Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

THE PREPARATION OF ALIPHATIC AMIDES

Cite this: J. Am. Chem. Soc. 1931, 53, 5, 1879–1883
Publication Date (Print):May 1, 1931
https://doi.org/10.1021/ja01356a037
    ACS Legacy Archive

    Article Views

    1745

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 93 publications.

    1. Tavinder Singh, Ganesh Chandra Upreti, Shivani Arora, Himanshu Chauhan, Anand Singh. Visible Light-Mediated Carbamoylation of para-Quinone Methides. The Journal of Organic Chemistry 2023, 88 (5) , 2784-2791. https://doi.org/10.1021/acs.joc.2c02394
    2. Nilanjana Majumdar. Carboxylic Acids as Building Blocks in Catalytic Asymmetric Reactions. ACS Catalysis 2022, 12 (14) , 8291-8324. https://doi.org/10.1021/acscatal.2c02410
    3. V. Vinogradoff, L. Remusat, H. L. McLain, J. C. Aponte, S. Bernard, G. Danger, J. P. Dworkin, J. E. Elsila, M. Jaber. Impact of Phyllosilicates on Amino Acid Formation under Asteroidal Conditions. ACS Earth and Space Chemistry 2020, 4 (8) , 1398-1407. https://doi.org/10.1021/acsearthspacechem.0c00137
    4. Wangze Song, Kun Dong, Ming Li. Visible Light-Induced Amide Bond Formation. Organic Letters 2020, 22 (2) , 371-375. https://doi.org/10.1021/acs.orglett.9b03905
    5. Suman Das, Ranjit Biswas, and Biswaroop Mukherjee . Reorientational Jump Dynamics and Its Connections to Hydrogen Bond Relaxation in Molten Acetamide: An All-Atom Molecular Dynamics Simulation Study. The Journal of Physical Chemistry B 2015, 119 (1) , 274-283. https://doi.org/10.1021/jp509869d
    6. Clifton K. Fagerquist, Omar Sultan, Michelle Q. Carter. Possible Evidence of Amide Bond Formation Between Sinapinic Acid and Lysine-Containing Bacterial Proteins by Matrix-Assisted Laser Desorption/Ionization (MALDI) at 355 nm. Journal of the American Society for Mass Spectrometry 2012, 23 (12) , 2102-2114. https://doi.org/10.1007/s13361-012-0490-z
    7. Makoto Minato, Da-Yang Zhou, Ken-ichiro Sumiura, Yuki Oshima, Shigeki Mine, Takashi Ito, Masaki Kakeya, Kei Hoshino, Takahiro Asaeda, Takushi Nakada, and Kohtaro Osakada . Reactivity Patterns of O2, CO2, Carboxylic Acids, and Triflic Acid with Molybdenum Silyl Hydrido Complexes Bearing Polydentate Phosphinoalkyl–Silyl Ligands: Pronounced Effects of Silyl Ligands on Reactions. Organometallics 2012, 31 (14) , 4941-4949. https://doi.org/10.1021/om200646c
    8. Christophe Grosjean, Julie Parker, Carl Thirsk, and Allen R. Wright . Intensified Azeotropic Distillation: A Strategy for Optimizing Direct Amidation. Organic Process Research & Development 2012, 16 (5) , 781-787. https://doi.org/10.1021/op300058f
    9. Marta J. Krysmann, Antonios Kelarakis, Panagiotis Dallas, and Emmanuel P. Giannelis . Formation Mechanism of Carbogenic Nanoparticles with Dual Photoluminescence Emission. Journal of the American Chemical Society 2012, 134 (2) , 747-750. https://doi.org/10.1021/ja204661r
    10. Chi Wai Cheung, Hong Sang Fung, Siu Yin Lee, Ying Ying Qian, Yun Wai Chan and Kin Shing Chan. Reactivity Studies of Iridium(III) Porphyrins with Methanol in Alkaline Media. Organometallics 2010, 29 (6) , 1343-1354. https://doi.org/10.1021/om9008668
    11. Kailas L. Wasewar,, Archis A. Yawalkar,, Jacob A. Moulijn, and, Vishwas G. Pangarkar. Fermentation of Glucose to Lactic Acid Coupled with Reactive Extraction:  A Review. Industrial & Engineering Chemistry Research 2004, 43 (19) , 5969-5982. https://doi.org/10.1021/ie049963n
    12. Thomas M. Amrein,, Barbara Schönbächler,, Felix Escher, and, Renato Amadò. Acrylamide in Gingerbread:  Critical Factors for Formation and Possible Ways for Reduction. Journal of Agricultural and Food Chemistry 2004, 52 (13) , 4282-4288. https://doi.org/10.1021/jf049648b
    13. C. Mengel,, A. R. Esker,, W. H. Meyer, and, G. Wegner. Preparation and Modification of Poly(methacrylic acid) and Poly(acrylic acid) Multilayers. Langmuir 2002, 18 (16) , 6365-6372. https://doi.org/10.1021/la011312y
    14. J. Abián, F. Sáchez-Baeza, E. Gelpí, D. Barceló. On the origin of some controversial ions (m/z 59, 60, 77, and 119) in the thermospray reagent plasma from ammonium acetate. Journal of the American Society for Mass Spectrometry 1994, 5 (3) , 186-193. https://doi.org/10.1016/1044-0305(94)85032-1
    15. Zhonghua Cao, Da Sheng, Zhiyang Zhang, Haitao Ren, Yong Liu, Songhai Wu, Jiaxiang Zhang, Xu Han. Copper‐Promoted Oxidative Amidation of Imines: A Facile Route to Amides. European Journal of Organic Chemistry 2024, 16 https://doi.org/10.1002/ejoc.202400315
    16. Tomislav Stolar, Jasna Alić, Gregor Talajić, Nikola Cindro, Mirta Rubčić, Krešimir Molčanov, Krunoslav Užarević, José G. Hernández. Supramolecular intermediates in thermo-mechanochemical direct amidations. Chemical Communications 2023, 59 (90) , 13490-13493. https://doi.org/10.1039/D3CC04448C
    17. A. M. Gabdullin, R. N. Kadikova, A. B. Yulbarisov, O. S. Mozgovoi, I. R. Ramazanov. TaCl5 in the synthesis of amides from saturated monobasic carboxylic acids and functionally substituted primary aromatic amines. Russian Chemical Bulletin 2023, 72 (10) , 2350-2356. https://doi.org/10.1007/s11172-023-4032-6
    18. Naoya Takahashi, Hinata Iwasawa, Tatsuhito Kinashi, Kazuishi Makino, Naoyuki Shimada. Catalytic dehydrative amide bond formation using aqueous ammonia: synthesis of primary amides utilizing diboronic acid anhydride catalysis. Chemical Communications 2023, 59 (48) , 7391-7394. https://doi.org/10.1039/D3CC02071A
    19. Azat M. Gabdullin, Rita N. Kadikova, Oleg S. Mozgovoj, Ilfir R. Ramazanov. TaCl 5 ‐Catalyzed Amidation of Carboxylic Acids with Amines. ChemistrySelect 2023, 8 (7) https://doi.org/10.1002/slct.202204298
    20. Anjali Jaiswal, Preeti, Krishna Nand Singh. A convenient synthesis of N -(hetero)arylamides by the oxidative coupling of methylheteroarenes with amines. Organic & Biomolecular Chemistry 2022, 20 (34) , 6915-6922. https://doi.org/10.1039/D2OB01106A
    21. Yu Guo, Ruo-Ya Wang, Jia-Xin Kang, Yan-Na Ma, Cong-Qiao Xu, Jun Li, Xuenian Chen. Efficient synthesis of primary and secondary amides via reacting esters with alkali metal amidoboranes. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-25836-5
    22. Truong Thanh Tung, John Nielsen. Amide bond formation in aqueous solution: direct coupling of metal carboxylate salts with ammonium salts at room temperature. Organic & Biomolecular Chemistry 2021, 19 (46) , 10073-10080. https://doi.org/10.1039/D1OB02064A
    23. Gehui Pang, Shintaro Morisada, Hidetaka Kawakita, Takeshi Hanamoto, Tatsuya Umecky, Keisuke Ohto, Xi-Ming Song. Allosteric extraction of a second gallium anion assisted by the first, loaded onto a fluorinated secondary amide reagent. Separation and Purification Technology 2021, 278 , 119036. https://doi.org/10.1016/j.seppur.2021.119036
    24. György Orsy, Ferenc Fülöp, István M. Mándity. Direct amide formation in a continuous-flow system mediated by carbon disulfide. Catalysis Science & Technology 2020, 10 (23) , 7814-7818. https://doi.org/10.1039/D0CY01603A
    25. Bin Bin Chen, Meng Li Liu, Cheng Zhi Huang. Carbon dot-based composites for catalytic applications. Green Chemistry 2020, 22 (13) , 4034-4054. https://doi.org/10.1039/D0GC01014F
    26. Marzban Arefi, Maryam Kazemi Miraki, Ramin Mostafalu, Mohammad Satari, Akbar Heydari. Citric acid stabilized on the surface of magnetic nanoparticles as an efficient and recyclable catalyst for transamidation of carboxamides, phthalimide, urea and thiourea with amines under neat conditions. Journal of the Iranian Chemical Society 2019, 16 (2) , 393-400. https://doi.org/10.1007/s13738-018-1523-8
    27. V. Vinogradoff, S. Bernard, C. Le Guillou, L. Remusat. Evolution of interstellar organic compounds under asteroidal hydrothermal conditions. Icarus 2018, 305 , 358-370. https://doi.org/10.1016/j.icarus.2017.12.019
    28. Richard C. Larock, Roman Rozhkov. Inverconversion of Nitriles, Carboxylic Acids, and Derivatives. 2018, 1-81. https://doi.org/10.1002/9781118662083.cot09-009
    29. M. Aulice Scibioh, B. Viswanathan. Homogeneous Hydrogenation of CO 2. 2018, 131-189. https://doi.org/10.1016/B978-0-444-63996-7.00004-3
    30. Sumalatha Eda, Baby Jyothsna Kota, Prathap Kumar Thella, Satyavathi Bankupalli, Suresh K. Bhargava, Rajarathinam Parthasarathy. Regeneration of levulinic acid from loaded-organic phase: equilibrium, kinetic studies and process economics. Chemical Papers 2017, 71 (10) , 1939-1951. https://doi.org/10.1007/s11696-017-0188-6
    31. Suman Das, Biswaroop Mukherjee, Ranjit Biswas. Microstructures and their lifetimes in acetamide/electrolyte deep eutectics: anion dependence. Journal of Chemical Sciences 2017, 129 (7) , 939-951. https://doi.org/10.1007/s12039-017-1263-9
    32. Thilo Krause, Sabrina Baader, Benjamin Erb, Lukas J. Gooßen. Atom-economic catalytic amide synthesis from amines and carboxylic acids activated in situ with acetylenes. Nature Communications 2016, 7 (1) https://doi.org/10.1038/ncomms11732
    33. Mizuki Tamura, Daisuke Murase, Kenichi Komura. Mesoporous Silica Catalyzed the Direct Amidation of Palmitic Acid and Hexylamine and Unique Dependence of Reaction Rate on Pore Size with p 6 mm Topological Catalyst. Chemistry Letters 2016, 45 (4) , 451-453. https://doi.org/10.1246/cl.160049
    34. Marzban Arefi, Akbar Heydari. Transamidation of primary carboxamides, phthalimide, urea and thiourea with amines using Fe(OH) 3 @Fe 3 O 4 magnetic nanoparticles as an efficient recyclable catalyst. RSC Advances 2016, 6 (29) , 24684-24689. https://doi.org/10.1039/C5RA27680B
    35. Shirin Alexander, Virginia Gomez, Andrew R. Barron. Carboxylation and Decarboxylation of Aluminum Oxide Nanoparticles Using Bifunctional Carboxylic Acids and Octylamine. Journal of Nanomaterials 2016, 2016 , 1-8. https://doi.org/10.1155/2016/7950876
    36. Denghu Chang, Dan Zhu, Peng Zou, Lei Shi. Cleavage of C–N bonds in guanidine derivatives and its relevance to efficient C–N bonds formation. Tetrahedron 2015, 71 (11) , 1684-1693. https://doi.org/10.1016/j.tet.2015.01.050
    37. Kazuaki Ishihara. Boronic Acid-Catalyzed Reactions of Carboxylic Acids. 2015, 243-270. https://doi.org/10.1007/978-3-319-13054-5_8
    38. Wen Ding, Shaoyu Mai, Qiuling Song. Molecular-oxygen-promoted Cu-catalyzed oxidative direct amidation of nonactivated carboxylic acids with azoles. Beilstein Journal of Organic Chemistry 2015, 11 , 2158-2165. https://doi.org/10.3762/bjoc.11.233
    39. Biswajit Guchhait, Suman Das, Snehasis Daschakraborty, Ranjit Biswas. Interaction and dynamics of (alkylamide + electrolyte) deep eutectics: Dependence on alkyl chain-length, temperature, and anion identity. The Journal of Chemical Physics 2014, 140 (10) https://doi.org/10.1063/1.4866178
    40. Subhash Chandra Ghosh, Cheng Chao Li, Hua Chun Zeng, Joyce S. Y. Ngiam, Abdul M. Seayad, Anqi Chen. Mesoporous Niobium Oxide Spheres as an Effective Catalyst for the Transamidation of Primary Amides with Amines. Advanced Synthesis & Catalysis 2014, 356 (2-3) , 475-484. https://doi.org/10.1002/adsc.201300717
    41. E. Calcio Gaudino, D. Carnaroglio, M. A. G. Nunes, L. Schmidt, E. M. M. Flores, C. Deiana, Y. Sakhno, G. Martra, G. Cravotto. Fast TiO 2 -catalyzed direct amidation of neat carboxylic acids under mild dielectric heating. Catal. Sci. Technol. 2014, 4 (5) , 1395-1399. https://doi.org/10.1039/C4CY00038B
    42. Dung T. Nguyen, Kyo‐Seon Kim. Analysis on development of magnetite hollow spheres through one‐pot solvothermal process. AIChE Journal 2013, 59 (10) , 3594-3600. https://doi.org/10.1002/aic.14139
    43. Shouxin Liu, Yihua Yang, Xinwei Liu, Farhana K. Ferdousi, Andrei S. Batsanov, Andrew Whiting. Direct Amidation of Amino Acid Derivatives Catalyzed by Arylboronic Acids: Applications in Dipeptide Synthesis. European Journal of Organic Chemistry 2013, 2013 (25) , 5692-5700. https://doi.org/10.1002/ejoc.201300560
    44. John A. Marsella, . Dimethylformamide. 2013, 1-9. https://doi.org/10.1002/0471238961.0409130513011819.a01.pub2
    45. Krzysztof Garman, Ewa Olewnik, Wojciech Czerwiński. Thermal and utility properties of amide clay modifying agents. Journal of Thermal Analysis and Calorimetry 2013, 111 (1) , 799-805. https://doi.org/10.1007/s10973-012-2562-5
    46. Thomas K. Houlding, Kirill Tchabanenko, Md. Taifur Rahman, Evgeny V. Rebrov. Direct amide formation using radiofrequency heating. Org. Biomol. Chem. 2013, 11 (25) , 4171-4177. https://doi.org/10.1039/C2OB26930A
    47. Donna S. MacMillan, Jane Murray, Helen F. Sneddon, Craig Jamieson, Allan J. B. Watson. Evaluation of alternative solvents in common amide coupling reactions: replacement of dichloromethane and N,N-dimethylformamide. Green Chemistry 2013, 15 (3) , 596. https://doi.org/10.1039/c2gc36900a
    48. Marjorie S. Austero, Amalie E. Donius, Ulrike G. K. Wegst, Caroline L. Schauer. New crosslinkers for electrospun chitosan fibre mats. I. Chemical analysis. Journal of The Royal Society Interface 2012, 9 (75) , 2551-2562. https://doi.org/10.1098/rsif.2012.0241
    49. C. Liana Allen, A. Rosie Chhatwal, Jonathan M. J. Williams. Direct amide formation from unactivated carboxylic acids and amines. Chem. Commun. 2012, 48 (5) , 666-668. https://doi.org/10.1039/C1CC15210F
    50. Hayley Charville, David A. Jackson, George Hodges, Andrew Whiting, Mark R. Wilson. The Uncatalyzed Direct Amide Formation Reaction – Mechanism Studies and the Key Role of Carboxylic Acid H‐Bonding. European Journal of Organic Chemistry 2011, 2011 (30) , 5981-5990. https://doi.org/10.1002/ejoc.201100714
    51. Min Li, Lei Hu, Xueqin Cao, Haiyan Hong, Jianmei Lu, Hongwei Gu. Direct Hydrogenation of Nitroaromatics and One‐Pot Amidation with Carboxylic Acids over Platinum Nanowires. Chemistry – A European Journal 2011, 17 (9) , 2763-2768. https://doi.org/10.1002/chem.201002801
    52. S. Srinivasan, P. Manisankar. Formamide as an Ammonia Synthon in Amination of Acid Chlorides. Synthetic Communications 2010, 40 (23) , 3538-3543. https://doi.org/10.1080/00397910903457373
    53. Amit Keshav, Kailas L. Wasewar. Back extraction of propionic acid from loaded organic phase. Chemical Engineering Science 2010, 65 (9) , 2751-2757. https://doi.org/10.1016/j.ces.2010.01.010
    54. Hayley Charville, David Jackson, George Hodges, Andrew Whiting. The thermal and boron-catalysed direct amide formation reactions: mechanistically understudied yet important processes. Chemical Communications 2010, 46 (11) , 1813-1823. https://doi.org/10.1039/B923093A
    55. Kazuaki Ishihara. Dehydrative condensation catalyses. Tetrahedron 2009, 65 (6) , 1085-1109. https://doi.org/10.1016/j.tet.2008.11.004
    56. Tsukasa Mizuhara, Kazuhito Hioki, Megumi Yamada, Hideaki Sasaki, Daiki Morisaki, Munetaka Kunishima. Direct Preparation of Primary Amides by Reaction of Carboxylic Acids and Ammonia in Alcohols Using DMT-MM. Chemistry Letters 2008, 37 (12) , 1190-1191. https://doi.org/10.1246/cl.2008.1190
    57. Susana V. Gonzalez, Per Carlsen. Tartradiamide formation by thermolysis of tartaric acid with alkylamines. Tetrahedron Letters 2008, 49 (24) , 3925-3926. https://doi.org/10.1016/j.tetlet.2008.04.052
    58. Kenny Arnold, Bryan Davies, Damien Hérault, Andrew Whiting. Asymmetric Direct Amide Synthesis by Kinetic Amine Resolution: A Chiral Bifunctional Aminoboronic Acid Catalyzed Reaction between a Racemic Amine and an Achiral Carboxylic Acid. Angewandte Chemie 2008, 120 (14) , 2713-2716. https://doi.org/10.1002/ange.200705643
    59. Kenny Arnold, Bryan Davies, Damien Hérault, Andrew Whiting. Asymmetric Direct Amide Synthesis by Kinetic Amine Resolution: A Chiral Bifunctional Aminoboronic Acid Catalyzed Reaction between a Racemic Amine and an Achiral Carboxylic Acid. Angewandte Chemie International Edition 2008, 47 (14) , 2673-2676. https://doi.org/10.1002/anie.200705643
    60. Kenny Arnold, Andrei S. Batsanov, Bryan Davies, Andrew Whiting. Synthesis, evaluation and application of novel bifunctional N,N-di-isopropylbenzylamineboronic acid catalysts for direct amide formation between carboxylic acids and amines. Green Chem. 2008, 10 (1) , 124-134. https://doi.org/10.1039/B712008G
    61. H.G. Joglekar, Imran Rahman, Suresh Babu, B.D. Kulkarni, Ajit Joshi. Comparative assessment of downstream processing options for lactic acid. Separation and Purification Technology 2006, 52 (1) , 1-17. https://doi.org/10.1016/j.seppur.2006.03.015
    62. Kenny Arnold, Bryan Davies, Richard L. Giles, Christophe Grosjean, Gillian E. Smith, Andrew Whiting. To Catalyze or not to Catalyze? Insight into Direct Amide Bond Formation from Amines and Carboxylic Acids under Thermal and Catalyzed Conditions. Advanced Synthesis & Catalysis 2006, 348 (7-8) , 813-820. https://doi.org/10.1002/adsc.200606018
    63. Shui‐Yu Lu, Jinsoo Hong, Victor W. Pike. Synthesis of NCA [ carbonyl ‐ 11 C]amides by direct reaction of in situ generated [ 11 C]carboxymagnesium halides with amines under microwave‐enhanced conditions. Journal of Labelled Compounds and Radiopharmaceuticals 2003, 46 (13) , 1249-1259. https://doi.org/10.1002/jlcr.786
    64. G. H. Coleman, A. M. Alvarado. Acetamide. 2003, 3-3. https://doi.org/10.1002/0471264180.os003.02
    65. E. Campaigne, W. L. Archer. p ‐Dimethylaminobenzaldehyde. 2003, 27-27. https://doi.org/10.1002/0471264180.os033.10
    66. J. L. Guthrie, Norman Rabjohn. n ‐Heptamide. 2003, 50-50. https://doi.org/10.1002/0471264180.os037.17
    67. Kevin J. McCullough. Ammonia. 2001https://doi.org/10.1002/047084289X.ra094
    68. John A. Marsella. Dimethylformamide. 2000https://doi.org/10.1002/0471238961.0409130513011819.a01
    69. Willi Kantlehner, Michael Hauber, Erwin Haug, Claus Schallenmüller, Claudia Regele. Orthoamide. LIV [1] Beiträge zur Chemie azavinyloger Orthoamid-Derivate der Ameisensäure. Journal für praktische Chemie 2000, 342 (7) , 682-699. https://doi.org/10.1002/1521-3897(200009)342:7<682::AID-PRAC682>3.0.CO;2-V
    70. Walter Leitner. Carbon Dioxide as a Raw Material: The Synthesis of Formic Acid and Its Derivatives from CO 2. Angewandte Chemie International Edition in English 1995, 34 (20) , 2207-2221. https://doi.org/10.1002/anie.199522071
    71. Walter Leitner. Kohlendioxid als Rohstoff am Beispiel der Synthese von Ameisensäure und ihren Derivaten. Angewandte Chemie 1995, 107 (20) , 2391-2405. https://doi.org/10.1002/ange.19951072005
    72. Patrick D. Bailey, Ian D. Collier, Keith M. Morgan. Amides. 1995, 257-307. https://doi.org/10.1016/B0-08-044705-8/00181-3
    73. . References to Volume 5. 1995, 1161-1308. https://doi.org/10.1016/B0-08-044705-8/09013-0
    74. Yun Yang, Henry N.C. Wong. Regiospecific synthesis of 3,4-disubstituted furans and 3-substituted furans using 3,4-Bis(tri-n-butylstannyl)furan and 3-(tri-n-butylstannyl)f. Tetrahedron 1994, 50 (32) , 9583-9608. https://doi.org/10.1016/S0040-4020(01)85528-9
    75. Roman Balicki, Łukasz Kaczmarek. Mild and Efficient Conversion of Nitriles to Amides with Basic Urea-Hydrogen Peroxide Adduct. Synthetic Communications 1993, 23 (22) , 3149-3155. https://doi.org/10.1080/00397919308011173
    76. Stanley R. Sandler, Wolf Karo. AMIDES. 1992, 92-105. https://doi.org/10.1016/B978-0-08-092553-0.50015-7
    77. Günter Benz. Synthesis of Amides and Related Compounds. 1991, 381-417. https://doi.org/10.1016/B978-0-08-052349-1.00162-1
    78. Dezsö Knausz, Aranka Meszticzky, L′aszl′o Szak′acs, B′ela Cs′akv′ari, K′alm′an Ujsz′aszy. Trimethylsilylated N- alkyl-substituted carbamates I.preparation and some reactions. Journal of Organometallic Chemistry 1983, 256 (1) , 11-21. https://doi.org/10.1016/S0022-328X(00)99291-X
    79. Stanley R. Sandler, Wolf Karo. AMIDES. 1983, 315-358. https://doi.org/10.1016/B978-0-08-092556-1.50015-4
    80. R. G. Bistline {jrJr.}, E. W. Maurer, F. D. Smith, W. M. Linfield. Fatty acid amides and anilides, syntheses and antimicrobial properties. Journal of the American Oil Chemists' Society 1980, 57 (2) , 98-103. https://doi.org/10.1007/BF02674376
    81. Edward Bald, Kazuhiko Saigo, Teruaki Mukaiyama. A FACILE SYNTHESIS OF CARBOXAMIDES BY USING 1-METHYL-2-HALOPYRIDINIUM IODIDES AS COUPLING REAGENTS. Chemistry Letters 1975, 4 (11) , 1163-1166. https://doi.org/10.1246/cl.1975.1163
    82. Leonhard Birkofer, Wolfgang Kaiser. Addition von (Trimethylsilyl)azid an Aldehyde und Epoxide 1). Justus Liebigs Annalen der Chemie 1975, 1975 (2) , 266-274. https://doi.org/10.1002/jlac.197519750211
    83. V.L. Foss, N.M. Semenenko, N.M. Sorokin, I.F. Lutsenko. Spatial effects and the structure of organoantimony aldehydes and ketones. Journal of Organometallic Chemistry 1974, 78 (1) , 107-113. https://doi.org/10.1016/S0022-328X(00)86452-9
    84. V.L. Foss, N.M. Sorokin, I.M. Avrutov, I.F. Lutsenko. Electronic factors and the structure of organoantimony carbonyl compounds. Journal of Organometallic Chemistry 1974, 78 (1) , 115-126. https://doi.org/10.1016/S0022-328X(00)86453-0
    85. V.A. Shukla, J.J. Shroff, H.C. Srivastava. Effect of Neighboring Groups on the Methylolation of Acid Amides. Textile Research Journal 1973, 43 (5) , 300-305. https://doi.org/10.1177/004051757304300508
    86. . Preparation of Amides. 1971, 203-229. https://doi.org/10.1002/9780470125946.ch6
    87. Thomas M. Amrein, Barbara Schönbächler, Felix Escher, Renato Amadò. Factors Influencing Acrylamide Formation in Gingerbread. , 431-446. https://doi.org/10.1007/0-387-24980-X_33
    88. David S. Reid, Colin A. Vincent. Electrochemistry in the amides. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1968, 18 (4) , 427-465. https://doi.org/10.1016/S0022-0728(68)80011-7
    89. Hermann Staudinger, Werner Kern, Hermann Kämmerer. Methoden und Reaktionen zur Identifizierung isolierter organischer Verbindungen. 1968, 191-229. https://doi.org/10.1007/978-3-642-85609-9_3
    90. Ralph E. Dunbar, Bruce W. Farnum. Organic chemical microscopy. Part IX. The photomicrography and crystallography of amide derivatives of organic acids, anhydrides, and acid chlorides. Microchemical Journal 1961, 5 (1) , 5-18. https://doi.org/10.1016/0026-265X(61)90017-0
    91. Ralph E. Dunbar, Cyril C. Moore. Organic chemical microscopy. Part VI. p-toluidides and amides as qualitative organic derivatives of carboxylic acids. Microchemical Journal 1959, 3 (4) , 491-505. https://doi.org/10.1016/0026-265X(59)90080-3
    92. H. Winteler, A. Bieler, A. Guyer. Über die Einwirkung von Kohlenmonoxyd auf aliphatische Amine. Helvetica Chimica Acta 1954, 37 (7) , 2370-2376. https://doi.org/10.1002/hlca.19540370752
    93. H.J. Harwood. Derivatives of the fatty acids. Progress in the Chemistry of Fats and other Lipids 1952, 1 , 127-174. https://doi.org/10.1016/0079-6832(52)90007-4