ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

THE TOTAL SYNTHESIS OF QUININE1

Cite this: J. Am. Chem. Soc. 1944, 66, 5, 849
Publication Date (Print):May 1, 1944
https://doi.org/10.1021/ja01233a516
    ACS Legacy Archive

    Article Views

    3882

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    PDF (155 KB)

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Cited By

    This article is cited by 59 publications.

    1. Jeffrey I. Seeman. Revolutions in Chemistry: Assessment of Six 20th Century Candidates (The Instrumental Revolution; Hückel Molecular Orbital Theory; Hückel’s 4n + 2 Rule; the Woodward–Hoffmann Rules; Quantum Chemistry; and Retrosynthetic Analysis). JACS Au 2023, 3 (9) , 2378-2401. https://doi.org/10.1021/jacsau.3c00278
    2. Lei Li, Hua-Fei Yang, Qian-Hui Ding, Kun Wei, Yu-Rong Yang. Total Syntheses of Cinchona Alkaloids via Photoredox-Catalyzed Deoxygenative Arylation. Organic Letters 2023, 25 (24) , 4586-4591. https://doi.org/10.1021/acs.orglett.3c01659
    3. Jeffrey I. Seeman, Mark C. House. “For Its Size, the Most Complex Natural Product Known.” Who Deserves Credit for Determining the Structure of Strychnine?. ACS Central Science 2022, 8 (6) , 672-681. https://doi.org/10.1021/acscentsci.1c01348
    4. Cátia Teixeira, Nuno Vale, Bianca Pérez, Ana Gomes, José R. B. Gomes, and Paula Gomes . “Recycling” Classical Drugs for Malaria. Chemical Reviews 2014, 114 (22) , 11164-11220. https://doi.org/10.1021/cr500123g
    5. Ahmad Al-Mestarihi, Anthony Romo, Hung-wen Liu, and Brian O. Bachmann . Nitrososynthase-Triggered Oxidative Carbon–Carbon Bond Cleavage in Baumycin Biosynthesis. Journal of the American Chemical Society 2013, 135 (31) , 11457-11460. https://doi.org/10.1021/ja404987r
    6. Karina Ap. F. D. Souza and Paulo A. Porto . History and Epistemology of Science in the Classroom: The Synthesis of Quinine as a Proposal. Journal of Chemical Education 2012, 89 (1) , 58-63. https://doi.org/10.1021/ed1003542
    7. Frank-Gerrit Klärner, Maitland Jones, Jr. and Ronald M. Magid. William von Eggers Doering’s Many Research Achievements during the First 65 Years of his Career in Chemistry. Accounts of Chemical Research 2009, 42 (1) , 169-181. https://doi.org/10.1021/ar800100h
    8. Peter Webber and Michael J. Krische. Concise Stereocontrolled Formal Synthesis of (±)-Quinine and Total Synthesis of (±)-7- Hydroxyquinine via Merged Morita−Baylis−Hillman−Tsuji−Trost Cyclization. The Journal of Organic Chemistry 2008, 73 (23) , 9379-9387. https://doi.org/10.1021/jo802165k
    9. Gilbert Stork,, Deqiang Niu,, A. Fujimoto,, Emil R. Koft,, James M. Balkovec,, James R. Tata, and, Gregory R. Dake. The First Stereoselective Total Synthesis of Quinine. Journal of the American Chemical Society 2001, 123 (14) , 3239-3242. https://doi.org/10.1021/ja004325r
    10. Jeffrey I. Seeman. My first and my latest publication. Journal of Physical Organic Chemistry 2022, 35 (11) https://doi.org/10.1002/poc.4344
    11. Bharti Singal, Jyoti Chhibber‐Goel. The Imminent Threat of Antimalarial Drug Resistance. 2022, 105-131. https://doi.org/10.1002/9783527830589.ch5
    12. Jeffrey I. Seeman. Fifty Years of a Dispute. A Triptych: Why Woodward?**. The Chemical Record 2022, 22 (9) https://doi.org/10.1002/tcr.202200150
    13. Jeffrey I. Seeman. The Many Chemists Who Could Have Proposed the Woodward‐Hoffmann Rules (Including Roald Hoffmann) But Didn't: The Theoretical and Physical Chemists † **. The Chemical Record 2022, 22 (5) https://doi.org/10.1002/tcr.202200052
    14. Vitória de Souza Fernandes, Rafael da Rosa, Lara A. Zimmermann, Kamilla R. Rogério, Arthur E. Kümmerle, Lilian S. C. Bernardes, Cedric S. Graebin. Antiprotozoal agents: How have they changed over a decade?. Archiv der Pharmazie 2022, 355 (2) https://doi.org/10.1002/ardp.202100338
    15. Francesco Trenti, Kotaro Yamamoto, Benke Hong, Christian Paetz, Yoko Nakamura, Sarah E. O’Connor. Early and Late Steps of Quinine Biosynthesis. Organic Letters 2021, 23 (5) , 1793-1797. https://doi.org/10.1021/acs.orglett.1c00206
    16. Hamza Hameed, Elizabeth F. B. King, Katerina Doleckova, Barbara Bartholomew, Jackie Hollinshead, Haddijatou Mbye, Imran Ullah, Karen Walker, Maria Van Veelen, Somaia Saif Abou-Akkada, Robert J. Nash, Paul D. Horrocks, Helen P. Price. Temperate Zone Plant Natural Products—A Novel Resource for Activity against Tropical Parasitic Diseases. Pharmaceuticals 2021, 14 (3) , 227. https://doi.org/10.3390/ph14030227
    17. Shinya Shiomi, Hayato Ishikawa. Total Synthesis of Enantioenriched Quinine. Journal of Synthetic Organic Chemistry, Japan 2021, 79 (2) , 145-154. https://doi.org/10.5059/yukigoseikyokaishi.79.145
    18. Jeffrey I. Seeman. The Relationship of William Henry Perkin, Jr. and Sir Robert Robinson: Teacher and Student, then Student and Teacher. Chemistry – A European Journal 2021, 27 (5) , 1576-1591. https://doi.org/10.1002/chem.202002924
    19. Hari Madhav, Nasimul Hoda. An insight into the recent development of the clinical candidates for the treatment of malaria and their target proteins. European Journal of Medicinal Chemistry 2021, 210 , 112955. https://doi.org/10.1016/j.ejmech.2020.112955
    20. Jiarui Yang, Dingsheng Wang, Yadong Li. Identifying the Types and Characterization of the Active Sites on M−X−C Single‐Atom Catalysts. ChemPhysChem 2020, 21 (23) , 2486-2496. https://doi.org/10.1002/cphc.202000595
    21. Brian Wang, Melecio A. Perea, Richmond Sarpong. Übergangsmetallvermittelte Spaltung von C‐C‐Einfachbindungen. Angewandte Chemie 2020, 132 (43) , 19058-19080. https://doi.org/10.1002/ange.201915657
    22. Brian Wang, Melecio A. Perea, Richmond Sarpong. Transition Metal‐Mediated C−C Single Bond Cleavage: Making the Cut in Total Synthesis. Angewandte Chemie International Edition 2020, 59 (43) , 18898-18919. https://doi.org/10.1002/anie.201915657
    23. Melissa A. Hardy, Brandon A. Wright, J. Logan Bachman, Timothy B. Boit, Hannah M. S. Haley, Rachel R. Knapp, Robert F. Lusi, Taku Okada, Veronica Tona, Neil K. Garg, Richmond Sarpong. Treating a Global Health Crisis with a Dose of Synthetic Chemistry. ACS Central Science 2020, 6 (7) , 1017-1030. https://doi.org/10.1021/acscentsci.0c00637
    24. Yan Jiang, Luca Deiana, Kaiheng Zhang, Shuangzheng Lin, Armando Córdova. Total Asymmetric Synthesis of Quinine, Quinidine, and Analogues via Catalytic Enantioselective Cascade Transformations. European Journal of Organic Chemistry 2019, 2019 (35) , 6016-6023. https://doi.org/10.1002/ejoc.201901003
    25. Fyaz M.D. Ismail. Nature's Armamentarium against Malaria: Antimalarials and Their Semisynthetic Derivatives. 2019, 333-373. https://doi.org/10.1002/9781119436713.ch13
    26. ELIEZER J. BARREIRO. What is hidden in the biodiversity? The role of natural products and medicinal chemistry in the drug discovery process. Anais da Academia Brasileira de Ciências 2019, 91 (suppl 3) https://doi.org/10.1590/0001-3765201920190306
    27. Wentao Liu, Wenfang Qin, Xiaobei Wang, Fei Xue, Xiao‐Yu Liu, Yong Qin. Bioinspired Synthesis of (+)‐Cinchonidine Using Cascade Reactions. Angewandte Chemie International Edition 2018, 57 (38) , 12299-12302. https://doi.org/10.1002/anie.201804848
    28. Wentao Liu, Wenfang Qin, Xiaobei Wang, Fei Xue, Xiao‐Yu Liu, Yong Qin. Bioinspired Synthesis of (+)‐Cinchonidine Using Cascade Reactions. Angewandte Chemie 2018, 130 (38) , 12479-12482. https://doi.org/10.1002/ange.201804848
    29. Daniel H. O' Donovan, Paul Aillard, Martin Berger, Aurélien de la Torre, Desislava Petkova, Christian Knittl‐Frank, Danny Geerdink, Marcel Kaiser, Nuno Maulide. C−H Activation Enables a Concise Total Synthesis of Quinine and Analogues with Enhanced Antimalarial Activity. Angewandte Chemie International Edition 2018, 57 (33) , 10737-10741. https://doi.org/10.1002/anie.201804551
    30. Daniel H. O' Donovan, Paul Aillard, Martin Berger, Aurélien de la Torre, Desislava Petkova, Christian Knittl‐Frank, Danny Geerdink, Marcel Kaiser, Nuno Maulide. C‐H‐Aktivierung ermöglicht eine kurze Totalsynthese von Chinin und Analoga mit erhöhter Anti‐Malaria‐Aktivität. Angewandte Chemie 2018, 130 (33) , 10897-10901. https://doi.org/10.1002/ange.201804551
    31. Anna Rudo, Klaus‐Peter Zeller, Hans‐Ullrich Siehl, Stefan Berger, Dieter Sicker. Chinin, ein legendäres Alkaloid. Chemie in unserer Zeit 2018, 52 (4) , 238-248. https://doi.org/10.1002/ciuz.201800820
    32. Ewa Haładyj, Mariusz Sikora, Anna Felis-Giemza, Marzena Olesińska. Antimalarials – are they effective and safe in rheumatic diseases?. Rheumatology 2018, 56 (3) , 164-173. https://doi.org/10.5114/reum.2018.76904
    33. Mengchao Tong, Sinan Wang, Jinchen Zhuang, Cong Qin, Hao Li, Wei Wang. Direct Access of the Chiral Quinolinyl Core of Cinchona Alkaloids via a Brønsted Acid and Chiral Amine Co-catalyzed Chemo- and Enantioselective α-Alkylation of Quinolinylmethanols with Enals. Organic Letters 2018, 20 (4) , 1195-1199. https://doi.org/10.1021/acs.orglett.8b00118
    34. David Y.‐K. Chen. A Personal Perspective on Organic Synthesis: Past, Present, and Future. Israel Journal of Chemistry 2018, 58 (1-2) , 85-93. https://doi.org/10.1002/ijch.201700113
    35. Scott E. Denmark. Organic Synthesis: Wherefrom and Whither? (Some Very Personal Reflections). Israel Journal of Chemistry 2018, 58 (1-2) , 61-72. https://doi.org/10.1002/ijch.201700085
    36. K. C. Nicolaou. The Emergence and Evolution of Organic Synthesis and Why It is Important to Sustain It as an Advancing Art and Science for Its Own Sake. Israel Journal of Chemistry 2018, 58 (1-2) , 104-113. https://doi.org/10.1002/ijch.201700121
    37. Jeffrey I. Seeman. On the Relationship between Classical Structure Determination and Retrosynthetic Analysis/Total Synthesis †. Israel Journal of Chemistry 2018, 58 (1-2) , 28-44. https://doi.org/10.1002/ijch.201700079
    38. PABLO D.G. MARTINEZ, SUSANN H. KRAKE, MAITIA L. POGGI, SIMON F. CAMPBELL, PAUL A. WILLIS, LUIZ C. DIAS. 2,3,8-Trisubstituted Quinolines with Antimalarial Activity. Anais da Academia Brasileira de Ciências 2018, 90 (1 suppl 2) , 1215-1231. https://doi.org/10.1590/0001-3765201820170820
    39. Jeffrey I. Seeman. Woodward–Hoffmann’s Stereochemistry of Electrocyclic Reactions : From Day 1 to the JACS Receipt Date (May 5, 1964 to November 30, 1964). The Journal of Organic Chemistry 2015, 80 (23) , 11632-11671. https://doi.org/10.1021/acs.joc.5b01792
    40. Donelly A. van Schalkwyk. History of Antimalarial Agents. 2015, 1-5. https://doi.org/10.1002/9780470015902.a0003624.pub3
    41. . Alkaloids. 2012, 257-287. https://doi.org/10.1002/9781118347300.ch10
    42. Antonio Garrido Montalban. Quinolines and Isoquinolines. 2011, 299-339. https://doi.org/10.1002/9783527634880.ch9
    43. John P. Schaefer, Jordan J. Bloomfield. The D ieckmann Condensation (Including the T horpe‐ Z iegler Condensation). 2011, 1-203. https://doi.org/10.1002/0471264180.or015.01
    44. Donald E. Wolf, Karl Folkers. The Preparation of Thiophenes and Tetrahydrothiophenes. 2011, 410-468. https://doi.org/10.1002/0471264180.or006.09
    45. V. Raja Solomon, Hoyun Lee. Chloroquine and its analogs: A new promise of an old drug for effective and safe cancer therapies. European Journal of Pharmacology 2009, 625 (1-3) , 220-233. https://doi.org/10.1016/j.ejphar.2009.06.063
    46. David Adesanya Ofusori, Sunday Joel Josiah, Abiodun Oladele Ayoka, Emmanuel Oluwole Omotoso, Samson Ayodeji Odukoya. Effect of chronic administration of quinine on the myocardium of mice. Journal of Applied Biomedicine 2008, 6 (4) , 187-193. https://doi.org/10.32725/jab.2008.022
    47. Johann Mulzer. Organische Totalsynthese – Quo vadis?. Nachrichten aus der Chemie 2007, 55 (7-8) , 731-738. https://doi.org/10.1002/nadc.200746724
    48. Gerhard Quinkert, Holger Wallmeier, Norbert Windhab, Dietmar Reichert. Chemistry and Biology — Historical and Philosophical Aspects. 2007, 3-67. https://doi.org/10.1002/9783527619375.ch1
    49. K. C. Nicolaou, Scott A. Snyder. Chasing Molecules That Were Never There: Misassigned Natural Products and the Role of Chemical Synthesis in Modern Structure Elucidation. Angewandte Chemie International Edition 2005, 44 (7) , 1012-1044. https://doi.org/10.1002/anie.200460864
    50. K. C. Nicolaou, Scott A. Snyder. Die Jagd auf Moleküle, die nie existiert haben: Falsch zugeordnete Naturstoffstrukturen und die Rolle der chemischen Synthese in der modernen Strukturaufklärung. Angewandte Chemie 2005, 117 (7) , 1036-1069. https://doi.org/10.1002/ange.200460864
    51. Dee Ann Casteel. Antimalarial Agents. 2003, 919-1031. https://doi.org/10.1002/0471266949.bmc091
    52. Barry Dubinsky, Jeffery B. Press. Skeletal Muscle Relaxants. 2000https://doi.org/10.1002/14356007.a24_209
    53. John V. Greenhill. Quinoline Ketones. 1990, 89-516. https://doi.org/10.1002/9780470187043.ch2
    54. C. Nootens, R. Merényi, Z. Janousek, H. G. Viehe. Spin delocalisation in heterocyclic captodative radicals 1,2. Bulletin des Sociétés Chimiques Belges 1988, 97 (11-12) , 1045-1054. https://doi.org/10.1002/bscb.19880971130
    55. Hans Wynberg. Asymmetric Catalysis by Alkaloids. 1986, 87-129. https://doi.org/10.1002/9780470147252.ch2
    56. . ROBERT BURNS WOODWARD 1917–1979. 1982, xi-xviii. https://doi.org/10.1016/B978-0-08-029238-0.50005-1
    57. . Robert Burns Woodward, 10 April 1917 - 8 July 1979. Biographical Memoirs of Fellows of the Royal Society 1981, 628-695. https://doi.org/10.1098/rsbm.1981.0025
    58. Hans Fiesselmann, Peter Schipprak. Über Oxythiophencarbonsäureester, I. Mitteil.: Über die Anlagerung von Thioglykolsäureester an Fumarsäure‐, Maleinsäure‐ und Acetylendicarbonsäureester). Chemische Berichte 1954, 87 (6) , 835-841. https://doi.org/10.1002/cber.19540870608
    59. Hans Fiesselmann, Gerhard Pfeiffer. Über Oxythiophencarbonsäureester, III. Mitteil.): Die Einwirkung von Thioglykolsäureester auf β‐Ketosäureester (Mitbearbeitet von Ferdinand Memmel). Chemische Berichte 1954, 87 (6) , 848-856. https://doi.org/10.1002/cber.19540870610

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect