ACS Publications. Most Trusted. Most Cited. Most Read
The Heats of Combustion of Cyclopentane, Cyclohexane, Cycloheptane and Cyclooctane
My Activity

Figure 1Loading Img
    article

    The Heats of Combustion of Cyclopentane, Cyclohexane, Cycloheptane and Cyclooctane
    Click to copy article linkArticle link copied!

    ACS Legacy Archive
    Other Access Options

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 1947, 69, 2, 211–213
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja01194a006
    Published February 1, 1947

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 38 publications.

    1. Mohammednoor Altarawneh and Bogdan Z. Dlugogorski . A Mechanistic and Kinetic Study on the Decomposition of Morpholine. The Journal of Physical Chemistry A 2012, 116 (29) , 7703-7711. https://doi.org/10.1021/jp303463j
    2. B. Sirjean, P. A. Glaude, M. F. Ruiz-Lopèz and R. Fournet . Theoretical Kinetic Study of Thermal Unimolecular Decomposition of Cyclic Alkyl Radicals. The Journal of Physical Chemistry A 2008, 112 (46) , 11598-11610. https://doi.org/10.1021/jp805640s
    3. Richard M. Watson,, Yury A. Skorik,, Goutam K. Patra, and, Catalina Achim. Influence of Metal Coordination on the Mismatch Tolerance of Ligand-Modified PNA Duplexes. Journal of the American Chemical Society 2005, 127 (42) , 14628-14639. https://doi.org/10.1021/ja051336h
    4. Loc T. Nguyen, Tam V.-T. Mai, Lam K. Huynh. Ab initio kinetics of OH-initiated oxidation of tetralin: New insight into a mixed saturated-unsaturated ring compound. Fuel 2024, 374 , 132427. https://doi.org/10.1016/j.fuel.2024.132427
    5. Errol G. Lewars. Ab Initio Calculations. 2024, 199-432. https://doi.org/10.1007/978-3-031-51443-2_5
    6. Hussain A. AlNazr, Nabeel Ahmad, Usama Ahmed, Balaji Mohan, Abdul Gani Abdul Jameel. Predicting physical properties of oxygenated gasoline and diesel range fuels using machine learning. Alexandria Engineering Journal 2023, 76 , 193-219. https://doi.org/10.1016/j.aej.2023.06.037
    7. Anita Rágyanszki, Béla Fiser, Edward Lee‐Ruff, Joel F. Liebman. Strained Small Nitrogen Heterocycles‐Azabicyclobutanes and Azirines. ChemistrySelect 2023, 8 (26) https://doi.org/10.1002/slct.202301405
    8. Jing Zhou, Junlin Zhang, Bozhou Wang, Lili Qiu, Ruoqian Xu, Aleksei B. Sheremetev. Recent synthetic efforts towards high energy density materials: How to design high-performance energetic structures?. FirePhysChem 2022, 2 (2) , 83-139. https://doi.org/10.1016/j.fpc.2021.09.005
    9. Anita Rágyanszki, Béla Fiser, Edward Lee‐Ruff, Joel F. Liebman. Photochemical Valence Isomerization to High Energy Products—Bicyclobutanes and Oxabicyclobutanes †. Photochemistry and Photobiology 2021, 97 (6) , 1353-1364. https://doi.org/10.1111/php.13472
    10. Karl Sohlberg. Thermodynamic and Kinetic Considerations Regarding the Prospects for a Dual-Purpose Hydrogen Extraction and Separation Membrane. Energies 2021, 14 (8) , 2136. https://doi.org/10.3390/en14082136
    11. Errol G. Lewars. Ab initio Calculations. 2016, 193-419. https://doi.org/10.1007/978-3-319-30916-3_5
    12. Nadia Sebbar, Joseph W. Bozzelli, Henning Bockhorn. Comparison of RC( O) OOH, RC( O)O OH and R(C O)OO H bond dissociation energies with RC OOH, RCO OH and RCOO H, R as phenyl, vinyl and alkyl groups. Chemical Physics Letters 2015, 629 , 102-112. https://doi.org/10.1016/j.cplett.2015.03.040
    13. Errol G. Lewars. Ab initio Calculations. 2011, 175-390. https://doi.org/10.1007/978-90-481-3862-3_5
    14. Sierra Rayne, Kaya Forest. Gas-phase enthalpies of formation, acidities, and strain energies of the [m, n]polyprismanes (m ≥ 2; n = 3–8; m × n ≤ 16): a CBS-Q//B3, G4MP2, and G4 theoretical study. Theoretical Chemistry Accounts 2010, 127 (5-6) , 697-709. https://doi.org/10.1007/s00214-010-0780-0
    15. Joel F. Liebman, Suzanne W. Slayden. Thermochemistry of Cyclobutane and Its Derivatives. 2009https://doi.org/10.1002/9780470682531.pat0318
    16. Joseph W. Bozzelli, Indumathi Rajasekaran. Thermochemistry of Oxabicyclo-Heptanes, Oxabicyclo-Heptene: Enthalpy of Formation, Entropy, Heat Capacity, and Group Additivity. Journal of Physical and Chemical Reference Data 2007, 36 (2) , 663-681. https://doi.org/10.1063/1.2734558
    17. E. V. Sagadeev, V. P. Barabanov. Calculations of the enthalpies of combustion of organic compounds by the additive scheme. Russian Journal of Physical Chemistry 2006, 80 (S1) , S152-S162. https://doi.org/10.1134/S0036024406130255
    18. A. K. Basak, M. Ghosh, S. K. Mazumdar, S. Chaudhuri. Crystal and molecular structure of 6-chloro-3-cyclopentylmethyl-3,4-dihydro-7-sulfamyl-2H-1,2,4-benzothiadiazine-1,1-dioxide. Journal of Crystallographic and Spectroscopic Research 1989, 19 (3) , 547-560. https://doi.org/10.1007/BF01185390
    19. Benzion Fuchs. Conformations of Five‐Membered Rings. 1979, 1-94. https://doi.org/10.1002/9780470147191.ch1
    20. A. Welter, M. Marlier, G. Dardenne. Conformation De L'Acide 3‐(Aminocarboxymethyl) 2‐Pyrrolidone 5‐Carboxylique. Bulletin des Sociétés Chimiques Belges 1975, 84 (3) , 243-252. https://doi.org/10.1002/bscb.19750840317
    21. Robert L. Lipnick. NMR spectroscopy of cyclopentane derivatives. Journal of Molecular Structure 1974, 21 (3) , 411-421. https://doi.org/10.1016/0022-2860(74)80091-8
    22. Shinichi Isaoka, Kunio Kogami, Ju Kumanotani. The oligomerization of acetylenic esters with Ni(CO) 4 via cyclic intermediate. Die Makromolekulare Chemie 1970, 135 (1) , 1-7. https://doi.org/10.1002/macp.1970.021350101
    23. R. C. Wilhoit, X. Hong, M. Frenkel, K. R. Hall. 2 Alkylcycloalkanes, CnH2n. , 17-245. https://doi.org/10.1007/10567486_3
    24. R. C. Wilhoit, X. Hong, M. Frenkel, K. R. Hall. References for 2-6. , 409-440. https://doi.org/10.1007/10567486_8
    25. Manfred Wilk, Paul Bleuel, Jürgen Rochlitz. Einfluß der 2.3‐Cyclisierung und der Substitution in 6‐Stellung auf die Elektronenspektren einiger Chinoline. Justus Liebigs Annalen der Chemie 1968, 712 (1) , 84-92. https://doi.org/10.1002/jlac.19687120111
    26. C. Altona, H.J. Geise, C. Romers. Conformation of non-aromatic ring Compounds—XXV. Tetrahedron 1968, 24 (1) , 13-32. https://doi.org/10.1016/0040-4020(68)89003-9
    27. M. Bixon, S. Lifson. Potential functions and conformations in cycloalkanes. Tetrahedron 1967, 23 (2) , 769-784. https://doi.org/10.1016/0040-4020(67)85023-3
    28. R.D. Sands. The pinacol rearrangement of cyclopentylcycloheptane-1,1'-diol. Tetrahedron 1965, 21 (4) , 887-890. https://doi.org/10.1016/0040-4020(65)80024-2
    29. J.D. Cox. A bond energy scheme—II. Tetrahedron 1963, 19 (7) , 1175-1184. https://doi.org/10.1016/S0040-4020(01)98577-1
    30. R.J. Abraham, K.A. McLauchlan. The proton resonance spectra and conformations of the prolines. Molecular Physics 1962, 5 (5) , 513-523. https://doi.org/10.1080/00268976200100581
    31. . REFERENCES. 1962, 202-213. https://doi.org/10.1016/B978-0-08-013769-8.50015-7
    32. D. E. Koshland. The Active Site and Enzyme Action. 1960, 45-97. https://doi.org/10.1002/9780470122679.ch2
    33. Thomas L. Allen. Bond Energies and the Interactions between Next-Nearest Neighbors. I. Saturated Hydrocarbons, Diamond, Sulfanes, S8, and Organic Sulfur Compounds. The Journal of Chemical Physics 1959, 31 (4) , 1039-1049. https://doi.org/10.1063/1.1730501
    34. L. Schotsmans, P. J. C. Fierens, Th. Verlie. Études Cinétiques en Série Alicyclique III. Bromocycloalcanes: substitution Nucléophile Bimoléculaire Irréversible par les ions Iodure, et Solvolyse. Bulletin des Sociétés Chimiques Belges 1959, 68 (10-12) , 580-598. https://doi.org/10.1002/bscb.19590681006
    35. Alfons Schöberl, Heinz Gräfje. Darstellung und Reaktivität cyclischer Disulfide mit verschiedener Ringweite. Justus Liebigs Annalen der Chemie 1958, 614 (1) , 66-83. https://doi.org/10.1002/jlac.19586140108
    36. Rolf Huisgen. Neuere Beiträge zur Chemie mittlerer Ringe. Angewandte Chemie 1957, 69 (11) , 341-359. https://doi.org/10.1002/ange.19570691102
    37. J. D. Dunitz, Verner Schomaker. The Molecular Structure of Cyclobutane. The Journal of Chemical Physics 1952, 20 (11) , 1703-1707. https://doi.org/10.1063/1.1700271
    38. Sj. Kaarsemaker, J. Coops. Thermal quantities of some cycloparaffins. Part III. results of measurements. Recueil des Travaux Chimiques des Pays-Bas 1952, 71 (3) , 261-276. https://doi.org/10.1002/recl.19520710307

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 1947, 69, 2, 211–213
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja01194a006
    Published February 1, 1947

    Article Views

    534

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.