Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Synthesis and Characterization of Stable Hypervalent Carbon Compounds (10-C-5) Bearing a 2,6-Bis(p-substituted phenyloxymethyl)benzene Ligand

View Author Information
Contribution from the Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan, Advanced Research Center for Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 165-8555, Japan, Department of Applied Physics and Chemistry, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan, and Department of Theoretical Molecular Science, Institute for Molecular Science, Myodaiji, Okazaki 444-8585, Japan
Cite this: J. Am. Chem. Soc. 2005, 127, 16, 5893–5901
Publication Date (Web):April 2, 2005
https://doi.org/10.1021/ja043802t
Copyright © 2005 American Chemical Society

    Article Views

    1833

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (9)»

    Abstract

    Abstract Image

    X-ray analysis of bis(p-fluorophenyl)methyl cation bearing a 2,6-bis(p-tolyloxymethyl)benzene ligand showed a symmetrical structure (10-C-5) where the two C−O distances are identical, although the distance (2.690(4) Å) is longer than those (2.43(1) and 2.45(1) Å) of 1,8-dimethoxy-9-dimethoxymethylanthracene monocation, which was recently reported by us. However, X-ray analysis of the more stable aromatic xanthylium cation with the same benzene ligand showed the tetracoordinate carbon structure where only one of the two oxygen ligands is coordinated with the central carbon atom. These results clearly indicate that the carbocations (10-C-5) bearing the sterically flexible benzene ligand were quite sensitive to the electronic effect on the central carbon atom. The electron distribution analysis by accurate X-ray measurements and the density functional calculation on the initially mentioned bis(p-fluorophenyl)methyl cation clearly show that the central carbon atom and the two oxygen atoms are bonded even if the bond is weak and ionic based on the small value of the electron density (ρ(r)) and the small positive Laplacian value (∇2ρ(r)) at the bond critical points.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    *

    In papers with more than one author, the asterisk indicates the name of the author to whom inquiries about the paper should be addressed.

     Waseda University.

     Hiroshima University.

    §

     The University of Electro-Communications.

     Institute for Molecular Science.

    Supporting Information Available

    ARTICLE SECTIONS
    Jump To

    Preparation of compounds and tables of crystal data, structure solution and refinement, atomic coordinates, anisotropic thermal parameters, and bond distances and angles. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 67 publications.

    1. Vijith Kumar, Patrick Scilabra, Peter Politzer, Giancarlo Terraneo, Andrea Daolio, Francisco Fernandez-Palacio, Jane S. Murray, Giuseppe Resnati. Tetrel and Pnictogen Bonds Complement Hydrogen and Halogen Bonds in Framing the Interactional Landscape of Barbituric Acids. Crystal Growth & Design 2021, 21 (1) , 642-652. https://doi.org/10.1021/acs.cgd.0c01429
    2. Alavi Karim, Nils Schulz, Hanna Andersson, Bijan Nekoueishahraki, Anna-Carin C. Carlsson, Daniel Sarabi, Arto Valkonen, Kari Rissanen, Jürgen Gräfenstein, Sandro Keller, Máté Erdélyi. Carbon’s Three-Center, Four-Electron Tetrel Bond, Treated Experimentally. Journal of the American Chemical Society 2018, 140 (50) , 17571-17579. https://doi.org/10.1021/jacs.8b09367
    3. Vít Kremláček, Jakub Hyvl, Wesley Y. Yoshida, Aleš Růžička, Arnold L. Rheingold, Jan Turek, Russell P. Hughes, Libor Dostál, Matthew F. Cain. Heterocycles Derived from Generating Monovalent Pnictogens within NCN Pincers and Bidentate NC Chelates: Hypervalency versus Bell-Clappers versus Static Aromatics. Organometallics 2018, 37 (15) , 2481-2490. https://doi.org/10.1021/acs.organomet.8b00290
    4. Fu-Chen Liu, Heng-Guang Chen, and Gene-Hsiang Lee . Trinuclear Zirconium Polyhydride ({Cp*Zr(BH3CH3)}(μ-H)2{Cp*Zr(BH3CH3)}(μ-H){Cp*Zr(BH3CH3)})(μ-κ2C,H:κ1C:κ2C,H-CHBH3) and Its Derivatives: Compounds Containing a Pentacoordinated Carbon Atom. Organometallics 2015, 34 (1) , 42-50. https://doi.org/10.1021/om500773e
    5. Yuichi Hirano, Satoshi Kojima, and Yohsuke Yamamoto . A Hypervalent Pentacoordinate Boron Compound with an N−B−N Three-Center Four-Electron Bond. The Journal of Organic Chemistry 2011, 76 (7) , 2123-2131. https://doi.org/10.1021/jo1024656
    6. Cornelis A. Kruithof, Harmen P. Dijkstra, Martin Lutz, Anthony L. Spek, Robertus J. M. Klein Gebbink and Gerard van Koten. X-Ray and NMR Study of the Structural Features of SCS-Pincer Metal Complexes of the Group 10 Triad. Organometallics 2008, 27 (19) , 4928-4937. https://doi.org/10.1021/om800324w
    7. Yong Pei, Wei An, Keigo Ito, Paul von Ragué Schleyer and Xiao Cheng Zeng . Planar Pentacoordinate Carbon in CAl5+: A Global Minimum. Journal of the American Chemical Society 2008, 130 (31) , 10394-10400. https://doi.org/10.1021/ja803365x
    8. Torahiko Yamaguchi, Yohsuke Yamamoto, Daisuke Kinoshita, Kin-ya Akiba, Yun Zhang, Christopher A. Reed, Daisuke Hashizume and Fujiko Iwasaki. Synthesis and Structure of a Hexacoordinate Carbon Compound. Journal of the American Chemical Society 2008, 130 (22) , 6894-6895. https://doi.org/10.1021/ja710423d
    9. Fedor Y. Naumkin. Metastable Intermolecular Charge-Transfer Complexes with a Pentavalent Carbon Atom. The Journal of Physical Chemistry A 2006, 110 (40) , 11392-11395. https://doi.org/10.1021/jp064525a
    10. Torahiko Yamaguchi,, Yohsuke Yamamoto,, Yoshihisa Fujiwara, and, Yoshifumi Tanimoto. Evidence for a Transition State Model Compound of In-Plane Vinylic SN2 Reaction. Organic Letters 2005, 7 (13) , 2739-2742. https://doi.org/10.1021/ol050961o
    11. Steve Scheiner. Tetrel Bonding of the Carbenium Ion Forms a Pentacoordinate Carbon Atom. ChemPhysChem 2024, 25 (12) https://doi.org/10.1002/cphc.202400240
    12. Ravi Kumar, Toshifumi Dohi, Viktor V. Zhdankin. Organohypervalent heterocycles. Chemical Society Reviews 2024, 53 (9) , 4786-4827. https://doi.org/10.1039/D2CS01055K
    13. Dobromir A. Kalchevski, Dimitar V. Trifonov, Stefan K. Kolev, Hristiyan A. Aleksandrov, Teodor I. Milenov. Ab initio study of the mechanism of carbonization of {111} Si-substrate at high temperature. Materials Chemistry and Physics 2024, 317 , 129180. https://doi.org/10.1016/j.matchemphys.2024.129180
    14. Elishua D. Litle, François P. Gabbaï. Double axial stabilization of a carbenium ion via convergent PO → C + tetrel bonding. Chemical Communications 2024, 60 (6) , 690-693. https://doi.org/10.1039/D3CC04729F
    15. Andrés M. Bran, Peter F. Stadler, Jürgen Jost, Guillermo Restrepo. The six stages of the convergence of the periodic system to its final structure. Communications Chemistry 2023, 6 (1) https://doi.org/10.1038/s42004-023-00883-9
    16. Keshaba N. Parida, J. Narasimha Moorthy. λ 3 ‐ and λ 5 ‐Iodanes: Substituent Effects and Pseudorotation/Hypervalent Twisting. Chemistry – A European Journal 2023, 29 (34) https://doi.org/10.1002/chem.202203997
    17. Satoru Muramatsu, Keijiro Ohshimo, Yuan Shi, Motoki Kida, Rong Shang, Yohsuke Yamamoto, Fuminori Misaizu, Yoshiya Inokuchi. Gas‐Phase Characterization of Hypervalent Carbon Compounds Bearing 7‐6‐7‐Ring Skeleton: Penta‐ versus Tetra‐Coordinate Isomers. Chemistry – A European Journal 2023, 29 (11) https://doi.org/10.1002/chem.202203163
    18. Yohsuke Yamamoto, Yuan Shi, Takashi Masui, Daigo Saito, Tatsuya Inoue, Hitomi Sato, Chisato Dohi, Emiko Muneta, Rong Shang, Masaaki Nakamoto. Synthesis and Characterization of Hypervalent Pentacoordinate Carbon Compounds Bearing a 7‐6‐7‐Ring Skeleton. Chemistry – A European Journal 2023, 29 (9) https://doi.org/10.1002/chem.202203162
    19. Vanessa Tabernero, M. Teresa Muñoz, Miguel Palenzuela, Rosa M. Gomila, Antonio Frontera, Marta E. G. Mosquera. σ-Hole triel bonds in aluminium derivatives. Dalton Transactions 2023, 52 (3) , 551-555. https://doi.org/10.1039/D2DT03581B
    20. Andrea Daolio, Erna K. Wieduwilt, Andrea Pizzi, Alessandro Genoni, Giuseppe Resnati, Giancarlo Terraneo. The N , N , N -trimethylammonium moiety as tetrel bond donor site: crystallographic and computational studies. Physical Chemistry Chemical Physics 2022, 24 (40) , 24892-24901. https://doi.org/10.1039/D2CP02535C
    21. Nery Villegas-Escobar, Javier Martínez, Ricardo A. Matute, Sebastián Saltarini, Constantin G. Daniliuc, Lutz H. Gade, René S. Rojas. Trapping an unusual pentacoordinate carbon atom in a neutral trialuminum complex. Chemical Communications 2021, 57 (80) , 10327-10330. https://doi.org/10.1039/D1CC04265C
    22. Jorge Juan Cabrera‐Trujillo, Israel Fernández. Understanding the C−F Bond Activation Mediated by Frustrated Lewis Pairs: Crucial Role of Non‐covalent Interactions. Chemistry – A European Journal 2021, 27 (11) , 3823-3831. https://doi.org/10.1002/chem.202004733
    23. Kiyomi Kakiuchi, Hiroki Tanimoto, Daiki Toumori, Tsumoru Morimoto. Synthesis of a Pentacoordinate Germanium Compound Possessing a γ-Lactone and a Dative-Bonding Carboxylic Acid. HETEROCYCLES 2021, 103 (1) , 465. https://doi.org/10.3987/COM-20-S(K)9
    24. Antonio Frontera. Tetrel Bonding Interactions Involving Carbon at Work: Recent Advances in Crystal Engineering and Catalysis. C—Journal of Carbon Research 2020, 6 (4) , 60. https://doi.org/10.3390/c6040060
    25. Andrea Daolio, Patrick Scilabra, Giancarlo Terraneo, Giuseppe Resnati. C(sp3) atoms as tetrel bond donors: A crystallographic survey. Coordination Chemistry Reviews 2020, 413 , 213265. https://doi.org/10.1016/j.ccr.2020.213265
    26. Claire Castro, William L. Karney. Heavy‐Atom Tunneling in Organic Reactions. Angewandte Chemie 2020, 132 (22) , 8431-8442. https://doi.org/10.1002/ange.201914943
    27. Claire Castro, William L. Karney. Heavy‐Atom Tunneling in Organic Reactions. Angewandte Chemie International Edition 2020, 59 (22) , 8355-8366. https://doi.org/10.1002/anie.201914943
    28. Chenting Yan, Masato Takeshita, Jun-ya Nakatsuji, Akihiro Kurosaki, Kaoko Sato, Rong Shang, Masaaki Nakamoto, Yohsuke Yamamoto, Yohei Adachi, Ko Furukawa, Ryohei Kishi, Masayoshi Nakano. Synthesis and properties of hypervalent electron-rich pentacoordinate nitrogen compounds. Chemical Science 2020, 11 (19) , 5082-5088. https://doi.org/10.1039/D0SC00002G
    29. Ashim Nandi, Adam Sucher, Anat Tyomkin, Sebastian Kozuch. Ping-pong tunneling reactions, part 2: boron and carbon bell-clapper rearrangement. Pure and Applied Chemistry 2020, 92 (1) , 39-47. https://doi.org/10.1515/pac-2019-0401
    30. Daisuke HASHIZUME. Characterization of Labile Chemical Bonds and Reaction Process Analysis Based on Electron Density Distribution(EDD)Analysis. Nihon Kessho Gakkaishi 2019, 61 (2) , 103-110. https://doi.org/10.5940/jcrsj.61.103
    31. Sławomir J. Grabowski. Tetrel bonds, penta‐ and hexa‐coordinated tin and lead centres. Applied Organometallic Chemistry 2017, 31 (10) https://doi.org/10.1002/aoc.3727
    32. Daisuke Hashizume. Experimental Observation of the Nature of Weak Chemical Bonds in Labile Compounds. Advanced Materials 2017, 29 (25) https://doi.org/10.1002/adma.201605175
    33. Sławomir Grabowski. Lewis Acid Properties of Tetrel Tetrafluorides—The Coincidence of the σ-Hole Concept with the QTAIM Approach. Crystals 2017, 7 (2) , 43. https://doi.org/10.3390/cryst7020043
    34. Einar Uggerud. The Factors Determining Reactivity in Nucleophilic Substitution. 2017, 1-57. https://doi.org/10.1016/bs.apoc.2017.07.001
    35. Malcolm L. H. Green, Gerard Parkin. The classification and representation of main group element compounds that feature three-center four-electron interactions. Dalton Transactions 2016, 45 (47) , 18784-18795. https://doi.org/10.1039/C6DT03570A
    36. Antonio Bauzá, Tiddo J. Mooibroek, Antonio Frontera. The Bright Future of Unconventional σ/π‐Hole Interactions. ChemPhysChem 2015, 16 (12) , 2496-2517. https://doi.org/10.1002/cphc.201500314
    37. Marcus C. Durrant. A quantitative definition of hypervalency. Chemical Science 2015, 6 (11) , 6614-6623. https://doi.org/10.1039/C5SC02076J
    38. Ireen Schrader, Kornelia Zeckert, Stefan Zahn. Dilithiumhexaorganozinn(IV)‐Verbindungen. Angewandte Chemie 2014, 126 (50) , 13916-13919. https://doi.org/10.1002/ange.201406260
    39. Ireen Schrader, Kornelia Zeckert, Stefan Zahn. Dilithium Hexaorganostannate(IV) Compounds. Angewandte Chemie International Edition 2014, 53 (50) , 13698-13700. https://doi.org/10.1002/anie.201406260
    40. Sławomir J. Grabowski. Boron and other Triel Lewis Acid Centers: From Hypovalency to Hypervalency. ChemPhysChem 2014, 15 (14) , 2985-2993. https://doi.org/10.1002/cphc.201402344
    41. Antonio Bauzá, Tiddo J. Mooibroek, Antonio Frontera. Small Cycloalkane (CN) 2 CC(CN) 2 Structures Are Highly Directional Non‐covalent Carbon‐Bond Donors. Chemistry – A European Journal 2014, 20 (33) , 10245-10248. https://doi.org/10.1002/chem.201403680
    42. Yan-Bo Wu, Yan-Qin Li, Hui Bai, Hai-Gang Lu, Si-Dian Li, Hua-Jin Zhai, Zhi-Xiang Wang. D3 h [A-CE3-A]− (E = Al and Ga, A = Si, Ge, Sn, and Pb): A new class of hexatomic mono-anionic species with trigonal bipyramidal carbon. The Journal of Chemical Physics 2014, 140 (10) https://doi.org/10.1063/1.4867364
    43. Valery F. Sidorkin, Evgeniya P. Doronina, Elena F. Belogolova. A New Approach to the Design of Neutral 10‐C‐5 Trigonal‐Bipyramidal Carbon Compounds: A “π‐Electron Cap” Effect. Chemistry – A European Journal 2013, 19 (31) , 10302-10311. https://doi.org/10.1002/chem.201300461
    44. Ricardo Rodriguez, Thibault Troadec, David Gau, Nathalie Saffon‐Merceron, Daisuke Hashizume, Karinne Miqueu, Jean‐Marc Sotiropoulos, Antoine Baceiredo, Tsuyoshi Kato. Synthesis of a Donor‐Stabilized Silacyclopropan‐1‐one. Angewandte Chemie 2013, 125 (16) , 4522-4526. https://doi.org/10.1002/ange.201210010
    45. Ricardo Rodriguez, Thibault Troadec, David Gau, Nathalie Saffon‐Merceron, Daisuke Hashizume, Karinne Miqueu, Jean‐Marc Sotiropoulos, Antoine Baceiredo, Tsuyoshi Kato. Synthesis of a Donor‐Stabilized Silacyclopropan‐1‐one. Angewandte Chemie International Edition 2013, 52 (16) , 4426-4430. https://doi.org/10.1002/anie.201210010
    46. Torahiko Yamaguchi, Yohsuke Yamamoto. Substituent effects on the structure of hexacoordinate carbon bearing two thioxanthene ligands. Pure and Applied Chemistry 2013, 85 (4) , 671-682. https://doi.org/10.1351/PAC-CON-12-11-05
    47. Henk M. Buck. Molecular model studies based on ab initio calculations of nucleophilic and electrophilic addition‐substitution reactions focused on carbon–halogen compounds. International Journal of Quantum Chemistry 2011, 111 (15) , 4472-4482. https://doi.org/10.1002/qua.22937
    48. Shin‐ichi Fuku‐en, Torahiko Yamaguchi, Satoshi Kojima, Yohsuke Yamamoto. Generation of triplet carbenes by oxidation of an allene compound. Journal of Physical Organic Chemistry 2011, 24 (10) , 1009-1017. https://doi.org/10.1002/poc.1870
    49. Henk M. Buck. A model investigation of ab initio geometries for identity and nonidentity substitution with three‐center four‐ and three‐electron transition states. International Journal of Quantum Chemistry 2011, 111 (10) , 2242-2250. https://doi.org/10.1002/qua.22529
    50. . Hypervalent Carbon Compounds: Can Hexavalent Carbon Exist?. 2011, 251-268. https://doi.org/10.1002/9781118025918.ch12
    51. . Reactions Involving Hypercarbon Intermediates. 2011, 295-416. https://doi.org/10.1002/9781118016466.ch6
    52. Hiromi Nakai, Masaki Okoshi, Teruo Atsumi, Yasuaki Kikuchi, Kin-ya Akiba. Theoretical Design of Hexacoordinate Hypervalent Carbon Compounds by Analyzing Substituent Effects. Bulletin of the Chemical Society of Japan 2011, 84 (5) , 505-510. https://doi.org/10.1246/bcsj.20100358
    53. Kin‐ya Akiba. Studies on hypervalent compounds and synthetic work using heteroaromatic cations. Heteroatom Chemistry 2011, 22 (3-4) , 207-274. https://doi.org/10.1002/hc.20726
    54. Jun-ya Nakatsuji, Yohsuke Yamamoto. Synthesis and Structure of Boron Compounds Bearing Tridentate Ligands with 1,3-Bicarbonylbenzene Skeleton. Bulletin of the Chemical Society of Japan 2010, 83 (7) , 767-776. https://doi.org/10.1246/bcsj.20090342
    55. Henk M. Buck. A linear three‐center four electron bonding identity nucleophilic substitution at carbon, boron, and phosphorus. A theoretical study in combination with van't Hoff modeling. International Journal of Quantum Chemistry 2010, 110 (7) , 1412-1424. https://doi.org/10.1002/qua.22252
    56. Tomoyuki Yano, Torahiko Yamaguchi, Yohsuke Yamamoto. Synthesis and Structure of Pentacoordinate Hypervalent Boron Compounds Bearing a 1,8-Dimethoxy-10-methylacridinium Skeleton. Chemistry Letters 2009, 38 (8) , 794-795. https://doi.org/10.1246/cl.2009.794
    57. Dhilon S. Patel, Prasad V. Bharatam. Novel ⊕N(←L)2 species with two lone pairs on nitrogen: systems isoelectronic to carbodicarbenes. Chemical Communications 2009, 32 (9) , 1064. https://doi.org/10.1039/b816595e
    58. Yasuaki Kikuchi, Motoki Ishii, Kin-ya Akiba, Hiromi Nakai. Discovery of hexacoordinate hypervalent carbon compounds: Density functional study. Chemical Physics Letters 2008, 460 (1-3) , 37-41. https://doi.org/10.1016/j.cplett.2008.05.079
    59. Simon C. A. H. Pierrefixe, Célia Fonseca Guerra, F. Matthias Bickelhaupt. Hypervalent Silicon versus Carbon: Ball‐in‐a‐Box Model. Chemistry – A European Journal 2008, 14 (3) , 819-828. https://doi.org/10.1002/chem.200701252
    60. Henk M. Buck. A combined experimental, theoretical, and Van't Hoff model study for identity methyl, proton, hydrogen atom, and hydride exchange reactions. Correlation with three‐center four‐, three‐, and two‐electron systems. International Journal of Quantum Chemistry 2008, 108 (9) , 1601-1614. https://doi.org/10.1002/qua.21683
    61. Torahiko Yamaguchi, Yohsuke Yamamoto. Synthesis and Structure of a Carbon Compound Bearing a Sterically Rigid 1,8-Dioxythioxanthylium (or Thioxanthene) Skeleton. Chemistry Letters 2007, 36 (12) , 1438-1439. https://doi.org/10.1246/cl.2007.1438
    62. Jun-Ya Nakatsuji, Yuji Moriyama, Shiro Matsukawa, Yohsuke Yamamoto, Kin-Ya Akiba. Synthesis and structure of hypervalent boron (10-B-5) compounds bearing a 2,6-( p -tolyloxymethyl)benzene tridentate ligand. Main Group Chemistry 2007, 5 (4) , 277-285. https://doi.org/10.1080/10241220701387872
    63. Israel Fernández, Einar Uggerud, Gernot Frenking. Stable Pentacoordinate Carbocations: Structure and Bonding. Chemistry – A European Journal 2007, 13 (30) , 8620-8626. https://doi.org/10.1002/chem.200700744
    64. Kin‐ya Akiba, Yohsuke Yamamoto. Dynamic aspects of hypervalent compounds effected by the formation of three center‐four electron bond in heteroatoms. Heteroatom Chemistry 2007, 18 (2) , 161-175. https://doi.org/10.1002/hc.20326
    65. Tomasz Janosik, Jan Bergman. Five-membered ring systems: thiophenes and Se/Te analogues. 2007, 126-149. https://doi.org/10.1016/S0959-6380(07)80009-2
    66. Hirotsuna Yamada, Shiro Matsukawa, Yohsuke Yamamoto. Synthesis and characterization of hexacoordinate cobalt(III) complexes bearing three C,O-bidentate ligands. Journal of Organometallic Chemistry 2007, 692 (1-3) , 271-277. https://doi.org/10.1016/j.jorganchem.2006.08.100
    67. Libor Dostál, Roman Jambor, Aleš Růžička, Antonín Lyčka, Jaroslav Holeček. 17O NMR spectra of some organotin(IV) compounds containing O,C,O-chelating ligands. Magnetic Resonance in Chemistry 2006, 44 (2) , 171-173. https://doi.org/10.1002/mrc.1743