Aabid Mohd, Thippani Anitha, Kallu Rajender Reddy, Joanna Wencel‐Delord, Françoise Colobert. P‐Stereogenic Phosphonates via Dynamic Kinetic Resolution: A Route towards Enantiopure Tertiary Phosphine Oxides. European Journal of Organic Chemistry 2019, 2019 (48) , 7836-7841. https://doi.org/10.1002/ejoc.201901475
    27. Raffael Huber, Alessandro Passera, Antonio Mezzetti. Which future for stereogenic phosphorus? Lessons from P* pincer complexes of iron( ii ). Chemical Communications 2019, 55 (63) , 9251-9266. https://doi.org/10.1039/C9CC03910D
    28. Orit Redy Keisar, Nissan Ashkenazi. A Concise Stereoselective Route to C‐ and P ‐ Chirogenic Hydroxypropyl Phosphines by Ring‐Opening of Optically Active Oxaphospholane‐2‐oxide. ChemistrySelect 2018, 3 (48) , 13619-13623. https://doi.org/10.1002/slct.201803804
    29. Péter Bagi, Réka Herbay, Péter Ábrányi-Balogh, Béla Mátravölgyi, Elemér Fogassy, György Keglevich. Dynamic kinetic resolution of 1-substituted-3-methyl-3-phospholene oxides via the formation of diastereomeric alkoxyphospholenium salts. Tetrahedron 2018, 74 (40) , 5850-5857. https://doi.org/10.1016/j.tet.2018.07.058
    30. Adam Włodarczyk, Anna E. Kozioł, Marek Stankevič. l ‐Menthol‐Assisted Synthesis of P‐Stereogenic Phosphinous Acid Amides and Phosphine‐Boranes. European Journal of Organic Chemistry 2018, 2018 (13) , 1589-1600. https://doi.org/10.1002/ejoc.201800065
    31. Felix Perez, Susumu Oda, Laina M. Geary, Michael J. Krische. Ruthenium-Catalyzed Transfer Hydrogenation for C–C Bond Formation: Hydrohydroxyalkylation and Hydroaminoalkylation via Reactant Redox Pairs. Topics in Current Chemistry 2016, 374 (3) https://doi.org/10.1007/s41061-016-0028-0
    32. Péter Bagi, Viktória Ujj, Mátyás Czugler, Elemér Fogassy, György Keglevich. Resolution of P-stereogenic P-heterocycles via the formation of diastereomeric molecular and coordination complexes (a review). Dalton Transactions 2016, 45 (5) , 1823-1842. https://doi.org/10.1039/C5DT02999F
    33. Mathieu Dutartre, Jérôme Bayardon, Sylvain Jugé. Applications and stereoselective syntheses of P-chirogenic phosphorus compounds. Chemical Society Reviews 2016, 45 (20) , 5771-5794. https://doi.org/10.1039/C6CS00031B
    34. Olivier Berger, Jean-Luc Montchamp. General synthesis of P-stereogenic compounds: the menthyl phosphinate approach. Organic & Biomolecular Chemistry 2016, 14 (31) , 7552-7562. https://doi.org/10.1039/C6OB01413E
    35. Sulaiman S. Al Sulaimi, Kamalraj V. Rajendran, Declan G. Gilheany. Lithium Borohydride for Achiral and ­Stereospecific Reductive Boronation at Phosphorus: Lack of Electronic Effects on Stereoselective Formation of Alkoxyphosphonium Salts. European Journal of Organic Chemistry 2015, 2015 (27) , 5959-5965. https://doi.org/10.1002/ejoc.201500521
    36. Laurent Copey, Ludivine Jean‐Gérard, Eric Framery, Guillaume Pilet, Vincent Robert, Bruno Andrioletti. Experimental and Theoretical Investigations of the Stereoselective Synthesis of P‐Stereogenic Phosphine Oxides. Chemistry – A European Journal 2015, 21 (25) , 9057-9061. https://doi.org/10.1002/chem.201501324
    37. Zhengxu S. Han, Li Zhang, Yibo Xu, Joshua D. Sieber, Maurice A. Marsini, Zhibin Li, Jonathan T. Reeves, Keith R. Fandrick, Nitinchandra D. Patel, Jean‐Nicolas Desrosiers, Bo Qu, Anji Chen, DiAndra M. Rudzinski, Lalith P. Samankumara, Shengli Ma, Nelu Grinberg, Frank Roschangar, Nathan K. Yee, Guijun Wang, Jinhua J. Song, Chris H. Senanayake. Efficient Asymmetric Synthesis of Structurally Diverse P‐Stereogenic Phosphinamides for Catalyst Design. Angewandte Chemie 2015, 127 (18) , 5564-5567. https://doi.org/10.1002/ange.201500350
    38. Zhengxu S. Han, Li Zhang, Yibo Xu, Joshua D. Sieber, Maurice A. Marsini, Zhibin Li, Jonathan T. Reeves, Keith R. Fandrick, Nitinchandra D. Patel, Jean‐Nicolas Desrosiers, Bo Qu, Anji Chen, DiAndra M. Rudzinski, Lalith P. Samankumara, Shengli Ma, Nelu Grinberg, Frank Roschangar, Nathan K. Yee, Guijun Wang, Jinhua J. Song, Chris H. Senanayake. Efficient Asymmetric Synthesis of Structurally Diverse P‐Stereogenic Phosphinamides for Catalyst Design. Angewandte Chemie International Edition 2015, 54 (18) , 5474-5477. https://doi.org/10.1002/anie.201500350
    39. María Casimiro, Guilherme P. Guedes, María José Iglesias, Fernando López Ortiz. Synthesis of P-stereogenic compounds based on the diastereoselective ortho-lithiation of phosphinimidic amides. Tetrahedron: Asymmetry 2015, 26 (1) , 53-66. https://doi.org/10.1016/j.tetasy.2014.12.001
    40. A. D'Onofrio, L. Copey, L. Jean-Gérard, C. Goux-Henry, G. Pilet, B. Andrioletti, E. Framery. d -Glucosamine as a novel chiral auxiliary for the stereoselective synthesis of P-stereogenic phosphine oxides. Organic & Biomolecular Chemistry 2015, 13 (34) , 9029-9034. https://doi.org/10.1039/C5OB01323B
    41. Guangqing Xu, Minghong Li, Shouliang Wang, Wenjun Tang. Efficient synthesis of P-chiral biaryl phosphonates by stereoselective intramolecular cyclization. Organic Chemistry Frontiers 2015, 2 (10) , 1342-1345. https://doi.org/10.1039/C5QO00142K
    42. Iris Binyamin, Shoval Meidan-Shani, Nissan Ashkenazi. Synthesis of γ-hydroxypropyl P-chirogenic (±)-phosphorus oxide derivatives by regioselective ring-opening of oxaphospholane 2-oxide precursors. Beilstein Journal of Organic Chemistry 2015, 11 , 1332-1339. https://doi.org/10.3762/bjoc.11.143
    43. Kirill Nikitin, Kamalraj V. Rajendran, Helge Müller‐Bunz, Declan G. Gilheany. Turning Regioselectivity into Stereoselectivity: Efficient Dual Resolution of P‐Stereogenic Phosphine Oxides through Bifurcation of the Reaction Pathway of a Common Intermediate. Angewandte Chemie 2014, 126 (7) , 1937-1940. https://doi.org/10.1002/ange.201309556
    44. Kirill Nikitin, Kamalraj V. Rajendran, Helge Müller‐Bunz, Declan G. Gilheany. Turning Regioselectivity into Stereoselectivity: Efficient Dual Resolution of P‐Stereogenic Phosphine Oxides through Bifurcation of the Reaction Pathway of a Common Intermediate. Angewandte Chemie International Edition 2014, 53 (7) , 1906-1909. https://doi.org/10.1002/anie.201309556
    45. Kamalraj V. Rajendran, Lorna Kennedy, Cormac T. O’Connor, Enda Bergin, Declan G. Gilheany. Systematic survey of positive chlorine sources in the asymmetric Appel reaction: oxalyl chloride as a new phosphine activator. Tetrahedron Letters 2013, 54 (51) , 7009-7012. https://doi.org/10.1016/j.tetlet.2013.10.044
    46. Olivier Berger, Jean‐Luc Montchamp. A General Strategy for the Synthesis of P‐Stereogenic Compounds. Angewandte Chemie 2013, 125 (43) , 11587-11590. https://doi.org/10.1002/ange.201306628
    47. Olivier Berger, Jean‐Luc Montchamp. A General Strategy for the Synthesis of P‐Stereogenic Compounds. Angewandte Chemie International Edition 2013, 52 (43) , 11377-11380. https://doi.org/10.1002/anie.201306628
    48. Natalia Andrushko, Vasyl Andrushko. Stereoselective Hydrogenation of C  C Bonds: Application to Drug and Natural Product Synthesis. 2013, 1-50. https://doi.org/10.1002/9781118596784.ssd029
    49. Kamalraj V. Rajendran, Jaya S. Kudavalli, Katherine S. Dunne, Declan G. Gilheany. A U‐Turn in the Asymmetric Appel Reaction: Stereospecific Reduction of Diastereomerically Enriched Alkoxyphosphonium Salts Allows the Asymmetric Synthesis of P ‐Stereogenic Phosphanes and Phosphane Boranes. European Journal of Organic Chemistry 2012, 2012 (14) , 2720-2723. https://doi.org/10.1002/ejoc.201200285
    50. S. Jugé, R. Malacea, A. Tessier. 3.17 Synthetically Derived Auxiliaries: Phosphorus Derivatives. 2012, 528-559. https://doi.org/10.1016/B978-0-08-095167-6.00317-7
    51. Oleg I. Kolodiazhnyi. Recent developments in the asymmetric synthesis of Р-chiral phosphorus compounds. Tetrahedron: Asymmetry 2012, 23 (1) , 1-46. https://doi.org/10.1016/j.tetasy.2012.01.007
    52. Kamalraj V. Rajendran, Declan G. Gilheany. Identification of a key intermediate in the asymmetric Appel process: one pot stereoselective synthesis of P-stereogenic phosphines and phosphine boranes from racemic phosphine oxides. Chemical Communications 2012, 48 (80) , 10040. https://doi.org/10.1039/c2cc34136k
    53. . Introduction. 2010, 1-20. https://doi.org/10.1039/9781849732703-00001
    54. . Resolution of Racemic and Diastereomeric Mixtures. 2010, 21-113. https://doi.org/10.1039/9781849732703-00021
    55. . P -Stereogenic Phosphines Prepared by Enantioselective Deprotonation. 2010, 235-291. https://doi.org/10.1039/9781849732703-00235
    56. Agnes Zsigmond, Ferenc Notheisz, Petr Kluson, Tomas Floris. Chemoselective and Enantioselective Hydrogenations on Immobilized Complexes. 2010, 283-359. https://doi.org/10.1007/978-90-481-3696-4_9
    57. Giulia Erre, Stephan Enthaler, Kathrin Junge, Serafino Gladiali, Matthias Beller. Synthesis and application of chiral monodentate phosphines in asymmetric hydrogenation. Coordination Chemistry Reviews 2008, 252 (5-7) , 471-491. https://doi.org/10.1016/j.ccr.2007.09.021
    58. Luis A. Oro, Daniel Carmona. Rhodium. 2006, 2-30. https://doi.org/10.1002/9783527619382.ch1
    59. John M. Brown. Mechanism of Enantioselective Hydrogenation. 2006, 1073-1103. https://doi.org/10.1002/9783527619382.ch31
    60. Oleg I. Kolodiazhnyi. New achievements in asymmetric synthesis of organophosphorus compounds. 1999, 273-357. https://doi.org/10.1016/S1874-5148(98)80009-2
    61. Oleg I. Kolodiazhnyi. Asymmetric synthesis of organophosphorus compounds. Tetrahedron: Asymmetry 1998, 9 (8) , 1279-1332. https://doi.org/10.1016/S0957-4166(98)00089-5
    62. Abdelhak Benabra, Ana Alcudia, Noureddine Khiar, Inmaculada Fernández, Felipe Alcudia. Unprecedented base effect on the synthesis of chiral phosphinate esters: A new route to P-chiral phosphine oxides of high enantiomeric purity. Tetrahedron: Asymmetry 1996, 7 (12) , 3353-3356. https://doi.org/10.1016/S0957-4166(96)00441-7
    63. Richard K. Haynes, William W.-L. Lam, Lam-Lung Yeung. Stereoselective preparation of functionalized tertiary P-chiral phosphine oxides by nucleophilic addition of lithiated tert-butylphenylphosphine oxide to carbonyl compounds. Tetrahedron Letters 1996, 37 (27) , 4729-4732. https://doi.org/10.1016/0040-4039(96)00952-5
    64. John C. Tebby, Daniel G. Genov, John W. Wheeler. Alkylphosphorus Compounds. 1995, 425-477. https://doi.org/10.1016/B0-08-044705-8/00265-X
    65. . References to Volume 2. 1995, 1103-1295. https://doi.org/10.1016/B0-08-044705-8/09010-5
    66. Cosimo Cardellicchio, Vito Fiandanese, Francesco Naso, Saverio Pacifico, Marek Koprowski, K. Michał Pietrusiewicz. A novel displacement route to P-chiral phosphine oxides of high enantiomeric purity. Tetrahedron Letters 1994, 35 (34) , 6343-6346. https://doi.org/10.1016/S0040-4039(00)73428-9
    67. Jan Omelańczuk. A new, stereoselective interconversion of phosphinothio-phosphinoseleno compounds, reduction of phosphinoseleno derivatives and retro pishchimuka rearrangement based on methylthio- and methylselenophosphonium salts chemistry. Tetrahedron 1993, 49 (39) , 8887-8898. https://doi.org/10.1016/S0040-4020(01)81908-6
    68. Ryszard Bodalski, Jacek Koszuk. SYNTHESIS AND ABSOLUTE CONFIGURATION OF DIASTEREOMERIC MENTHYL BENZYLPHOSPHINATES. Phosphorus, Sulfur, and Silicon and the Related Elements 1989, 44 (1-2) , 99-102. https://doi.org/10.1080/10426508908043711
    69. Donald Valentine. Preparation of the Enantiomers of Compounds Containing Chiral Phosphorus Centers. 1984, 263-312. https://doi.org/10.1016/B978-0-12-507704-0.50008-8
    70. Jerry Donohue, Neil Mandel. Molecular structures of menthylS-methyl (S)p-phenyl phosphonothioate and menthyl methyl(R) p -phenylphosphonate. Journal of Crystal and Molecular Structure 1981, 11 (5-6) , 189-196. https://doi.org/10.1007/BF01210394
    71. Tamio Hayashi, Takaya Mise, Motoo Fukushima, Masahiro Kagotani, Nobuo Nagashima, Yuji Hamada, Akira Matsumoto, Sota Kawakami, Mitsuo Konishi, Keiji Yamamoto, Makoto Kumada. Asymmetric Synthesis Catalyzed by Chiral Ferrocenylphosphine–Transition Metal Complexes. I. Preparation of Chiral Ferrocenylphosphines. Bulletin of the Chemical Society of Japan 1980, 53 (4) , 1138-1151. https://doi.org/10.1246/bcsj.53.1138
    72. Wolf J�rgen Richter. Experimentelle Pr�fung von approximativen Chiralit�tsfunktionen am Beispiel der optischen Aktivit�t von Phosphanen und Phosphinoxiden im Transparenzgebiet. Theoretica Chimica Acta 1980, 58 (1) , 9-18. https://doi.org/10.1007/BF00635719
    73. Michael E. Garst. Alkylation of Phenyl Phosphinic Acid. Synthetic Communications 1979, 9 (4) , 261-266. https://doi.org/10.1080/00397917908064149
    74. Tamio Hayashi, Makoto Kumada. Chiral Ferrocenylphosphines and their Use as Ligands for Transition Metal Complex Catalyzed Asymmetric Synthesis. 1978, 159-180. https://doi.org/10.1007/978-1-4615-7041-7_12
    75. JAMES D. MORRISON, WILLIAM F. MASLER, SUSAN HATHAWAY. ASYMMETRIC HOMOGENEOUS HYDROGENATION WITH CHIRAL RHODIUM-PHOSPHINE CATALYSTS. 1976, 203-233. https://doi.org/10.1016/B978-0-12-605340-1.50014-9
    76. J.D. Morrison, W.F. Masler, M.K. Neuberg. Asymmetric Homogeneous Hydrogenation. 1976, 81-124. https://doi.org/10.1016/S0360-0564(08)60313-2
    77. W. Klyne, J. Buckingham. Compounds containing Chiral Atoms other than Carbon. 1974, 229-238. https://doi.org/10.1007/978-1-4899-6926-2_8
    78. PIERRE CRABBÉ. ORD AND CD OF ORGANIC FUNCTIONAL GROUPS. 1972, 21-110. https://doi.org/10.1016/B978-0-12-194650-0.50006-2
    79. M. Mikołajczyk, J. Omelańczuk, M. Para. Configuration of the optically active phosphorus thioacids—I. Tetrahedron 1972, 28 (14) , 3855-3865. https://doi.org/10.1016/S0040-4020(01)93833-5
    80. T.D. Inch. The use of Carbohydrates in the Synthesis and Configurational Assignments of Optically Active, Non-Carbohydrate Compounds. 1972, 191-225. https://doi.org/10.1016/S0065-2318(08)60400-X
    81. PIERRE CRABBE. Optical Rotatory Dispersion and Circular Dichroism in Organic Chemistry. 1971, 133-205. https://doi.org/10.1016/B978-0-12-513403-3.50009-0
    82. G. Zon, K. Mislow. Studies in phosphorus stereochemistry. , 61-94. https://doi.org/10.1007/BFb0051524
    83. Jean-Claude Chambron, Christiane Dietrich-Buchecker, Jean-Pierre Sauvage. From classical chirality to topologically chiral catenands and knots. , 131-162. https://doi.org/10.1007/BFb0111283
    84. F. De Candia, G. Maglio, A. Musco, G. Paiaro. Molecular asymmetry of π-allylic compounds of transition metals: Epimerization mechanism of chloro-(1-acetyl-2-methyl-π-allyl(S)-α-phenylethylamine palladium(II). Inorganica Chimica Acta 1968, 2 , 233-236. https://doi.org/10.1016/S0020-1693(00)87033-4
    85. M. J. Gallagher, I. D. Jenkins. Stereochemical Aspects of Phosphorus Chemistry. 1968, 1-96. https://doi.org/10.1002/9780470147122.ch1
    86. H. P. Benschop, G. R. van den Berg, H. L. Boter. Organophosphorus compounds VII: The absolute configuration of sarin and related anticholinesterases established by chemical correlation. Recueil des Travaux Chimiques des Pays-Bas 1968, 87 (4) , 387-395. https://doi.org/10.1002/recl.19680870408
    87. H. L. Boter. Organophosphorus compounds VIII derivation of the molecular rotation of (R)‐sarin using Brewster's asymmetry rules. Recueil des Travaux Chimiques des Pays-Bas 1968, 87 (8) , 957-960. https://doi.org/10.1002/recl.19680870812
    88. Arthur W. Herriott, Kurt Mislow. Rearrangement of allyl phosphinites and optical stability of allyl phosphine oxides. Tetrahedron Letters 1968, 9 (25) , 3013-3016. https://doi.org/10.1016/S0040-4039(00)89634-3

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 1967, 89, 18, 4784–4786
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja00994a037
    Published August 1, 1967

    Article Views

    720

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.