Communication

Stepwise Molding of a Highly Selective Ribonucleopeptide Receptor

Institute of Advanced Energy, Kyoto University, and PRESTO, Japan Science and Technology Corporation, Uji, Kyoto 611-0011, Japan
J. Am. Chem. Soc., 2005, 127 (1), pp 30–31
DOI: 10.1021/ja0445589
Publication Date (Web): December 13, 2004
Copyright © 2005 American Chemical Society

Abstract

Abstract Image

The structural characteristics of RNA−peptide (RNP) complexes are suitable for molding of a ligand-binding pocket of the RNP complex in a stepwise manner. The first step involves molding of the RNA subunit by in vitro selection of an RNP pool originating from an RNA library and the peptide, as previously reported for the construction of an ATP-binding RNP complex from an RRE RNA−Rev peptide complex. The second step involves selection from an RNP library consisting of Rev peptides with randomized amino acid residues and the RNA subunit selected in the first molding. The ATP-binding pocket produced by sequential molding of RNA and peptide subunits shows higher affinity to ATP and a distinct specificity for ATP versus dATP as compared to the ATP-binding RNP receptor in which only the RNA subunit has been molded. The second step selection from the peptide-based RNP library allows expansion of the ATP recognition surface, consisting of both RNA and peptide subunits, to enhance the affinity and selectivity to discriminate ATP against dATP. Our approach of stepwise molding offers the advantage of increasing the diversity of the RNP library by utilizing characteristics of different biopolymers. The ribonucleopeptide-based, multi-subunit approach is also extendable to other biomacromolecular assemblies, which may yield artificial receptors and enzymes with increased specificity and more diverse chemical activities.

Citation data is made available by participants in Crossref's Cited-by Linking service. For a more comprehensive list of citations to this article, users are encouraged to perform a search inSciFinder.

Explore by:

Metrics

Article Views: 300 Times
Received 8 September 2004
Published online 13 December 2004
Published in print 1 January 2005
Learn more about these metrics Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.
+
Altmetric Logo Icon More Article Metrics

This website uses cookies to improve your user experience. By continuing to use the site, you are accepting our use of cookies. Read the ACS privacy policy.

CONTINUE