ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

A Simple but Remarkably Effective Device for Forming the C8−C14 Polycyclic Ring System of Halichondrin B

View Author Information
Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138
Cite this: J. Am. Chem. Soc. 2004, 126, 25, 7770–7771
Publication Date (Web):June 3, 2004
https://doi.org/10.1021/ja047826b
Copyright © 2004 American Chemical Society

    Article Views

    1531

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    A simple device consisting of two ion-exchange columns, two alumina-based filters, and a pump (Figure 1) was assembled to form the C8−C14 polycyclic ring system present in the halichondrin B class of marine natural products. The effectiveness of this device was tested for three substrates. In each case, the desired polycyclic ketal 3, 5, or 7 was obtained almost quantitatively in a single operation.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    *

    In papers with more than one author, the asterisk indicates the name of the author to whom inquiries about the paper should be addressed.

    Supporting Information Available

    ARTICLE SECTIONS
    Jump To

    Experimental details (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 36 publications.

    1. Wuming Yan, Zhanjie Li, and Yoshito Kishi . Selective Activation/Coupling of Polyhalogenated Nucleophiles in Ni/Cr-Mediated Reactions: Synthesis of C1–C19 Building Block of Halichondrin Bs. Journal of the American Chemical Society 2015, 137 (19) , 6219-6225. https://doi.org/10.1021/jacs.5b03498
    2. Jingwei Li, Wuming Yan, and Yoshito Kishi . Unified Synthesis of C1–C19 Building Blocks of Halichondrins via Selective Activation/Coupling of Polyhalogenated Nucleophiles in (Ni)/Cr-Mediated Reactions. Journal of the American Chemical Society 2015, 137 (19) , 6226-6231. https://doi.org/10.1021/jacs.5b03499
    3. Atsushi Ueda, Akihiko Yamamoto, Daisuke Kato, and Yoshito Kishi . Total Synthesis of Halichondrin A, the Missing Member in the Halichondrin Class of Natural Products. Journal of the American Chemical Society 2014, 136 (13) , 5171-5176. https://doi.org/10.1021/ja5013307
    4. Mingde Shan and Yoshito Kishi . Concise and Highly Stereoselective Synthesis of the C20–C26 Building Block of Halichondrins and Eribulin. Organic Letters 2012, 14 (2) , 660-663. https://doi.org/10.1021/ol203373d
    5. Akihiko Yamamoto, Atsushi Ueda, Paul Brémond, Paolo S. Tiseni, and Yoshito Kishi . Total Synthesis of Halichondrin C. Journal of the American Chemical Society 2012, 134 (2) , 893-896. https://doi.org/10.1021/ja2108307
    6. Dae-Shik Kim, Cheng-Guo Dong, Joseph T. Kim, Haibing Guo, Jian Huang, Paolo S. Tiseni and Yoshito Kishi. New Syntheses of E7389 C14−C35 and Halichondrin C14−C38 Building Blocks: Double-Inversion Approach. Journal of the American Chemical Society 2009, 131 (43) , 15636-15641. https://doi.org/10.1021/ja9058475
    7. Cheng-Guo Dong, James A. Henderson, Yosuke Kaburagi, Takeo Sasaki, Dae-Shik Kim, Joseph T. Kim, Daisuke Urabe, Haibing Guo and Yoshito Kishi. New Syntheses of E7389 C14−C35 and Halichondrin C14−C38 Building Blocks: Reductive Cyclization and Oxy-Michael Cyclization Approaches. Journal of the American Chemical Society 2009, 131 (43) , 15642-15646. https://doi.org/10.1021/ja9058487
    8. Yu-Rong Yang, Dae-Shik Kim and Yoshito Kishi. Second Generation Synthesis of C27−C35 Building Block of E7389, a Synthetic Halichondrin Analogue. Organic Letters 2009, 11 (20) , 4516-4519. https://doi.org/10.1021/ol9016589
    9. Katrina L. Jackson, James A. Henderson and Andrew J. Phillips. The Halichondrins and E7389. Chemical Reviews 2009, 109 (7) , 3044-3079. https://doi.org/10.1021/cr900016w
    10. Chi-Li Chen, Kosuke Namba and Yoshito Kishi. Attempts To Improve the Overall Stereoselectivity of the Ireland−Claisen Rearrangement. Organic Letters 2009, 11 (2) , 409-412. https://doi.org/10.1021/ol8027225
    11. Zhiyu Zhang, Jian Huang, Bin Ma and Yoshito Kishi. Further Improvement on Sulfonamide-Based Ligand for Catalytic Asymmetric 2-Haloallylation and Allylation. Organic Letters 2008, 10 (14) , 3073-3076. https://doi.org/10.1021/ol801093p
    12. Kosuke Namba and, Yoshito Kishi. Catalytic Ni/Cr-Mediated Macrocyclization without Use of High-Dilution Techniques. Journal of the American Chemical Society 2005, 127 (44) , 15382-15383. https://doi.org/10.1021/ja055966v
    13. Naveen Kumar Mallurwar, Mahender Khatravath, Saidulu Konda, Thanusha Thatikonda, Javed Iqbal, Prabhat Arya. Stereoselective Approaches for Building the C14‐C21 Fragment of Eribulin. ChemistrySelect 2021, 6 (4) , 798-801. https://doi.org/10.1002/slct.202004001
    14. Peter Goekjian, Arnaud Haudrechy, Boudjema Menhour, Claire Coiffier. galacto-C- Furanosides (I, β- C -Lyxose). 2018, 11-64. https://doi.org/10.1016/B978-0-12-803739-3.00002-2
    15. Peter Goekjian, Arnaud Haudrechy, Boudjema Menhour, Claire Coiffier. Lyxose and Ribose C -Glycosides. 2018, 291-381. https://doi.org/10.1016/B978-0-12-803739-3.00005-8
    16. Erika A. Crane, Karl Gademann. Synthetisch gewonnene Naturstofffragmente in der Wirkstoffentwicklung. Angewandte Chemie 2016, 128 (12) , 3948-3970. https://doi.org/10.1002/ange.201505863
    17. Erika A. Crane, Karl Gademann. Capturing Biological Activity in Natural Product Fragments by Chemical Synthesis. Angewandte Chemie International Edition 2016, 55 (12) , 3882-3902. https://doi.org/10.1002/anie.201505863
    18. Armin Bauer. Story of Eribulin Mesylate: Development of the Longest Drug Synthesis. 2016, 209-270. https://doi.org/10.1007/7081_2016_201
    19. Akondi Srirama Murthy, Srivari Chandrasekhar. Practical and stereoselective synthesis of [6,6,5]-tricyclic core (C1–C13) of eribulin mesylate. Tetrahedron Letters 2015, 56 (29) , 4280-4282. https://doi.org/10.1016/j.tetlet.2015.05.074
    20. Nadella Lavanya, Nayani Kiranmai, Prathama S. Mainkar, Srivari Chandrasekhar. A practical synthesis of C14–C26 fragment of anticancer drug, eribulin mesylate. Tetrahedron Letters 2015, 56 (29) , 4283-4285. https://doi.org/10.1016/j.tetlet.2015.05.077
    21. Thomas Debnar, Dirk Menche. Sequential Catalysis for the Stereoselective Synthesis of Complex Polyketides. 2014, 299-312. https://doi.org/10.1002/9783527673278.ch14
    22. Daniel Herkommer, Björn Schmalzbauer, Dirk Menche. Sequential catalysis for stereoselective synthesis of complex polyketides. Nat. Prod. Rep. 2014, 31 (4) , 456-467. https://doi.org/10.1039/C3NP70093C
    23. Manisha Bihani, Pranjal P. Bora, Ghanashyam Bez, Hassan Askari. Amberlyst A21: A reusable solid catalyst for green synthesis of pyran annulated heterocycles at room temperature. Comptes Rendus. Chimie 2013, 16 (5) , 419-426. https://doi.org/10.1016/j.crci.2012.11.018
    24. Akondi Srirama Murthy, Bodugum Mahipal, Srivari Chandrasekhar. Asymmetric Synthesis of the C14–C26 Building Block of Eribulin Mesylate. European Journal of Organic Chemistry 2012, 2012 (35) , 6959-6966. https://doi.org/10.1002/ejoc.201201119
    25. D.L. Hughes. 9.1 Introduction to Industrial Applications of Asymmetric Synthesis. 2012, 1-26. https://doi.org/10.1016/B978-0-08-095167-6.00901-0
    26. Hideto Miyabe, Okiko Miyata, Takeaki Naito. Pyran and Its Derivatives. 2011, 153-186. https://doi.org/10.1002/9783527634880.ch5
    27. Thomas Manning, Jimmy Williams, Joey Jarrard, Teresa Gorman. Iron Complexation to Oxygen Rich Marine Natural Products: A Computational Study. Marine Drugs 2010, 8 (1) , 1-23. https://doi.org/10.3390/md8010001
    28. Kosuke Namba. Development of Practical Synthetic Method toward Mechanistic Elucidation of Biologically Active Natural Products. Journal of Synthetic Organic Chemistry, Japan 2010, 68 (12) , 1249-1260. https://doi.org/10.5059/yukigoseikyokaishi.68.1249
    29. Katrina L. Jackson, James A. Henderson, Hajime Motoyoshi, Andrew J. Phillips. A Total Synthesis of Norhalichondrin B. Angewandte Chemie International Edition 2009, 48 (13) , 2346-2350. https://doi.org/10.1002/anie.200806111
    30. Katrina L. Jackson, James A. Henderson, Hajime Motoyoshi, Andrew J. Phillips. A Total Synthesis of Norhalichondrin B. Angewandte Chemie 2009, 121 (13) , 2382-2386. https://doi.org/10.1002/ange.200806111
    31. Daisuke Uemura, Kazuhiko Nakamura, Makoto Kitamura. Biologically Active Marine Natural Products. HETEROCYCLES 2009, 78 (1) , 1. https://doi.org/10.3987/REV-08-637
    32. Katrina L. Jackson, James A. Henderson, Jonathan C. Morris, Hajime Motoyoshi, Andrew J. Phillips. A synthesis of the C1–C15 domain of the halichondrins. Tetrahedron Letters 2008, 49 (18) , 2939-2941. https://doi.org/10.1016/j.tetlet.2008.03.018
    33. Yosuke Kaburagi, Yoshito Kishi. Effective procedure for selective ammonolysis of monosubstituted oxiranes: application to E7389 synthesis. Tetrahedron Letters 2007, 48 (51) , 8967-8971. https://doi.org/10.1016/j.tetlet.2007.10.116
    34. William T. Lambert, Gregory H. Hanson, Farid Benayoud, Steven D. Burke. Halichondrin B:  Synthesis of the C1−C22 Subunit. The Journal of Organic Chemistry 2005, 70 (23) , 9382-9398. https://doi.org/10.1021/jo051479m
    35. Valerie A. Keller, Ikyon Kim, Steven D. Burke. Synthetic Efforts toward the C22−C36 Subunit of Halichondrin B Utilizing Local and Imposed Symmetry. Organic Letters 2005, 7 (4) , 737-740. https://doi.org/10.1021/ol0473400
    36. John D. Hepworth, B. Mark Heron. Six-membered ring systems: with O and/or S atoms. 2005, 362-388. https://doi.org/10.1016/S0959-6380(05)80337-X

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect