THE TOTAL SYNTHESIS OF QUININE1Click to copy article linkArticle link copied!
Note: In lieu of an abstract, this is the article's first page.
Cited By
This article is cited by 81 publications.
- Jeffrey I. Seeman. Revolutions in Chemistry: Assessment of Six 20th Century Candidates (The Instrumental Revolution; Hückel Molecular Orbital Theory; Hückel’s 4n + 2 Rule; the Woodward–Hoffmann Rules; Quantum Chemistry; and Retrosynthetic Analysis). JACS Au 2023, 3
(9)
, 2378-2401. https://doi.org/10.1021/jacsau.3c00278
- Lei Li, Hua-Fei Yang, Qian-Hui Ding, Kun Wei, Yu-Rong Yang. Total Syntheses of Cinchona Alkaloids via Photoredox-Catalyzed Deoxygenative Arylation. Organic Letters 2023, 25
(24)
, 4586-4591. https://doi.org/10.1021/acs.orglett.3c01659
- Jeffrey I. Seeman, Mark C. House. “For Its Size, the Most Complex Natural Product Known.” Who Deserves Credit for Determining the Structure of Strychnine?. ACS Central Science 2022, 8
(6)
, 672-681. https://doi.org/10.1021/acscentsci.1c01348
- Francesco Trenti, Kotaro Yamamoto, Benke Hong, Christian Paetz, Yoko Nakamura, Sarah E. O’Connor. Early and Late Steps of Quinine Biosynthesis. Organic Letters 2021, 23
(5)
, 1793-1797. https://doi.org/10.1021/acs.orglett.1c00206
- Melissa A. Hardy, Brandon A. Wright, J. Logan Bachman, Timothy B. Boit, Hannah M. S. Haley, Rachel R. Knapp, Robert F. Lusi, Taku Okada, Veronica Tona, Neil K. Garg, Richmond Sarpong. Treating a Global Health Crisis with a Dose of Synthetic Chemistry. ACS Central Science 2020, 6
(7)
, 1017-1030. https://doi.org/10.1021/acscentsci.0c00637
- Mengchao Tong, Sinan Wang, Jinchen Zhuang, Cong Qin, Hao Li, and Wei Wang . Direct Access of the Chiral Quinolinyl Core of Cinchona Alkaloids via a Brønsted Acid and Chiral Amine Co-catalyzed Chemo- and Enantioselective α-Alkylation of Quinolinylmethanols with Enals. Organic Letters 2018, 20
(4)
, 1195-1199. https://doi.org/10.1021/acs.orglett.8b00118
- Jeffrey I. Seeman. Woodward–Hoffmann’s Stereochemistry of Electrocyclic Reactions: From Day 1 to the JACS Receipt Date (May 5, 1964 to November 30, 1964). The Journal of Organic Chemistry 2015, 80
(23)
, 11632-11671. https://doi.org/10.1021/acs.joc.5b01792
- Cátia Teixeira, Nuno Vale, Bianca Pérez, Ana Gomes, José R. B. Gomes, and Paula Gomes . “Recycling” Classical Drugs for Malaria. Chemical Reviews 2014, 114
(22)
, 11164-11220. https://doi.org/10.1021/cr500123g
- Ahmad Al-Mestarihi, Anthony Romo, Hung-wen Liu, and Brian O. Bachmann . Nitrososynthase-Triggered Oxidative Carbon–Carbon Bond Cleavage in Baumycin Biosynthesis. Journal of the American Chemical Society 2013, 135
(31)
, 11457-11460. https://doi.org/10.1021/ja404987r
- Karina Ap. F. D. Souza and Paulo A. Porto . History and Epistemology of Science in the Classroom: The Synthesis of Quinine as a Proposal. Journal of Chemical Education 2012, 89
(1)
, 58-63. https://doi.org/10.1021/ed1003542
- Frank-Gerrit Klärner, Maitland Jones, Jr. and Ronald M. Magid. William von Eggers Doering’s Many Research Achievements during the First 65 Years of his Career in Chemistry. Accounts of Chemical Research 2009, 42
(1)
, 169-181. https://doi.org/10.1021/ar800100h
- Peter Webber and Michael J. Krische. Concise Stereocontrolled Formal Synthesis of (±)-Quinine and Total Synthesis of (±)-7- Hydroxyquinine via Merged Morita−Baylis−Hillman−Tsuji−Trost Cyclization. The Journal of Organic Chemistry 2008, 73
(23)
, 9379-9387. https://doi.org/10.1021/jo802165k
- Gilbert Stork,, Deqiang Niu,, A. Fujimoto,, Emil R. Koft,, James M. Balkovec,, James R. Tata, and, Gregory R. Dake. The First Stereoselective Total Synthesis of Quinine. Journal of the American Chemical Society 2001, 123
(14)
, 3239-3242. https://doi.org/10.1021/ja004325r
- Alex C. Bissember. The Quinine Odyssey: A Barometer of the State of Organic Synthesis Over Centuries. Chemistry – A European Journal 2024, 30
(69)
https://doi.org/10.1002/chem.202403021
- Blaise Kimbadi Lombe, Tingan Zhou, Lorenzo Caputi, Kerstin Ploss, Sarah E. O'Connor. Biosynthetic Origin of the Methoxy Group in Quinine and Related Alkaloids. Angewandte Chemie International Edition 2024, 10 https://doi.org/10.1002/anie.202418306
- Blaise Kimbadi Lombe, Tingan Zhou, Lorenzo Caputi, Kerstin Ploss, Sarah E. O'Connor. Biosynthetic Origin of the Methoxy Group in Quinine and Related Alkaloids. Angewandte Chemie 2024, https://doi.org/10.1002/ange.202418306
- Takahiro Terunuma, Genki Kawauchi, Yujiro Hayashi. Organocatalyst Mediated Pot‐Economical Total Synthesis of (−)‐Quinine and its Derivatives. Asian Journal of Organic Chemistry 2023, 12
(12)
https://doi.org/10.1002/ajoc.202300256
- Jeffrey I. Seeman. My first and my latest publication. Journal of Physical Organic Chemistry 2022, 35
(11)
https://doi.org/10.1002/poc.4344
- Bharti Singal, Jyoti Chhibber‐Goel. The Imminent Threat of Antimalarial Drug Resistance. 2022, 105-131. https://doi.org/10.1002/9783527830589.ch5
- Jeffrey I. Seeman. Fifty Years of a Dispute. A Triptych: Why Woodward?**. The Chemical Record 2022, 22
(9)
https://doi.org/10.1002/tcr.202200150
- Jeffrey I. Seeman. The Many Chemists Who Could Have Proposed the Woodward‐Hoffmann Rules (Including Roald Hoffmann) But Didn't: The Theoretical and Physical Chemists
†
**. The Chemical Record 2022, 22
(5)
https://doi.org/10.1002/tcr.202200052
- Vitória de Souza Fernandes, Rafael da Rosa, Lara A. Zimmermann, Kamilla R. Rogério, Arthur E. Kümmerle, Lilian S. C. Bernardes, Cedric S. Graebin. Antiprotozoal agents: How have they changed over a decade?. Archiv der Pharmazie 2022, 355
(2)
https://doi.org/10.1002/ardp.202100338
- Hamza Hameed, Elizabeth F. B. King, Katerina Doleckova, Barbara Bartholomew, Jackie Hollinshead, Haddijatou Mbye, Imran Ullah, Karen Walker, Maria Van Veelen, Somaia Saif Abou-Akkada, Robert J. Nash, Paul D. Horrocks, Helen P. Price. Temperate Zone Plant Natural Products—A Novel Resource for Activity against Tropical Parasitic Diseases. Pharmaceuticals 2021, 14
(3)
, 227. https://doi.org/10.3390/ph14030227
- Shinya Shiomi, Hayato Ishikawa. Total Synthesis of Enantioenriched Quinine. Journal of Synthetic Organic Chemistry, Japan 2021, 79
(2)
, 145-154. https://doi.org/10.5059/yukigoseikyokaishi.79.145
- Jeffrey I. Seeman. The Relationship of William Henry Perkin, Jr. and Sir Robert Robinson: Teacher and Student, then Student and Teacher. Chemistry – A European Journal 2021, 27
(5)
, 1576-1591. https://doi.org/10.1002/chem.202002924
- Hari Madhav, Nasimul Hoda. An insight into the recent development of the clinical candidates for the treatment of malaria and their target proteins. European Journal of Medicinal Chemistry 2021, 210 , 112955. https://doi.org/10.1016/j.ejmech.2020.112955
- Jiarui Yang, Dingsheng Wang, Yadong Li. Identifying the Types and Characterization of the Active Sites on M−X−C Single‐Atom Catalysts. ChemPhysChem 2020, 21
(23)
, 2486-2496. https://doi.org/10.1002/cphc.202000595
- Brian Wang, Melecio A. Perea, Richmond Sarpong. Übergangsmetallvermittelte Spaltung von C‐C‐Einfachbindungen. Angewandte Chemie 2020, 132
(43)
, 19058-19080. https://doi.org/10.1002/ange.201915657
- Brian Wang, Melecio A. Perea, Richmond Sarpong. Transition Metal‐Mediated C−C Single Bond Cleavage: Making the Cut in Total Synthesis. Angewandte Chemie International Edition 2020, 59
(43)
, 18898-18919. https://doi.org/10.1002/anie.201915657
- Yan Jiang, Luca Deiana, Kaiheng Zhang, Shuangzheng Lin, Armando Córdova. Total Asymmetric Synthesis of Quinine, Quinidine, and Analogues via Catalytic Enantioselective Cascade Transformations. European Journal of Organic Chemistry 2019, 2019
(35)
, 6016-6023. https://doi.org/10.1002/ejoc.201901003
- Fyaz M.D. Ismail. Nature's Armamentarium against Malaria: Antimalarials and Their Semisynthetic Derivatives. 2019, 333-373. https://doi.org/10.1002/9781119436713.ch13
- ELIEZER J. BARREIRO. What is hidden in the biodiversity? The role of natural products and medicinal chemistry in the drug discovery process. Anais da Academia Brasileira de Ciências 2019, 91
(suppl 3)
https://doi.org/10.1590/0001-3765201920190306
- Wentao Liu, Wenfang Qin, Xiaobei Wang, Fei Xue, Xiao‐Yu Liu, Yong Qin. Bioinspired Synthesis of (+)‐Cinchonidine Using Cascade Reactions. Angewandte Chemie 2018, 130
(38)
, 12479-12482. https://doi.org/10.1002/ange.201804848
- Wentao Liu, Wenfang Qin, Xiaobei Wang, Fei Xue, Xiao‐Yu Liu, Yong Qin. Bioinspired Synthesis of (+)‐Cinchonidine Using Cascade Reactions. Angewandte Chemie International Edition 2018, 57
(38)
, 12299-12302. https://doi.org/10.1002/anie.201804848
- Daniel H. O' Donovan, Paul Aillard, Martin Berger, Aurélien de la Torre, Desislava Petkova, Christian Knittl‐Frank, Danny Geerdink, Marcel Kaiser, Nuno Maulide. C‐H‐Aktivierung ermöglicht eine kurze Totalsynthese von Chinin und Analoga mit erhöhter Anti‐Malaria‐Aktivität. Angewandte Chemie 2018, 130
(33)
, 10897-10901. https://doi.org/10.1002/ange.201804551
- Daniel H. O' Donovan, Paul Aillard, Martin Berger, Aurélien de la Torre, Desislava Petkova, Christian Knittl‐Frank, Danny Geerdink, Marcel Kaiser, Nuno Maulide. C−H Activation Enables a Concise Total Synthesis of Quinine and Analogues with Enhanced Antimalarial Activity. Angewandte Chemie International Edition 2018, 57
(33)
, 10737-10741. https://doi.org/10.1002/anie.201804551
- Anna Rudo, Klaus‐Peter Zeller, Hans‐Ullrich Siehl, Stefan Berger, Dieter Sicker. Chinin, ein legendäres Alkaloid. Chemie in unserer Zeit 2018, 52
(4)
, 238-248. https://doi.org/10.1002/ciuz.201800820
- Ewa Haładyj, Mariusz Sikora, Anna Felis-Giemza, Marzena Olesińska. Antimalarials – are they effective and safe in rheumatic diseases?. Rheumatology 2018, 56
(3)
, 164-173. https://doi.org/10.5114/reum.2018.76904
- Jeffrey I. Seeman. On the Relationship between Classical Structure Determination and Retrosynthetic Analysis/Total Synthesis
†. Israel Journal of Chemistry 2018, 58
(1-2)
, 28-44. https://doi.org/10.1002/ijch.201700079
- Scott E. Denmark. Organic Synthesis: Wherefrom and Whither? (Some Very Personal Reflections). Israel Journal of Chemistry 2018, 58
(1-2)
, 61-72. https://doi.org/10.1002/ijch.201700085
- David Y.‐K. Chen. A Personal Perspective on Organic Synthesis: Past, Present, and Future. Israel Journal of Chemistry 2018, 58
(1-2)
, 85-93. https://doi.org/10.1002/ijch.201700113
- K. C. Nicolaou. The Emergence and Evolution of Organic Synthesis and Why It is Important to Sustain It as an Advancing Art and Science for Its Own Sake. Israel Journal of Chemistry 2018, 58
(1-2)
, 104-113. https://doi.org/10.1002/ijch.201700121
- PABLO D.G. MARTINEZ, SUSANN H. KRAKE, MAITIA L. POGGI, SIMON F. CAMPBELL, PAUL A. WILLIS, LUIZ C. DIAS. 2,3,8-Trisubstituted Quinolines with Antimalarial Activity. Anais da Academia Brasileira de Ciências 2018, 90
(1 suppl 2)
, 1215-1231. https://doi.org/10.1590/0001-3765201820170820
- Jeffrey I. Seeman. R. B. Woodward
's Letters: Revealing, Elegant and Commanding. Helvetica Chimica Acta 2017, 100
(12)
https://doi.org/10.1002/hlca.201700183
- Donelly A. van Schalkwyk. History of Antimalarial Agents. 2015, 1-5. https://doi.org/10.1002/9780470015902.a0003624.pub3
- Bernd Schäfer. Artemisinin. Chemie in unserer Zeit 2014, 48
(2)
, 134-145. https://doi.org/10.1002/ciuz.201400645
- Ion Neda, Elena Fodor, Catalin V. Maftei, Monica Mihorianu, Horst‐Dieter Ambrosi, M. Heiko Franz. New Members of the Cinchona Alkaloid Family: 9‐Aminoquincorine‐10‐aldehyde and 9‐Aminoquincoridine‐10‐aldehyde. European Journal of Organic Chemistry 2013, 2013
(35)
, 7876-7880. https://doi.org/10.1002/ejoc.201301286
- Joseph Gal. Molecular Chirality in Chemistry and Biology: Historical Milestones. Helvetica Chimica Acta 2013, 96
(9)
, 1617-1657. https://doi.org/10.1002/hlca.201300300
- Jeffrey I. Seeman. Bonding Beyond Borders: The Nozoe Autograph Books and Other Collections. The Chemical Record 2012, 12
(5)
, 517-531. https://doi.org/10.1002/tcr.201200017
- . Alkaloids. 2012, 257-287. https://doi.org/10.1002/9781118347300.ch10
- Sabine Streller, Klaus Roth. Eine Rinde erobert die Welt. Chemie in unserer Zeit 2012, 46
(4)
, 228-247. https://doi.org/10.1002/ciuz.201200593
- Tanmoy Chanda, Rajiv Kumar Verma, Maya Shankar Singh. InCl
3
‐Driven Regioselective Synthesis of Functionalized/Annulated Quinolines: Scope and Limitations. Chemistry – An Asian Journal 2012, 7
(4)
, 778-787. https://doi.org/10.1002/asia.201100872
- Antonio Garrido Montalban. Quinolines and Isoquinolines. 2011, 299-339. https://doi.org/10.1002/9783527634880.ch9
- G. Wayne Craig. The
Woodward
Research Institute,
Robert Burns Woodward
(1917–1979) and Chemistry behind the Glass Door. Helvetica Chimica Acta 2011, 94
(6)
, 923-946. https://doi.org/10.1002/hlca.201100077
- Donald E. Wolf, Karl Folkers. The Preparation of Thiophenes and Tetrahydrothiophenes. 2011, 410-468. https://doi.org/10.1002/0471264180.or006.09
- John P. Schaefer, Jordan J. Bloomfield. The
D
ieckmann Condensation (Including the
T
horpe‐
Z
iegler Condensation). 2011, 1-203. https://doi.org/10.1002/0471264180.or015.01
- V. Raja Solomon, Hoyun Lee. Chloroquine and its analogs: A new promise of an old drug for effective and safe cancer therapies. European Journal of Pharmacology 2009, 625
(1-3)
, 220-233. https://doi.org/10.1016/j.ejphar.2009.06.063
- David Adesanya Ofusori, Sunday Joel Josiah, Abiodun Oladele Ayoka, Emmanuel Oluwole Omotoso, Samson Ayodeji Odukoya. Effect of chronic administration of quinine on the myocardium of mice. Journal of Applied Biomedicine 2008, 6
(4)
, 187-193. https://doi.org/10.32725/jab.2008.022
- Aaron C. Smith, Robert M. Williams. Rabe Rest in Peace: Confirmation of the Rabe–Kindler Conversion of
d‐
Quinotoxine Into Quinine: Experimental Affirmation of the Woodward–Doering Formal Total Synthesis of Quinine. Angewandte Chemie 2008, 120
(9)
, 1760-1764. https://doi.org/10.1002/ange.200705421
- Aaron C. Smith, Robert M. Williams. Rabe Rest in Peace: Confirmation of the Rabe–Kindler Conversion of
d‐
Quinotoxine Into Quinine: Experimental Affirmation of the Woodward–Doering Formal Total Synthesis of Quinine. Angewandte Chemie International Edition 2008, 47
(9)
, 1736-1740. https://doi.org/10.1002/anie.200705421
- Johann Mulzer. Organische Totalsynthese – Quo vadis?. Nachrichten aus der Chemie 2007, 55
(7-8)
, 731-738. https://doi.org/10.1002/nadc.200746724
- Gerhard Quinkert, Holger Wallmeier, Norbert Windhab, Dietmar Reichert. Chemistry and Biology — Historical and Philosophical Aspects. 2007, 3-67. https://doi.org/10.1002/9783527619375.ch1
- Jeffrey I. Seeman. Die Woodward‐Doering‐/Rabe‐Kindler‐Totalsynthese von Chinin: ein Mythos?. Angewandte Chemie 2007, 119
(9)
, 1400-1435. https://doi.org/10.1002/ange.200601551
- Jeffrey I. Seeman. The Woodward–Doering/Rabe–Kindler Total Synthesis of Quinine: Setting the Record Straight. Angewandte Chemie International Edition 2007, 46
(9)
, 1378-1413. https://doi.org/10.1002/anie.200601551
- K. C. Nicolaou, Scott A. Snyder. Die Jagd auf Moleküle, die nie existiert haben: Falsch zugeordnete Naturstoffstrukturen und die Rolle der chemischen Synthese in der modernen Strukturaufklärung. Angewandte Chemie 2005, 117
(7)
, 1036-1069. https://doi.org/10.1002/ange.200460864
- K. C. Nicolaou, Scott A. Snyder. Chasing Molecules That Were Never There: Misassigned Natural Products and the Role of Chemical Synthesis in Modern Structure Elucidation. Angewandte Chemie International Edition 2005, 44
(7)
, 1012-1044. https://doi.org/10.1002/anie.200460864
- Teodoro S. Kaufman, Edmundo A. Rúveda. Die Jagd auf Chinin: Etappenerfolge und Gesamtsiege. Angewandte Chemie 2005, 117
(6)
, 876-907. https://doi.org/10.1002/ange.200400663
- Teodoro S. Kaufman, Edmundo A. Rúveda. The Quest for Quinine: Those Who Won the Battles and Those Who Won the War. Angewandte Chemie International Edition 2005, 44
(6)
, 854-885. https://doi.org/10.1002/anie.200400663
- Dee Ann Casteel. Antimalarial Agents. 2003, 919-1031. https://doi.org/10.1002/0471266949.bmc091
- Barry Dubinsky, Jeffery B. Press. Skeletal Muscle Relaxants. 2000https://doi.org/10.1002/14356007.a24_209
- Fritz Eiden. Ausflug in die Vergangenheit
: Chinin und andere Chinaalkaloide 3. Teil : Vom Weg zur Totalsynthese der Chinolin‐Chinaalkaloide über die Herstellung besser wirksamer Malariamittel bis zur Erforschung der Indol‐Chinaalkaloide. Pharmazie in unserer Zeit 1999, 28
(2)
, 74-86. https://doi.org/10.1002/pauz.19990280208
- Barbara Winter‐Werner, François Diederich, Volker Gramlich. Analogs of
Cinchona
Alkaloids Incorporating a 9,9′‐Spirobifluorene Moiety. Helvetica Chimica Acta 1996, 79
(5)
, 1338-1360. https://doi.org/10.1002/hlca.19960790509
- John V. Greenhill. Quinoline Ketones. 1990, 89-516. https://doi.org/10.1002/9780470187043.ch2
- C. Nootens, R. Merényi, Z. Janousek, H. G. Viehe. Spin delocalisation in heterocyclic captodative radicals
1,2. Bulletin des Sociétés Chimiques Belges 1988, 97
(11-12)
, 1045-1054. https://doi.org/10.1002/bscb.19880971130
- Hans Wynberg. Asymmetric Catalysis by Alkaloids. 1986, 87-129. https://doi.org/10.1002/9780470147252.ch2
- Desmond M. S. Wheeler. R. B. Woodward und die moderne organische Chemie. Chemie in unserer Zeit 1984, 18
(4)
, 109-119. https://doi.org/10.1002/ciuz.19840180402
- . ROBERT BURNS WOODWARD 1917–1979. 1982, xi-xviii. https://doi.org/10.1016/B978-0-08-029238-0.50005-1
- Hans Fiesselmann, Peter Schipprak. Über Oxythiophencarbonsäureester, I. Mitteil.: Über die Anlagerung von Thioglykolsäureester an Fumarsäure‐, Maleinsäure‐ und Acetylendicarbonsäureester). Chemische Berichte 1954, 87
(6)
, 835-841. https://doi.org/10.1002/cber.19540870608
- Hans Fiesselmann, Gerhard Pfeiffer. Über Oxythiophencarbonsäureester, III. Mitteil.): Die Einwirkung von Thioglykolsäureester auf β‐Ketosäureester (Mitbearbeitet von Ferdinand Memmel). Chemische Berichte 1954, 87
(6)
, 848-856. https://doi.org/10.1002/cber.19540870610
- E. Schlittler, Joh. Müller. Eine neue Modifikation der Isochinolinsynthese nach
Pomeraz‐Fritsch. Helvetica Chimica Acta 1948, 31
(3)
, 914-924. https://doi.org/10.1002/hlca.19480310332
- V. Prelog, E. Moor. Versuche zur Herstellung von 3‐Vinyl‐piperidinen. Helvetica Chimica Acta 1945, 28
(1)
, 182-188. https://doi.org/10.1002/hlca.660280120
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.