ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Matrix infrared spectra of hypobromous acid and hypochlorous acid

Cite this: J. Am. Chem. Soc. 1967, 89, 24, 6006–6008
Publication Date (Print):November 1, 1967
https://doi.org/10.1021/ja01000a002
    ACS Legacy Archive

    Article Views

    204

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 57 publications.

    1. Peter K. Stoimenov,, Vladimir Zaikovski, and, Kenneth J. Klabunde. Novel Halogen and Interhalogen Adducts of Nanoscale Magnesium Oxide. Journal of the American Chemical Society 2003, 125 (42) , 12907-12913. https://doi.org/10.1021/ja030195l
    2. L. Schriver-Mazzuoli,, A. Schriver,, J. M. Coanga, and, M. Steers. Vibrational Spectra and 266 nm Photochemistry of ClNO2 Thin Films and ClNO2 in Amorphous Water Ice. The Journal of Physical Chemistry A 2003, 107 (26) , 5181-5188. https://doi.org/10.1021/jp021328c
    3. Hans-Jörg Himmel,, Anthony J. Downs, and, Tim M. Greene. Reactions of Ground State and Electronically Excited Atoms of Main Group Elements:  a Matrix Perspective. Chemical Reviews 2002, 102 (11) , 4191-4242. https://doi.org/10.1021/cr020405x
    4. Bradley A. Flowers and, Joseph S. Francisco. Ab Initio Characterization of the Structure, Vibrational, and Energetic Properties of Br-·HOCl, Cl-·HOBr, and Br-·HOBr Anionic Complexes. The Journal of Physical Chemistry A 2001, 105 (2) , 494-500. https://doi.org/10.1021/jp003229+
    5. Trevor Ingham,, Dieter Bauer,, Jochen Landgraf, and, John N. Crowley. Ultraviolet−Visible Absorption Cross Sections of Gaseous HOBr. The Journal of Physical Chemistry A 1998, 102 (19) , 3293-3298. https://doi.org/10.1021/jp980272c
    6. I. R. Beattie,, T. R. Gilson, and, P. J. Jones. Vapor Phase Vibrational Spectra for Re2O7 and the Infrared Spectrum of Gaseous HReO4. Molecular Shapes of Mn2O7, Tc2O7, and Re2O7. Inorganic Chemistry 1996, 35 (5) , 1301-1304. https://doi.org/10.1021/ic950675g
    7. Klas Johnsson,, Anders Engdahl, and, Bengt Nelander. IR and Photodecomposition Spectroscopic Study of HOClO and HClO2 in Argon Matrices. The Journal of Physical Chemistry 1996, 100 (10) , 3923-3926. https://doi.org/10.1021/jp952868v
    8. Joseph S. Francisco, , Michael R. Hand and, Ian H. Williams. Ab Initio Study of the Electronic Spectrum of HOBr. The Journal of Physical Chemistry 1996, 100 (22) , 9250-9253. https://doi.org/10.1021/jp9529782
    9. Balázs Rácsai, Tibor Furtenbacher, Luciano Fusina, Gianfranco Di Lonardo, Attila G. Császár. MARVEL analysis of the high-resolution rovibrational spectra of H16O35Cl. Journal of Molecular Spectroscopy 2022, 384 , 111561. https://doi.org/10.1016/j.jms.2021.111561
    10. Liang Zhang, Bin Jiang. A quantum wavepacket study of state-to-state photodissociation dynamics of HOBr/DOBr. Chinese Journal of Chemical Physics 2020, 33 (2) , 173-182. https://doi.org/10.1063/1674-0068/cjcp1911214
    11. Lucas M.S.G.A. Applegarth, Christopher Alcorn, Katherine Bissonette, John Noël, Peter R. Tremaine. Non-Complexing Anions for Quantitative Speciation Studies Using Raman Spectroscopy in Fused Silica High-Pressure Optical Cells under Hydrothermal Conditions. Applied Spectroscopy 2015, 69 (8) , 972-983. https://doi.org/10.1366/14-07825
    12. Konstantin Hadjiivanov. Identification and Characterization of Surface Hydroxyl Groups by Infrared Spectroscopy. 2014, 99-318. https://doi.org/10.1016/B978-0-12-800127-1.00002-3
    13. Nirmal Kumar Sarkar, Joydeep Choudhury, Ramendu Bhattacharjee. Study of the vibrational spectra of bent XYZ molecule: An algebraic approach. Vibrational Spectroscopy 2012, 60 , 63-67. https://doi.org/10.1016/j.vibspec.2011.10.007
    14. Leonid Khriachtchev, Salla Tapio, Alexandra V. Domanskaya, Markku Räsänen, Karoliina Isokoski, Jan Lundell. HXeOBr in a xenon matrix. The Journal of Chemical Physics 2011, 134 (12) https://doi.org/10.1063/1.3570826
    15. Nobuyuki Akai, Daisuke Wakamatsu, Takeo Yoshinobu, Akio Kawai, Kazuhiko Shibuya. Matrix-isolation infrared spectra of HOOBr and HOBrO produced upon VUV light irradiation of HBr/O2/Ne system. Chemical Physics Letters 2010, 499 (1-3) , 117-120. https://doi.org/10.1016/j.cplett.2010.09.039
    16. Takeo Yoshinobu, Nobuyuki Akai, Akio Kawai, Kazuhiko Shibuya. Neon matrix-isolation infrared spectrum of HOOCl measured upon the VUV-light irradiation of an HCl/O2 mixture. Chemical Physics Letters 2009, 477 (1-3) , 70-74. https://doi.org/10.1016/j.cplett.2009.06.064
    17. . Applications in Inorganic Chemistry. 2008, 149-354. https://doi.org/10.1002/9780470405840.ch2
    18. Daniel P. Cherney, Stephen E. Duirk, James C. Tarr, Timothy W. Collette. Monitoring the Speciation of Aqueous Free Chlorine from pH 1 to 12 with Raman Spectroscopy to Determine the Identity of the Potent Low-pH Oxidant. Applied Spectroscopy 2006, 60 (7) , 764-772. https://doi.org/10.1366/000370206777887062
    19. Helmut Beckers, Simone Esser, Thorsten Metzroth, Markus Behnke, Helge Willner, Jürgen Gauss, Josef Hahn. Low‐Pressure Pyrolysis of t Bu 2 SO: Synthesis and IR Spectroscopic Detection of HSOH. Chemistry – A European Journal 2006, 12 (3) , 832-844. https://doi.org/10.1002/chem.200500104
    20. Anders Engdahl, Bengt Nelander. The binary complex between hydrogen peroxide and ozone: A matrix isolation study. Chemical Physics 2003, 293 (2) , 203-209. https://doi.org/10.1016/S0301-0104(03)00314-8
    21. Anders Engdahl, Gunnar Karlström, Bengt Nelander. The water–hydroxyl radical complex: A matrix isolation study. The Journal of Chemical Physics 2003, 118 (17) , 7797-7802. https://doi.org/10.1063/1.1563608
    22. A. Engdahl, B. Nelander. The Vibrational Spectrum of H 2 O 3. Science 2002, 295 (5554) , 482-483. https://doi.org/10.1126/science.1067235
    23. Cristina Maria P Santos, Roberto B Faria, Juan O Machuca-Herrera, Sérgio de P Machado. Equilibrium geometry, vibrational frequencies, and heat of formation of HOBr, HBrO 2 , and HBrO 3 isomers. Canadian Journal of Chemistry 2001, 79 (7) , 1135-1144. https://doi.org/10.1139/v01-082
    24. László Füsti-Molnár, Péter G. Szalay, Gabriel G. Balint-Kurti. Photodissociation of HOBr. I. Ab initio potential energy surfaces for the three lowest electronic states and calculation of rotational–vibrational energy levels and wave functions. The Journal of Chemical Physics 1999, 110 (17) , 8448-8460. https://doi.org/10.1063/1.478754
    25. Günther Maier, Axel Bothur, Jürgen Eckwert, Hans Peter Reisenauer, Thomas Stumpf. Isofulminic Acid – Phantom or Reality?. Liebigs Annalen 1997, 1997 (12) , 2505-2517. https://doi.org/10.1002/jlac.199719971213
    26. Paolo Palmieri, Cristina Puzzarini, Riccardo Tarroni. The potential energy and dipole moment surfaces of HOBr. Chemical Physics Letters 1996, 256 (4-5) , 409-416. https://doi.org/10.1016/0009-2614(96)00482-4
    27. Ronald J. Gillespie, Edward A. Robinson. Electron Domains and the VSEPR Model of Molecular Geometry. Angewandte Chemie International Edition in English 1996, 35 (5) , 495-514. https://doi.org/10.1002/anie.199604951
    28. Ronald J. Gillespie, Edward A. Robinson. Elektronendomänen und das VSEPR‐Modell der Molekülgeometrie. Angewandte Chemie 1996, 108 (5) , 539-560. https://doi.org/10.1002/ange.19961080506
    29. Marilyn E. Jacox. The vibrational energy levels of small transient molecules isolated in neon and argon matrices. Chemical Physics 1994, 189 (2) , 149-170. https://doi.org/10.1016/0301-0104(94)00143-X
    30. B. Ruscic, J. Berkowitz. Experimental determination of Δ H f (HOBr) and ionization potentials (HOBr): Implications for corresponding properties of HOI. The Journal of Chemical Physics 1994, 101 (9) , 7795-7803. https://doi.org/10.1063/1.468273
    31. P. S. Monks, L. J. Stief, M. Krauss, S. C. Kuo, R. B. Klemm. A discharge flow-photoionization mass spectrometric study of HOBr( X  1 A ′): Photoion yield spectrum, ionization energy, and thermochemistry. The Journal of Chemical Physics 1994, 100 (3) , 1902-1907. https://doi.org/10.1063/1.466543
    32. I. Barnes, K.H. Becker, J. Starcke. FTIR spectroscopic observation of gaseous HOI. Chemical Physics Letters 1992, 196 (6) , 578-582. https://doi.org/10.1016/0009-2614(92)85997-O
    33. Yoshinori Koga, Harutoshi Takeo, Shigeo Kondo, Masaaki Sugie, Chi Matsumura, G.A. McRae, E.A. Cohen. The rotational spectra, molecular structure, dipole moment, and hyperfine constants of HOBr and DOBr. Journal of Molecular Spectroscopy 1989, 138 (2) , 467-481. https://doi.org/10.1016/0022-2852(89)90013-1
    34. I. Barnes, V. Bastian, K. H. Becker, R. Overath, Zhu Tong. Rate constants for the reactions of Br atoms with a series of alkanes, alkenes, and alkynes in the presence of O 2. International Journal of Chemical Kinetics 1989, 21 (7) , 499-517. https://doi.org/10.1002/kin.550210703
    35. Bing-Ming Cheng, Yuan-Pern Lee. Production and trapping of gaseous dimeric ClO: The infrared spectrum of chlorine peroxide (ClOOCl) in solid argon. The Journal of Chemical Physics 1989, 90 (11) , 5930-5935. https://doi.org/10.1063/1.456359
    36. S.D. Allen, M. Poliakoff, J.J. Turner. Photochemistry of an ozone-bromine complex; the IR spectrum of matrix isolated Br2O. Journal of Molecular Structure 1987, 157 (1-3) , 1-15. https://doi.org/10.1016/0022-2860(87)87078-3
    37. Takao Oi, Takanobu Ishida. Orthogonal Approximation and Classification of Molecules for Zero-Point Energy Shifts Due to H/D Isotope Substitutions. Bulletin of the Chemical Society of Japan 1986, 59 (11) , 3669-3671. https://doi.org/10.1246/bcsj.59.3669
    38. W.Darlene Anderson, M.C.L. Gerry, R.Wellington Davis. The microwave spectrum of isotopically substituted hypochlorous acid: Determination of the molecular structure. Journal of Molecular Spectroscopy 1986, 115 (1) , 117-130. https://doi.org/10.1016/0022-2852(86)90280-8
    39. Frank Garisto. Ideal gas thermodynamic properties of hypoiodous acid. Thermochimica Acta 1983, 63 (2) , 251-253. https://doi.org/10.1016/0040-6031(83)80090-2
    40. A. C. Luntz. Product state distribution in the reaction O(1 D 2)+HCl→OH+Cl. The Journal of Chemical Physics 1980, 73 (10) , 5393-5395. https://doi.org/10.1063/1.439934
    41. J. P. Perchard. Chemical Reactivity in Inert Matrices. 1980, 99-127. https://doi.org/10.1007/978-94-010-9716-1_4
    42. J.S Wells, R.L Sams, W.J Lafferty. The high resolution infrared spectrum of the ν1 band of HOCl. Journal of Molecular Spectroscopy 1979, 77 (3) , 349-364. https://doi.org/10.1016/0022-2852(79)90177-2
    43. Ralph P. Cooney, Peter Tsai. Aromatic bromination catalysis on zeolites. I—Raman spectra of activated adsorbed bromine. Journal of Raman Spectroscopy 1979, 8 (4) , 195-198. https://doi.org/10.1002/jrs.1250080404
    44. Peter Botschwina. Vibrational frequencies from anharmonic ab initio/empirical potential energy functions. I. Method and application to H2O, HNO, HOF and HOCl. Chemical Physics 1979, 40 (1-2) , 33-44. https://doi.org/10.1016/0301-0104(79)85116-2
    45. J.N. Murrell, S. Carter, I.M. Mills, M.F. Guest. Analytical potentials for triatomic molecules from spectroscopic data. Molecular Physics 1979, 37 (4) , 1199-1222. https://doi.org/10.1080/00268977900100881
    46. S.S. Prasad, R.L. Jaffe, R.C. Whitten, R.P. Turco. Reservoirs of atmospheric chlorine: Prospects for HOCl revisted. Planetary and Space Science 1978, 26 (11) , 1017-1026. https://doi.org/10.1016/0032-0633(78)90025-9
    47. N. Walker, D. E. Tevault, R. R. Smardzewski. Matrix reactions of ozone and oxygen atoms with hydrogen iodide. HOI formation. The Journal of Chemical Physics 1978, 69 (2) , 564-568. https://doi.org/10.1063/1.436647
    48. D. Colbourne, D. C. Frost, C. A. McDowell, N. P. C. Westwood. The photoelectron spectra of the isoelectronic molecules hypochlorous acid HOCl and chloramine NH2Cl. The Journal of Chemical Physics 1978, 68 (8) , 3574-3580. https://doi.org/10.1063/1.436214
    49. R. L. Jaffe, S. R. Langhoff. Theoretical study of the photodissociation of HOCl. The Journal of Chemical Physics 1978, 68 (4) , 1638-1648. https://doi.org/10.1063/1.435930
    50. R. R. Smardzewski, M. C. Lin. Matrix reactions of oxygen atoms with H2S molecules. The Journal of Chemical Physics 1977, 66 (7) , 3197-3204. https://doi.org/10.1063/1.434294
    51. Robert C. Spiker, Lester Andrews. Matrix reactions of alkali metal atoms with ozone: Infrared spectra of the alkali metal ozonide molecules. The Journal of Chemical Physics 1973, 59 (4) , 1851-1862. https://doi.org/10.1063/1.1680270
    52. T. Gymkowski, D.G. Lambert, H.S. Kimmel. Infrared spectral studies of the reaction of KMnO4 in a KI disk. Journal of Inorganic and Nuclear Chemistry 1972, 34 (6) , 1841-1846. https://doi.org/10.1016/0022-1902(72)80531-1
    53. Marilyn E Jacox, Dolphus E Milligan. Spectrum and structure of the HO2 free radical. Journal of Molecular Spectroscopy 1972, 42 (3) , 495-513. https://doi.org/10.1016/0022-2852(72)90225-1
    54. J.E.D. Davies. The effect of phase and pressure changes on vibrational spectra. Journal of Molecular Structure 1971, 10 (1) , 1-30. https://doi.org/10.1016/0022-2860(71)87057-6
    55. Lester Andrews, James I. Raymond. Argon Matrix Infrared Spectrum of the ClO Radical. The Journal of Chemical Physics 1971, 55 (7) , 3087-3094. https://doi.org/10.1063/1.1676550
    56. J.W. Hastie, R.H. Hauge, J.L. Margrave. MATRIX ISOLATION SPECTROSCOPY. 1970, 57-106. https://doi.org/10.1016/B978-0-12-580201-7.50009-6
    57. T. S. Hermann, S. R. Harvey. Infrared Spectroscopy at Sub-Ambient Temperatures: I. Literature Review. Applied Spectroscopy 1969, 23 (5) , 435-450. https://doi.org/10.1366/000370269774380563

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect