ACS Publications. Most Trusted. Most Cited. Most Read
PARAMETERS IN CRYSTAL STRUCTURE. THE MERCUROUS HALIDES
My Activity

Figure 1Loading Img
    article

    PARAMETERS IN CRYSTAL STRUCTURE. THE MERCUROUS HALIDES
    Click to copy article linkArticle link copied!

    ACS Legacy Archive
    Other Access Options

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 1926, 48, 8, 2113–2125
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja01419a016
    Published August 1, 1926

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 73 publications.

    1. Maxim S. Likhanov, Valeriy Yu. Verchenko, Alexey N. Kuznetsov, Andrei V. Shevelkov. ReGa0.4Ge0.6: Intermetallic Compound with Pronounced Covalency in the Bonding Pattern. Inorganic Chemistry 2019, 58 (4) , 2822-2832. https://doi.org/10.1021/acs.inorgchem.8b03468
    2. Hiroshi Oike, Hiromi Taniguchi, Kazuya Miyagawa, Kazushi Kanoda. Mottness and Spin Liquidity in a Doped Organic Superconductor κ -(BEDT-TTF) 4 Hg 2.89 Br 8. Journal of the Physical Society of Japan 2024, 93 (4) https://doi.org/10.7566/JPSJ.93.042001
    3. Swarup Ghosh, Joydeep Chowdhury. Temperature dependent phase transition and negative thermal expansion of Hg 2 Cl 2 compound: insights from first-principle DFT and Born-Oppenheimer on the fly molecular dynamics calculations. Phase Transitions 2023, 96 (6) , 446-463. https://doi.org/10.1080/01411594.2023.2209258
    4. Swarup Ghosh, Joydeep Chowdhury. Pressure induced modulations in the optoelectronic properties of Hg2Cl2 compound: Insights from the first-principle calculations. Materials Science and Engineering: B 2022, 284 , 115903. https://doi.org/10.1016/j.mseb.2022.115903
    5. Swarup Ghosh, Sougata Sarkar, Joydeep Chowdhury. Structural and electronic properties of wide band gap charge transfer insulator Hg2Cl2: Insights from the first-principle calculations. Materials Chemistry and Physics 2022, 276 , 125379. https://doi.org/10.1016/j.matchemphys.2021.125379
    6. Swarup Ghosh, Joydeep Chowdhury. Pressure induced structural phase transitions of technologically significant mercurous chloride at room temperature: An account from first-principle DFT and Born–Oppenheimer molecular dynamics studies. Journal of Applied Physics 2021, 130 (22) https://doi.org/10.1063/5.0068049
    7. Elisabetta Gliozzo. Pigments — Mercury-based red (cinnabar-vermilion) and white (calomel) and their degradation products. Archaeological and Anthropological Sciences 2021, 13 (11) https://doi.org/10.1007/s12520-021-01402-4
    8. Konstantin Koessler, Burkhard Butschke. Heterodinuclear Transition‐Metal Complexes: Fundamentals, Synthesis, and Applications. 2021, 1-31. https://doi.org/10.1002/9781119951438.eibc2782
    9. Priyanthi M. Amarasinghe, Joo-Soo Kim, Sudhir Trivedi, Feng Jin, Jolanta Soos, Mark Diestler, Syed B. Qadri, Janet l. Jensen, James Jensen, Neelam Gupta. Mercurous Bromide (Hg2Br2) Acousto-Optic Tunable Filters (AOTFs) for the Long Wavelength Infrared (LWIR) Region. Journal of Electronic Materials 2021, 50 (10) , 5774-5779. https://doi.org/10.1007/s11664-021-09127-9
    10. Connor A. Occhialini, Sahan U. Handunkanda, Ayman Said, Sudhir Trivedi, G. G. Guzmán-Verri, Jason N. Hancock. Negative thermal expansion near two structural quantum phase transitions. Physical Review Materials 2017, 1 (7) https://doi.org/10.1103/PhysRevMaterials.1.070603
    11. Xian Wu, Sjoerd Harder. Group 12 Metal–Metal Bonds. 2015, 429-453. https://doi.org/10.1002/9783527673353.ch12
    12. S. Gupta, J. Nirwan. Evaluation of mercury biotransformation by heavy metal-tolerant Alcaligenes strain isolated from industrial sludge. International Journal of Environmental Science and Technology 2015, 12 (3) , 995-1002. https://doi.org/10.1007/s13762-013-0484-9
    13. Mohammed Kars, Thierry Roisnel, Vincent Dorcet, Allaoua Rebbah, Otero-Diáz L. Carlos. Redetermination of Hg 2 I 2. Acta Crystallographica Section E Structure Reports Online 2012, 68 (2) , i11-i11. https://doi.org/10.1107/S1600536811056339
    14. Yu. F. Markov, E. M. Roginskii. Nanoclusters in mixed crystals Hg2 Hal 2. Bulletin of the Russian Academy of Sciences: Physics 2011, 75 (10) , 1317-1323. https://doi.org/10.3103/S1062873811100224
    15. Anatolii Fedorchuk, Yurii Prots, Walter Schnelle, Yuri Grin. Bell‐Like [Ga 5 ] Clusters in Eu 3 Li 5+ x Ga 5– x ( x = 0.15). European Journal of Inorganic Chemistry 2011, 2011 (26) , 3904-3908. https://doi.org/10.1002/ejic.201100511
    16. R.E. Taylor, Shi Bai, C. Dybowski. A solid-state 199Hg NMR study of mercury halides. Journal of Molecular Structure 2011, 987 (1-3) , 193-198. https://doi.org/10.1016/j.molstruc.2010.12.013
    17. P. Villars, K. Cenzual, J. Daams, R. Gladyshevskii, O. Shcherban, V. Dubenskyy, V. Kuprysyuk, I. Savysyuk, R. Zaremba. Hg2Cl2. 2011, 189-189. https://doi.org/10.1007/978-3-642-19662-1_136
    18. Andreas Krapp, Gernot Frenking. Chemical bonding in “early–late” transition metal complexes [(H2N)3M–M′(CO)4] (M = Ti, Zr, Hf; M′ = Co, Rh, Ir). Theoretical Chemistry Accounts 2010, 127 (3) , 141-148. https://doi.org/10.1007/s00214-009-0696-8
    19. Yu. F. Markov, E. M. Roginskii, D. Wallacher. X-ray study of microcrystalline Hg2 Hal 2 ferroelastics. Bulletin of the Russian Academy of Sciences: Physics 2010, 74 (9) , 1198-1202. https://doi.org/10.3103/S1062873810090030
    20. Yu. F. Markov, E. M. Roginskiĭ. Raman scattering by Hg2F2 polycrystals. Physics of the Solid State 2009, 51 (2) , 298-302. https://doi.org/10.1134/S1063783409020152
    21. Yu. F. Markov, E. M. Roginskiĭ. Optical phonons and symmetry of Hg2F2. Technical Physics Letters 2009, 35 (1) , 9-12. https://doi.org/10.1134/S1063785009010039
    22. Yu. F. Markov, E. M. Roginskiĭ, I. N. Zimkin. Phase transition effects in polycrystalline Hg2Br2 samples. Physics of the Solid State 2008, 50 (4) , 740-745. https://doi.org/10.1134/S1063783408040239
    23. Yu. F. Markov, K. Knorr, E. M. Roginskii. Temperature Behaviour of Nanoclusters in Mixed Crystals Hg 2 (Br,I) 2. Ferroelectrics 2007, 359 (1) , 82-93. https://doi.org/10.1080/00150190701514850
    24. Gabor Kiss, James Eric McDonough, John J. Weir, Carl D. Hoff. Dinuclear Organometallic Cluster Complexes. 2005https://doi.org/10.1002/0470862106.ia065
    25. Gabor Kiss, James Eric McDonough, John J. Weir, Carl D. Hoff. Dinuclear Organometallic Cluster Complexes. 2005https://doi.org/10.1002/9781119951438.eibc0061
    26. B. S. Zadokhin, E. V. Solodovnik. Simulation of the dynamic properties of Hg2 Hal 2 crystals (Hal=Cl, Br, I). Physics of the Solid State 2004, 46 (11) , 2110-2114. https://doi.org/10.1134/1.1825557
    27. Jan Rosdahl, Ingmar Persson, Lars Kloo, Kenny Ståhl. On the solvation of the mercury(I) ion. A structural, vibration spectroscopic and quantum chemical study. Inorganica Chimica Acta 2004, 357 (9) , 2624-2634. https://doi.org/10.1016/j.ica.2004.03.010
    28. Yu. F. Markov, E. M. Roginskii. Low-temperature Raman spectra of Hg2(Br,I)2 mixed crystals. Physics of the Solid State 2003, 45 (6) , 1131-1136. https://doi.org/10.1134/1.1583803
    29. Jeremy Sloan, Angus I. Kirkland, John L. Hutchison, Malcolm L.H. Green. Aspects of crystal growth within carbon nanotubes. Comptes Rendus. Physique 2003, 4 (9) , 1063-1074. https://doi.org/10.1016/S1631-0705(03)00102-6
    30. C. Guminski. The Br-Hg (Bromine-Mercury) System. Journal of Phase Equilibria 2000, 21 (6) , 539-543. https://doi.org/10.1007/s11669-000-0023-5
    31. Lutz H. Gade. Stark polare Metall-Metall-Bindungen in Heterodimetallkomplexen des „Early-Late”-Typs. Angewandte Chemie 2000, 112 (15) , 2768-2789. https://doi.org/10.1002/1521-3757(20000804)112:15<2768::AID-ANGE2768>3.0.CO;2-0
    32. Meng-Sheng Liao, Qian-Er Zhang. Application of an Improved Point-Charge Model To Study the Crystal Hg2F2. Journal of Solid State Chemistry 1999, 146 (1) , 239-244. https://doi.org/10.1006/jssc.1999.8344
    33. Meng-Sheng Liao, Qian-Er Zhang. A Theoretical Study of the Crystal HgCl2 Compound. Bulletin of the Chemical Society of Japan 1999, 72 (7) , 1459-1463. https://doi.org/10.1246/bcsj.72.1459
    34. N. V. Pervukhina, G. V. Romanenko, S. V. Borisov, S. A. Magarill, N. A. Palchik. Crystal chemistry of mercury(I) and mercury(I, II) minerals. Journal of Structural Chemistry 1999, 40 (3) , 461-476. https://doi.org/10.1007/BF02700646
    35. M.S. Liao, W.H.E. Schwarz. On the structural data of Hg(I) halides. Journal of Alloys and Compounds 1997, 246 (1-2) , 124-130. https://doi.org/10.1016/S0925-8388(96)02462-0
    36. Meng-sheng Liao, Qian-er Zhang. HgHg bonding in mercurous Hg(I)2L2 compounds: the influence of ligand electronegativity. Journal of Molecular Structure: THEOCHEM 1995, 358 (1-3) , 195-203. https://doi.org/10.1016/0166-1280(95)04342-X
    37. Peter Reinemer, Robert Huber. Röntgenstrahlen in der Biochemie. 1995, 402-426. https://doi.org/10.1007/978-3-642-78841-3_29
    38. William S. Rees, Gertrud Kräuter. Intra-Ring Differentiation Between MS and MX in the Preparation of Electronic Materials from Metal Thiolate Precursors. Phosphorus, Sulfur, and Silicon and the Related Elements 1994, 93 (1-4) , 339-344. https://doi.org/10.1080/10426509408021849
    39. Jonathan M. Curtis, Robert K. Boyd. Does the mercuous diatomic dication exist in the gas phase? A search by mass spectrometry. Rapid Communications in Mass Spectrometry 1993, 7 (5) , 409-411. https://doi.org/10.1002/rcm.1290070519
    40. S. Laubach, P. Schwalbach, E. Kankeleit, K. Hasselbach. Electric hyperfine interaction in199Hg fluorides. Hyperfine Interactions 1985, 23 (3-4) , 259-271. https://doi.org/10.1007/BF02058948
    41. Michio Midorikawa, Yoshihiro Ishibashi, Shin-ichi Nakashima, Akiyoshi Mitsuishi. Effect of Pressure on Phase Transition in Hg 2 Cl 2 Crystals. Journal of the Physical Society of Japan 1980, 49 (2) , 554-556. https://doi.org/10.1143/JPSJ.49.554
    42. J. P. Benoit, G. Hauret, Y. Luspin, Cao Xuan An, J. Lefebvre. Neutron and raman scattering studies in Hg 2 C1 2. Ferroelectrics 1980, 25 (1) , 569-572. https://doi.org/10.1080/00150198008207072
    43. J P Benoit, Cao Xuan An, Y Luspin, J P Chappelle, J Lefebvre. Study of inelastic neutron scattering and by the Raman effect, of the soft mode in the prototype phase of Hg 2 Cl 2. Journal of Physics C: Solid State Physics 1978, 11 (17) , L721-L723. https://doi.org/10.1088/0022-3719/11/17/003
    44. Heinrich Vahrenkamp. Was wissen wir über die Metall-Metall-Bindung?. Angewandte Chemie 1978, 90 (6) , 403-416. https://doi.org/10.1002/ange.19780900604
    45. Heinrich Vahrenkamp. What Do We Know about the Metal‐Metal Bond?. Angewandte Chemie International Edition in English 1978, 17 (6) , 379-392. https://doi.org/10.1002/anie.197803793
    46. J. Petzelt, M. Matyáš, J. Kroupa, Č. Bárta. Far infrared properties of Hg2I2 single crystals. Czechoslovak Journal of Physics B 1978, 28 (3) , 357-360. https://doi.org/10.1007/BF01597225
    47. Cao Xuan An, G. Hauret, J.P. Chapelle. Brillouin scattering in Hg2Cl2. Solid State Communications 1977, 24 (6) , 443-445. https://doi.org/10.1016/0038-1098(77)91313-8
    48. P. W. Richter, P. T. T. Wong, E. Whalley. The effect of pressure on the Raman spectra of mercurous chloride and bromide. The Journal of Chemical Physics 1977, 67 (5) , 2348-2354. https://doi.org/10.1063/1.435071
    49. Z. Bryknar, Č. Barta, M. Lébl. Properties of 397 nm luminescent band of Hg2Cl2 single crystal. Czechoslovak Journal of Physics 1977, 27 (7) , 808-816. https://doi.org/10.1007/BF01589323
    50. W. Levason, C. A. McAuliffe. The Coordination Chemistry of Mercury. 1977, 47-135. https://doi.org/10.1007/978-1-349-02489-6_2
    51. John R. Ferraro, Joseph S. Ziomek. Derivation of Selection Rules. 1975, 33-109. https://doi.org/10.1007/978-1-4684-8795-4_2
    52. J. Petzelt, I. Mayerová, Č. Bárta, L. D. Kislovskii. Polar optic phonons in Hg2Cl2 and Hg2Br2. Czechoslovak Journal of Physics 1973, 23 (8) , 845-854. https://doi.org/10.1007/BF01587279
    53. G. Nagarajan. Spectroscopic studies of potential energy constants, root-mean-square amplitudes, coriolis coupling coefficients and shrinkages of chemical bonds in mercurous halides. Acta Physica Academiae Scientiarum Hungaricae 1973, 33 (1) , 45-61. https://doi.org/10.1007/BF03161269
    54. D.L. Kepert, K. Vrieze. INTRODUCTION. 1973, 197-228. https://doi.org/10.1016/B978-0-08-018880-5.50005-1
    55. Toshiaki Ōsaka. Far-Infrared Absorption Spectra of Mercurous Halides. The Journal of Chemical Physics 1971, 54 (3) , 863-867. https://doi.org/10.1063/1.1675011
    56. Dietrich Breitinger, Klaus Brodersen, Jürgen Limmer. Stabile Quecksilber(I)‐Stickstoff‐Verbindungen. Chemische Berichte 1970, 103 (8) , 2388-2393. https://doi.org/10.1002/cber.19701030809
    57. Thomas G. Spiro. Vibrational Spectra and Metal–Metal Bonds. 1970, 1-51. https://doi.org/10.1002/9780470166123.ch1
    58. W. Pies, A. Weiss. a2240, I.2.1 Simple chlorides and their solid solutions. , 354-366. https://doi.org/10.1007/10201462_31
    59. W. Pies, A. Weiss. a3118, I.3.1 Simple bromides and their solid solutions. , 520-529. https://doi.org/10.1007/10201462_46
    60. W. Pies, A. Weiss. a3560, I.4.1 Simple iodides and their solid solutions. , 603-612. https://doi.org/10.1007/10201462_56
    61. J. R. Durig, K. K. Lau, G. Nagarajan, M. Walker, J. Bragin. Vibrational Spectra and Molecular Potential Fields of Mercurous Chloride, Bromide, and Iodide. The Journal of Chemical Physics 1969, 50 (5) , 2130-2139. https://doi.org/10.1063/1.1671343
    62. R. Scheffold. Abschätzung von Reaktivitäts‐Parametern von Nucleophilen auf Graund der Kern‐Spin‐Spin‐Kopplungskonstanten J 1 H‐ 199 Hg ihrer Methylquecksilberkomplexe. Helvetica Chimica Acta 1969, 52 (1) , 56-69. https://doi.org/10.1002/hlca.19690520106
    63. Nobuyuki Tanaka, Setsuko Yamamoto, Yuichi Sato. Retardation of Polarographic Oxidation of Ethylenediaminetetraacetatocobaltate(II) by Mercury(I) Iodide Film Formation. Bulletin of the Chemical Society of Japan 1968, 41 (10) , 2288-2292. https://doi.org/10.1246/bcsj.41.2288
    64. H. Stammreich, T.Teixeira Sans. Hg-Hg stretching frequencies and bond lengths in mercurous compounds. Journal of Molecular Structure 1967, 1 (1) , 55-60. https://doi.org/10.1016/0022-2860(67)80006-1
    65. Klaus Brodersen, Lieselotte Kunkel. Über eine stabile Quecksilber(I)‐Stickstoff‐Verbindung: Quecksilber(I)‐diacethydrazid. Chemische Berichte 1958, 91 (12) , 2698-2702. https://doi.org/10.1002/cber.19580911223
    66. H R Thirsk. The Structure and Orientation of Calomel formed on Liquid Mercury by Anodic Polarization. Proceedings of the Physical Society. Section B 1953, 66 (2) , 129-133. https://doi.org/10.1088/0370-1301/66/2/309
    67. A. Hedlik. Über die Formel und Struktur von Eglestonit Hg4Cl2O. Experientia 1948, 4 (2) , 66-66. https://doi.org/10.1007/BF02155984
    68. Elliot Q. Adams, Bentley T. Barnes. The Mechanism of the Positive Column in Mercury Vapor at Intermediate Pressures. Physical Review 1938, 53 (7) , 556-563. https://doi.org/10.1103/PhysRev.53.556
    69. F. C. Blake. On the Factors Affecting the Reflection Intensities by the Several Methods of X-Ray Analysis of Crystal Structures. Reviews of Modern Physics 1933, 5 (3) , 169-202. https://doi.org/10.1103/RevModPhys.5.169
    70. E. O. Wollan. X-Ray Scattering and Atomic Structure. Reviews of Modern Physics 1932, 4 (2) , 205-258. https://doi.org/10.1103/RevModPhys.4.205
    71. James B. Friauf. THE APPLICATION OF X-RAYS TO THE STUDY OF METALS. Review of Scientific Instruments 1930, 1 (7) , 361-396. https://doi.org/10.1063/1.1748707
    72. R. J. Havighurst. Electron Distribution in the Atoms of Crystals. Sodium Chloride and Lithium, Sodium and Calcium Fluorides. Physical Review 1927, 29 (1) , 1-19. https://doi.org/10.1103/PhysRev.29.1
    73. R. J. Havighurst. The Intensity of Reflection of X-Rays by Powdered Crystals, I. Sodium Chloride and Sodium, Lithium and Calcium Fluorides. Physical Review 1926, 28 (5) , 869-881. https://doi.org/10.1103/PhysRev.28.869

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 1926, 48, 8, 2113–2125
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja01419a016
    Published August 1, 1926

    Article Views

    197

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.