Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Temperature Dependence of Quantum Effects in Liquid Water
My Activity

Figure 1Loading Img
    Article

    Temperature Dependence of Quantum Effects in Liquid Water
    Click to copy article linkArticle link copied!

    View Author Information
    Contribution from the Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4J3, Canada
    Other Access Options

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2005, 127, 14, 5246–5251
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja0424676
    Published March 19, 2005
    Copyright © 2005 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Quantum and classical simulations are carried out on model water systems over a wide range of temperatures, from 100 to −35 °C. A detailed examination of the equilibrium and dynamical properties of liquid water is presented, together with a discussion of the interplay between quantum mechanical tunneling and dynamics. The study shows that quantum effects are essential for a description of the dynamical behavior of liquid water, particularly in the low-temperature (supercooled) region. The similarities and differences between quantum effects and the effects associated with increasing the temperature are explicitly characterized.

    Copyright © 2005 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

     Present address:  Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada.

    *

    In papers with more than one author, the asterisk indicates the name of the author to whom inquiries about the paper should be addressed.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 63 publications.

    1. Chenghan Li, Francesco Paesani, Gregory A. Voth. Static and Dynamic Correlations in Water: Comparison of Classical Ab Initio Molecular Dynamics at Elevated Temperature with Path Integral Simulations at Ambient Temperature. Journal of Chemical Theory and Computation 2022, 18 (4) , 2124-2131. https://doi.org/10.1021/acs.jctc.1c01223
    2. Diego Carnevale, Philippe Pelupessy, Geoffrey Bodenhausen. Cross-term Splittings Due to the Orientational Inequivalence of Proton Magnetic Shielding Tensors: Do Water Molecules Trapped in Crystals Hop or Tunnel?. The Journal of Physical Chemistry Letters 2019, 10 (12) , 3224-3231. https://doi.org/10.1021/acs.jpclett.9b00914
    3. Michele Ceriotti, Wei Fang, Peter G. Kusalik, Ross H. McKenzie, Angelos Michaelides, Miguel A. Morales, and Thomas E. Markland . Nuclear Quantum Effects in Water and Aqueous Systems: Experiment, Theory, and Current Challenges. Chemical Reviews 2016, 116 (13) , 7529-7550. https://doi.org/10.1021/acs.chemrev.5b00674
    4. Daniel M. Chipman . Water from Ambient to Supercritical Conditions with the AMOEBA Model. The Journal of Physical Chemistry B 2013, 117 (17) , 5148-5155. https://doi.org/10.1021/jp400750z
    5. Dibyendu Bandyopadhyay, Sadhana Mohan, Swapan K. Ghosh, and Niharendu Choudhury . Properties of Heavy Water in the Temperature Range T = 223 K to 373 K from Molecular Dynamics Simulation Using the Simple Point Charge/Heavy Water (SPC/HW) Model. Journal of Chemical & Engineering Data 2012, 57 (6) , 1751-1758. https://doi.org/10.1021/je300064f
    6. Ali A. Hassanali, Jérôme Cuny, Michele Ceriotti, Chris J. Pickard, and Michele Parrinello . The Fuzzy Quantum Proton in the Hydrogen Chloride Hydrates. Journal of the American Chemical Society 2012, 134 (20) , 8557-8569. https://doi.org/10.1021/ja3014727
    7. Francesco Paesani . Temperature-Dependent Infrared Spectroscopy of Water from a First-Principles Approach. The Journal of Physical Chemistry A 2011, 115 (25) , 6861-6871. https://doi.org/10.1021/jp111426r
    8. Francesco Paesani, Soohaeng Yoo, Huib J. Bakker and Sotiris S. Xantheas . Nuclear Quantum Effects in the Reorientation of Water. The Journal of Physical Chemistry Letters 2010, 1 (15) , 2316-2321. https://doi.org/10.1021/jz100734w
    9. Lisandro Hernández de la Peña and Gilles H. Peslherbe. Quantum Effects on the Free Energy of Ionic Aqueous Clusters Evaluated by Nonequilibrium Computational Methods. The Journal of Physical Chemistry B 2010, 114 (16) , 5404-5411. https://doi.org/10.1021/jp908742n
    10. Francesco Paesani, Sotiris S. Xantheas and Gregory A. Voth . Infrared Spectroscopy and Hydrogen-Bond Dynamics of Liquid Water from Centroid Molecular Dynamics with an Ab Initio-Based Force Field. The Journal of Physical Chemistry B 2009, 113 (39) , 13118-13130. https://doi.org/10.1021/jp907648y
    11. Francesco Paesani and Gregory A. Voth. The Properties of Water: Insights from Quantum Simulations. The Journal of Physical Chemistry B 2009, 113 (17) , 5702-5719. https://doi.org/10.1021/jp810590c
    12. Ashleigh J. Fletcher and, K. Mark Thomas. Kinetic Isotope Quantum Effects in the Adsorption of H2O and D2O on Porous Carbons. The Journal of Physical Chemistry C 2007, 111 (5) , 2107-2115. https://doi.org/10.1021/jp065105o
    13. L. Hernández de la Peña,, M. S. Gulam Razul, and, P. G. Kusalik. Impacts of Quantization on the Properties of Liquid Water. The Journal of Physical Chemistry A 2005, 109 (32) , 7236-7241. https://doi.org/10.1021/jp051616j
    14. Fabrizio Creazzo, Sandra Luber. Water–air interface revisited by means of path-integral ab initio molecular dynamics. Physical Chemistry Chemical Physics 2024, 26 (31) , 21290-21302. https://doi.org/10.1039/D4CP02500H
    15. Alice Van Haeften, Ceridwen Ash, Graham Worth. Propagating multi-dimensional density operators using the multi-layer- ρ multi-configurational time-dependent Hartree method. The Journal of Chemical Physics 2023, 159 (19) https://doi.org/10.1063/5.0172956
    16. Yi Yao, Yosuke Kanai. Temperature dependence of nuclear quantum effects on liquid water via artificial neural network model based on SCAN meta-GGA functional. The Journal of Chemical Physics 2020, 153 (4) https://doi.org/10.1063/5.0012815
    17. Valentino Bianco, Giancarlo Franzese, Ivan Coluzza. In Silico Evidence That Protein Unfolding is a Precursor of Protein Aggregation. ChemPhysChem 2020, 21 (5) , 377-384. https://doi.org/10.1002/cphc.201900904
    18. Xue Yong, Christian J. Burnham, Niall J. English, John S. Tse. Classical and path-integral molecular-dynamics study on liquid water and ice melting using non-empirical TTM2.1-F model. Molecular Physics 2019, 117 (22) , 3241-3253. https://doi.org/10.1080/00268976.2019.1652774
    19. Valentino Bianco, Giancarlo Franzese. Hydrogen bond correlated percolation in a supercooled water monolayer as a hallmark of the critical region. Journal of Molecular Liquids 2019, 285 , 727-739. https://doi.org/10.1016/j.molliq.2019.04.090
    20. Shinji Saito, Biman Bagchi, Iwao Ohmine. Crucial role of fragmented and isolated defects in persistent relaxation of deeply supercooled water. The Journal of Chemical Physics 2018, 149 (12) https://doi.org/10.1063/1.5044458
    21. Valentino Bianco, Neus Pagès-Gelabert, Ivan Coluzza, Giancarlo Franzese. How the stability of a folded protein depends on interfacial water properties and residue-residue interactions. Journal of Molecular Liquids 2017, 245 , 129-139. https://doi.org/10.1016/j.molliq.2017.08.026
    22. Yuji Ono, Ryusuke Futamura, Yoshiyuki Hattori, Shigenori Utsumi, Toshio Sakai, Katsumi Kaneko. Isotope effect on water adsorption on hydrophobic carbons of different nanoporosities. Carbon 2017, 119 , 251-256. https://doi.org/10.1016/j.carbon.2017.04.047
    23. Valentino Bianco, Giancarlo Franzese, Christoph Dellago, Ivan Coluzza. Role of Water in the Selection of Stable Proteins at Ambient and Extreme Thermodynamic Conditions. Physical Review X 2017, 7 (2) https://doi.org/10.1103/PhysRevX.7.021047
    24. Oriol Vilanova, Valentino Bianco, Giancarlo Franzese. Multi-Scale Approach for Self-Assembly and Protein Folding. 2017, 107-128. https://doi.org/10.1007/978-3-319-71578-0_5
    25. Valentino Bianco, Giancarlo Franzese. Contribution of Water to Pressure and Cold Denaturation of Proteins. Physical Review Letters 2015, 115 (10) https://doi.org/10.1103/PhysRevLett.115.108101
    26. Valentino Bianco, Giancarlo Franzese. Critical behavior of a water monolayer under hydrophobic confinement. Scientific Reports 2014, 4 (1) https://doi.org/10.1038/srep04440
    27. Kuan-Yu Yeh, Shao-Nung Huang, Li-Jen Chen, Shiang-Tai Lin. Diffusive and quantum effects of water properties in different states of matter. The Journal of Chemical Physics 2014, 141 (4) https://doi.org/10.1063/1.4890572
    28. G B Suffritti, P Demontis, J Gulín-González, M Masia. Distributions of single-molecule properties as tools for the study of dynamical heterogeneities in nanoconfined water. Journal of Physics: Condensed Matter 2014, 26 (15) , 155103. https://doi.org/10.1088/0953-8984/26/15/155103
    29. Pablo E. Videla, Peter J. Rossky, D. Laria. Nuclear quantum effects on the structure and the dynamics of [H2O]8 at low temperatures. The Journal of Chemical Physics 2013, 139 (17) https://doi.org/10.1063/1.4827935
    30. Giancarlo Franzese, Valentino Bianco. Water at Biological and Inorganic Interfaces. Food Biophysics 2013, 8 (3) , 153-169. https://doi.org/10.1007/s11483-013-9310-7
    31. Francesco Paesani. Water in metal-organic frameworks: structure and diffusion of H 2 O in MIL-53(Cr) from quantum simulations. Molecular Simulation 2012, 38 (8-9) , 631-641. https://doi.org/10.1080/08927022.2012.679620
    32. Carl McBride, Eva G. Noya, Juan L. Aragones, Maria M. Conde, Carlos Vega. The phase diagram of water from quantum simulations. Physical Chemistry Chemical Physics 2012, 14 (29) , 10140. https://doi.org/10.1039/c2cp40962c
    33. A. Nilsson, L.G.M. Pettersson. Perspective on the structure of liquid water. Chemical Physics 2011, 389 (1-3) , 1-34. https://doi.org/10.1016/j.chemphys.2011.07.021
    34. C. J. Burnham, T. Hayashi, R. L. Napoleon, T. Keyes, S. Mukamel, G. F. Reiter. The proton momentum distribution in strongly H-bonded phases of water: A critical test of electrostatic models. The Journal of Chemical Physics 2011, 135 (14) https://doi.org/10.1063/1.3649679
    35. Eva G. Noya, Luis M. Sesé, Rafael Ramírez, Carl McBride, Maria M. Conde, Carlos Vega. Path integral Monte Carlo simulations for rigid rotors and their application to water. Molecular Physics 2011, 109 (1) , 149-168. https://doi.org/10.1080/00268976.2010.528202
    36. Francesco Paesani. Hydrogen bond dynamics in heavy water studied with quantum dynamical simulations. Physical Chemistry Chemical Physics 2011, 13 (44) , 19865. https://doi.org/10.1039/c1cp21863h
    37. Brent Walker, Angelos Michaelides. Direct assessment of quantum nuclear effects on hydrogen bond strength by constrained-centroid ab initio path integral molecular dynamics. The Journal of Chemical Physics 2010, 133 (17) https://doi.org/10.1063/1.3505038
    38. Valéry Weber, D. Asthagiri. Communication: Thermodynamics of water modeled using ab initio simulations. The Journal of Chemical Physics 2010, 133 (14) https://doi.org/10.1063/1.3499315
    39. Congcong Huang, T. M. Weiss, D. Nordlund, K. T. Wikfeldt, L. G. M. Pettersson, A. Nilsson. Increasing correlation length in bulk supercooled H2O, D2O, and NaCl solution determined from small angle x-ray scattering. The Journal of Chemical Physics 2010, 133 (13) https://doi.org/10.1063/1.3495974
    40. Valéry Weber, Safir Merchant, Purushottam D. Dixit, D. Asthagiri. Molecular packing and chemical association in liquid water simulated using ab initio hybrid Monte Carlo and different exchange-correlation functionals. The Journal of Chemical Physics 2010, 132 (20) https://doi.org/10.1063/1.3437061
    41. Kim Hyeon-Deuk, Koji Ando. Quantum effects of hydrogen atoms on the dynamical rearrangement of hydrogen-bond networks in liquid water. The Journal of Chemical Physics 2010, 132 (16) https://doi.org/10.1063/1.3397809
    42. Sergei D. Ivanov, Alexander Witt, Motoyuki Shiga, Dominik Marx. Communications: On artificial frequency shifts in infrared spectra obtained from centroid molecular dynamics: Quantum liquid water. The Journal of Chemical Physics 2010, 132 (3) https://doi.org/10.1063/1.3290958
    43. Krzysztof Szalewicz, Claude Leforestier, Ad van der Avoird. Towards the complete understanding of water by a first-principles computational approach. Chemical Physics Letters 2009, 482 (1-3) , 1-14. https://doi.org/10.1016/j.cplett.2009.09.029
    44. Jian Liu, William H. Miller, Francesco Paesani, Wei Zhang, David A. Case. Quantum dynamical effects in liquid water: A semiclassical study on the diffusion and the infrared absorption spectrum. The Journal of Chemical Physics 2009, 131 (16) https://doi.org/10.1063/1.3254372
    45. Kim Hyeon-Deuk, Koji Ando. Semiquantum molecular dynamics simulation of liquid water by time-dependent Hartree approach. The Journal of Chemical Physics 2009, 131 (6) https://doi.org/10.1063/1.3200937
    46. C. Vega, J. L. F. Abascal, M. M. Conde, J. L. Aragones. What ice can teach us about water interactions: a critical comparison of the performance of different water models. Faraday Discuss. 2009, 141 , 251-276. https://doi.org/10.1039/B805531A
    47. A. K. Soper, C. J. Benmore. Quantum Differences between Heavy and Light Water. Physical Review Letters 2008, 101 (6) https://doi.org/10.1103/PhysRevLett.101.065502
    48. Joseph A. Morrone, Roberto Car. Nuclear Quantum Effects in Water. Physical Review Letters 2008, 101 (1) https://doi.org/10.1103/PhysRevLett.101.017801
    49. Robert Bukowski, Krzysztof Szalewicz, Gerrit C. Groenenboom, Ad van der Avoird. Polarizable interaction potential for water from coupled cluster calculations. I. Analysis of dimer potential energy surface. The Journal of Chemical Physics 2008, 128 (9) https://doi.org/10.1063/1.2832746
    50. Robert Bukowski, Krzysztof Szalewicz, Gerrit C. Groenenboom, Ad van der Avoird. Polarizable interaction potential for water from coupled cluster calculations. II. Applications to dimer spectra, virial coefficients, and simulations of liquid water. The Journal of Chemical Physics 2008, 128 (9) https://doi.org/10.1063/1.2832858
    51. Francesco Paesani, Satoru Iuchi, Gregory A. Voth. Quantum effects in liquid water from an ab initio -based polarizable force field. The Journal of Chemical Physics 2007, 127 (7) https://doi.org/10.1063/1.2759484
    52. Cristian Faralli, Marco Pagliai, Gianni Cardini, Vincenzo Schettino. The solvation dynamics of Na+ and K+ ions in liquid methanol. Theoretical Chemistry Accounts 2007, 118 (2) , 417-423. https://doi.org/10.1007/s00214-007-0286-6
    53. U. Bergmann, D. Nordlund, Ph. Wernet, M. Odelius, L. G. M. Pettersson, A. Nilsson. Isotope effects in liquid water probed by x-ray Raman spectroscopy. Physical Review B 2007, 76 (2) https://doi.org/10.1103/PhysRevB.76.024202
    54. Carlos Nieto-Draghi, Theodorus de Bruin, Javier Pérez-Pellitero, Josep Bonet Avalos, Allan D. Mackie. Thermodynamic and transport properties of carbon dioxide from molecular simulation. The Journal of Chemical Physics 2007, 126 (6) https://doi.org/10.1063/1.2434960
    55. Thomas L. Beck. Quantum Contributions to Free Energy Changes in Fluids. 2007, 389-422. https://doi.org/10.1007/978-3-540-38448-9_11
    56. Francesco Paesani, Wei Zhang, David A. Case, Thomas E. Cheatham, Gregory A. Voth. An accurate and simple quantum model for liquid water. The Journal of Chemical Physics 2006, 125 (18) https://doi.org/10.1063/1.2386157
    57. Bastiaan J. Braams, David E. Manolopoulos. On the short-time limit of ring polymer molecular dynamics. The Journal of Chemical Physics 2006, 125 (12) https://doi.org/10.1063/1.2357599
    58. Lisandro Hernández de la Peña, Peter G. Kusalik. Quantum effects in liquid water and ice: Model dependence. The Journal of Chemical Physics 2006, 125 (5) https://doi.org/10.1063/1.2238861
    59. R. T. Hart, Q. Mei, C. J. Benmore, J. C. Neuefeind, J. F. C. Turner, M. Dolgos, B. Tomberli, P. A. Egelstaff. Isotope quantum effects in water around the freezing point. The Journal of Chemical Physics 2006, 124 (13) https://doi.org/10.1063/1.2181974
    60. Seogjoo Jang. Path-integral centroid dynamics for general initial conditions: A nonequilibrium projection operator formulation. The Journal of Chemical Physics 2006, 124 (6) https://doi.org/10.1063/1.2162887
    61. Marco G. Mazza, Nicolas Giovambattista, Francis W. Starr, H. Eugene Stanley. Relation between Rotational and Translational Dynamic Heterogeneities in Water. Physical Review Letters 2006, 96 (5) https://doi.org/10.1103/PhysRevLett.96.057803
    62. Thomas F. Miller, David E. Manolopoulos. Quantum diffusion in liquid water from ring polymer molecular dynamics. The Journal of Chemical Physics 2005, 123 (15) https://doi.org/10.1063/1.2074967
    63. L. Hernández de la Peña, M. S. Gulam Razul, P. G. Kusalik. Quantum effects in ice Ih. The Journal of Chemical Physics 2005, 123 (14) https://doi.org/10.1063/1.2049283

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2005, 127, 14, 5246–5251
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja0424676
    Published March 19, 2005
    Copyright © 2005 American Chemical Society

    Article Views

    734

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.