ACS Publications. Most Trusted. Most Cited. Most Read
Molecular Insight into the Pathway to Crystallization of Aluminum
My Activity

Figure 1Loading Img
    Communication

    Molecular Insight into the Pathway to Crystallization of Aluminum
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemical Engineering, 301 Main Street South, University of South Carolina, Columbia, South Carolina 29201
    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2007, 129, 22, 7012–7013
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja072260n
    Published May 16, 2007
    Copyright © 2007 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    We use molecular simulations to study the onset of crystallization in a liquid of Al, cooled at a temperature 20% below the melting point. We show that Al nucleates into a random packing of the hexagonal close-packed and the face-centered cubic phases. Body-centered cubic clusters, which usually form during the nucleation of simple fluids, are not observed during the crystallization of Al. Throughout nucleation and growth, Al nuclei are always strongly faceted, in sharp contrast with the spherical crystallites observed for simple fluids. Our results demonstrate that the pathway to crystallization of Al strongly departs from that of simple fluids.

    Copyright © 2007 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    *

    In papers with more than one author, the asterisk indicates the name of the author to whom inquiries about the paper should be addressed.

    Supporting Information Available

    Click to copy section linkSection link copied!

    A detailed description of the simulation methods and parameters as well as the definitions for the local bond order parameters and how we use these parameters to analyze the structure of the crystal nuclei. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 66 publications.

    1. Jacek Goniakowski, Sarath Menon, Gaétan Laurens, Julien Lam. Nonclassical Nucleation of Zinc Oxide from a Physically Motivated Machine-Learning Approach. The Journal of Physical Chemistry C 2022, 126 (40) , 17456-17469. https://doi.org/10.1021/acs.jpcc.2c06341
    2. Qi Zhang, Junjie Li, Sai Tang, Zhijun Wang, Jincheng Wang. Atomistic Mechanism Underlying Nucleation in Al–Cu Alloys with Different Compositions and Cooling Rates. The Journal of Physical Chemistry C 2021, 125 (6) , 3480-3494. https://doi.org/10.1021/acs.jpcc.0c07483
    3. Puja Banerjee, Biman Bagchi. Facilitation of Nucleation of Polymorphic Solids due to the Presence of Multiple Metastable Phases: Effects of Nonclassical Surface Tension. The Journal of Physical Chemistry C 2019, 123 (34) , 21207-21212. https://doi.org/10.1021/acs.jpcc.9b03551
    4. Sunil Kumar. Wettability and Structural Evolution of Gold over a Single-Walled Carbon Nanotube: An Atomistic Investigation. The Journal of Physical Chemistry C 2018, 122 (28) , 16346-16355. https://doi.org/10.1021/acs.jpcc.8b02885
    5. Sunil Kumar, Vikas Chandra Srivastava, Gopi Kishor Mandal, Sudip Kumar Pattanayek, and Kanai Lal Sahoo . Single-Walled Carbon Nanotube Engendered Pseudo-1D Morphologies of Silver Nanowire. The Journal of Physical Chemistry C 2017, 121 (37) , 20468-20480. https://doi.org/10.1021/acs.jpcc.7b05973
    6. Solene Bechelli, B. Gonzalez, Vincent Piquet, Ilham Essafri, Caroline Desgranges, and Jerome Delhommelle . Free Energy of Nucleation and Interplay between Size and Composition in CuNi Systems. The Journal of Physical Chemistry B 2017, 121 (36) , 8558-8563. https://doi.org/10.1021/acs.jpcb.7b06028
    7. Caroline Desgranges and Jerome Delhommelle . Effect of the Composition on the Free Energy of Crystal Nucleation for CuPd Nanoalloys. The Journal of Physical Chemistry C 2016, 120 (48) , 27657-27664. https://doi.org/10.1021/acs.jpcc.6b09672
    8. Caroline Desgranges and Jerome Delhommelle . Unraveling the Coupling between Demixing and Crystallization in Mixtures. Journal of the American Chemical Society 2014, 136 (23) , 8145-8148. https://doi.org/10.1021/ja500621m
    9. Caroline Desgranges and Jerome Delhommelle . Role of Liquid Polymorphism during the Crystallization of Silicon. Journal of the American Chemical Society 2011, 133 (9) , 2872-2874. https://doi.org/10.1021/ja1117478
    10. Caroline Desgranges and Jerome Delhommelle. Molecular Simulation of the Nucleation and Growth of Gold Nanoparticles. The Journal of Physical Chemistry C 2009, 113 (9) , 3607-3611. https://doi.org/10.1021/jp8101546
    11. Michael A. Lovette, Andrea Robben Browning, Derek W. Griffin, Jacob P. Sizemore, Ryan C. Snyder and Michael F. Doherty. Crystal Shape Engineering. Industrial & Engineering Chemistry Research 2008, 47 (24) , 9812-9833. https://doi.org/10.1021/ie800900f
    12. John H. Harding, Dorothy M. Duffy and Maria L. Sushko, P. Mark Rodger and David Quigley, James A. Elliott. Computational Techniques at the Organic−Inorganic Interface in Biomineralization. Chemical Reviews 2008, 108 (11) , 4823-4854. https://doi.org/10.1021/cr078278y
    13. Caroline Desgranges and, Jerome Delhommelle. Polymorph Selection during the Crystallization of Softly Repulsive Spheres:  The Inverse Power Law Potential. The Journal of Physical Chemistry B 2007, 111 (42) , 12257-12262. https://doi.org/10.1021/jp0753023
    14. Simin An, Xingyu Gao, Haifeng Liu, Haifeng Song. Diverse kinetic pathways in shock-compressed phase transitions of a metallic single crystal. Materialia 2024, 38 , 102245. https://doi.org/10.1016/j.mtla.2024.102245
    15. Saswat Mishra, Alejandro Strachan. Preferential composition during nucleation and growth in multi-principal element alloys. Journal of Applied Physics 2024, 135 (18) https://doi.org/10.1063/5.0181330
    16. Qi Zhang, Junjie Li, Zhijun Wang, Jincheng Wang. Controlling polymorph selection during nucleation by tuning the structure of metallic melts. Physical Chemistry Chemical Physics 2023, 25 (37) , 25480-25491. https://doi.org/10.1039/D3CP02837B
    17. Fangzheng Chen, Zohar Nussinov, K. F. Kelton. Crystal nucleation and growth in liquids: Cooperative atom attachment and detachment. Physical Review B 2023, 108 (6) https://doi.org/10.1103/PhysRevB.108.064205
    18. Qi Zhang, Junjie Li, Xiaobing Hu, Sai Tang, Zhijun Wang, Jincheng Wang. Connections between structural characteristics and crystal nucleation of Al–Sm glasses near glass transition temperature. Journal of Non-Crystalline Solids 2022, 588 , 121637. https://doi.org/10.1016/j.jnoncrysol.2022.121637
    19. Xuan Ge, Qiaodan Hu, Fan Yang, Jun Xu, Yanfeng Han, Pingsheng Lai, Jingyu Qin, Jianguo Li. Anomalous structure transition in undercooled melt regulates polymorphic selection in barium titanate crystallization. Communications Chemistry 2021, 4 (1) https://doi.org/10.1038/s42004-021-00462-w
    20. Hao Sun, Ling Chen, Likun Xiong, Kun Feng, Yufeng Chen, Xiang Zhang, Xuzhou Yuan, Baiyu Yang, Zhao Deng, Yu Liu, Mark H. Rümmeli, Jun Zhong, Yan Jiao, Yang Peng. Promoting ethylene production over a wide potential window on Cu crystallites induced and stabilized via current shock and charge delocalization. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-27169-9
    21. Yongquan Wu, Tao Zhou, Ronggang Yu, Qinmei Lai, Hao Wang, Jinglin You. A new crystallization pattern of nested tetrahedral lamellar structure for the face-centered cubic metals with low stacking fault energy. Scripta Materialia 2020, 186 , 74-78. https://doi.org/10.1016/j.scriptamat.2020.04.031
    22. Yanyan Liang, Grisell Díaz Leines, Ralf Drautz, Jutta Rogal. Identification of a multi-dimensional reaction coordinate for crystal nucleation in Ni3Al. The Journal of Chemical Physics 2020, 152 (22) https://doi.org/10.1063/5.0010074
    23. Caroline Desgranges, Jerome Delhommelle. Can Ordered Precursors Promote the Nucleation of Solid Solutions?. Physical Review Letters 2019, 123 (19) https://doi.org/10.1103/PhysRevLett.123.195701
    24. Yue-Yu Zhang, Haiyang Niu, GiovanniMaria Piccini, Dan Mendels, Michele Parrinello. Improving collective variables: The case of crystallization. The Journal of Chemical Physics 2019, 150 (9) https://doi.org/10.1063/1.5081040
    25. Puja Banerjee, Biman Bagchi. Effects of metastable phases on surface tension, nucleation, and the disappearance of polymorphs. The Journal of Chemical Physics 2018, 149 (21) https://doi.org/10.1063/1.5054151
    26. Honghui Lin, Tao Li, Hui Li. Molecular dynamics study on the heterogeneous nucleation of liquid Al–Cu alloys on different kinds of copper substrates. Physical Chemistry Chemical Physics 2018, 20 (47) , 29856-29865. https://doi.org/10.1039/C8CP05948A
    27. Caroline Desgranges, Jerome Delhommelle. Crystal nucleation along an entropic pathway: Teaching liquids how to transition. Physical Review E 2018, 98 (6) https://doi.org/10.1103/PhysRevE.98.063307
    28. Simin An, Rui Su, Yuan-Chao Hu, Jianbo Liu, Yong Yang, Baixin Liu, Pengfei Guan. Common mechanism for controlling polymorph selection during crystallization in supercooled metallic liquids. Acta Materialia 2018, 161 , 367-373. https://doi.org/10.1016/j.actamat.2018.09.055
    29. Caroline Desgranges, Jerome Delhommelle. Modeling antigen-antibody nanoparticle bioconjugates and their polymorphs. The Journal of Chemical Physics 2018, 148 (12) https://doi.org/10.1063/1.5018855
    30. Caroline Desgranges, Jerome Delhommelle. Non-monotonic variations of the nucleation free energy in a glass-forming ultra-soft particles fluid. Soft Matter 2018, 14 (29) , 5977-5985. https://doi.org/10.1039/C8SM00887F
    31. B. Gonzalez, Solene Bechelli, Ilham Essafri, Vincent Piquet, Caroline Desgranges, Jerome Delhommelle. Competition between crystalline and icosahedral order during crystal growth in bimetallic systems. Journal of Crystal Growth 2017, 478 , 22-27. https://doi.org/10.1016/j.jcrysgro.2017.08.022
    32. Yewei Jiang, Jie Luo, Yongquan Wu. The validation and preference among different EAM potentials to describe the solid–liquid transition of aluminum. Modelling and Simulation in Materials Science and Engineering 2017, 25 (4) , 045012. https://doi.org/10.1088/1361-651X/aa67b1
    33. Grisell Díaz Leines, Ralf Drautz, Jutta Rogal. Atomistic insight into the non-classical nucleation mechanism during solidification in Ni. The Journal of Chemical Physics 2017, 146 (15) https://doi.org/10.1063/1.4980082
    34. Masao Iwamatsu. Nucleation and growth of a core-shell composite nucleus by diffusion. Physical Review E 2017, 95 (4) https://doi.org/10.1103/PhysRevE.95.042803
    35. Li-li Zhou, Run-yu Yang, Ze-an Tian, Yun-fei Mo, Rang-su Liu. Molecular dynamics simulation on structural evolution during crystallization of rapidly super-cooled Cu50Ni50 alloy. Journal of Alloys and Compounds 2017, 690 , 633-639. https://doi.org/10.1016/j.jallcom.2016.08.173
    36. Ze-an TIAN, Li-li ZHOU, Yun-fei MO, Yong-chao LIANG, Rang-su LIU. Cooling rate dependence of polymorph selection during rapid solidification of liquid metal zinc. Transactions of Nonferrous Metals Society of China 2015, 25 (12) , 4072-4079. https://doi.org/10.1016/S1003-6326(15)64057-2
    37. Sida Liu, Hui Li, Yezeng He, Xiongying Li, Yunfang Li, Xin Wang. Pathway into the silicon nucleation on silicene substrate at nanoscale. Materials & Design 2015, 85 , 60-66. https://doi.org/10.1016/j.matdes.2015.07.002
    38. Zhaoyang Hou, Zean Tian, Rangsu Liu, Kejun Dong, Aibing Yu. Formation mechanism of bulk nanocrystalline aluminium with multiply twinned grains by liquid quenching: A molecular dynamics simulation study. Computational Materials Science 2015, 99 , 256-261. https://doi.org/10.1016/j.commatsci.2014.12.037
    39. J. C. E, L. Wang, Y. Cai, H. A. Wu, S. N. Luo. Crystallization in supercooled liquid Cu: Homogeneous nucleation and growth. The Journal of Chemical Physics 2015, 142 (6) https://doi.org/10.1063/1.4907627
    40. Xuyan Zhou, Weikang Wu, Yezeng He, Yifan Li, Long Wang, Hui Li. Theoretical study of the pathway to heterogeneous nucleation of liquid copper on the groove substrate with different wedge angles. Physical Chemistry Chemical Physics 2015, 17 (32) , 20658-20666. https://doi.org/10.1039/C5CP02215K
    41. Qi Cheng Liu, Yun Fang Li. Theoretical Study of Iron Heterogeneous Growth on the Surface of C60 Molecule. Advanced Materials Research 2014, 1081 , 115-118. https://doi.org/10.4028/www.scientific.net/AMR.1081.115
    42. Masao Iwamatsu. Nucleation pathway of core-shell composite nucleus in size and composition space and in component space. Physical Review E 2012, 86 (4) https://doi.org/10.1103/PhysRevE.86.041604
    43. Weizhong Han, Li Huang, Qi An, Hou-Tong Chen, Sheng-Nian Luo. Crystallization of liquid Cu nanodroplets on single crystal Cu substrates prefers closest-packed planes regardless of the substrate orientations. Journal of Crystal Growth 2012, 345 (1) , 34-38. https://doi.org/10.1016/j.jcrysgro.2012.02.018
    44. John Persson, Caroline Desgranges, Jerome Delhommelle. Polymorph selection during the crystallization of iron under the conditions of Earth’s inner core. Chemical Physics Letters 2011, 511 (1-3) , 57-61. https://doi.org/10.1016/j.cplett.2011.06.018
    45. Y. F. Li, H. Li, F. W. Sun, X. Q. Zhang, K. M. Liew. Carbon nanotube seeded silicon crystal growth. Journal of Applied Physics 2011, 110 (1) https://doi.org/10.1063/1.3603048
    46. J. Delhommelle. Crystal nucleation and growth from supercooled melts. Molecular Simulation 2011, 37 (7) , 613-620. https://doi.org/10.1080/08927022.2011.566611
    47. Jamshed Anwar, Dirk Zahn. Uncovering Molecular Processes in Crystal Nucleation and Growth by Using Molecular Simulation. Angewandte Chemie International Edition 2011, 50 (9) , 1996-2013. https://doi.org/10.1002/anie.201000463
    48. Jamshed Anwar, Dirk Zahn. Atomistisches Verständnis der Keimbildung und des Kristallwachstums durch molekulare Simulationen. Angewandte Chemie 2011, 123 (9) , 2042-2061. https://doi.org/10.1002/ange.201000463
    49. Kyle D. Watson, S. E. Tatsinkou Nguelo, C. Desgranges, J. Delhommelle. Crystal nucleation and growth in Pd–Ni alloys: a molecular simulation study. CrystEngComm 2011, 13 (4) , 1132-1140. https://doi.org/10.1039/C0CE00368A
    50. Raynaldo T. Scarlett, Marie T. Ung, John C. Crocker, Talid Sinno. A mechanistic view of binary colloidal superlattice formation using DNA-directed interactions. Soft Matter 2011, 7 (5) , 1912. https://doi.org/10.1039/c0sm00370k
    51. Ali Siavosh-Haghighi, Thomas D. Sewell, Donald L. Thompson. Molecular dynamics study of the crystallization of nitromethane from the melt. The Journal of Chemical Physics 2010, 133 (19) https://doi.org/10.1063/1.3504610
    52. C. Desgranges, E.A. Kastl, T. Aleksandrov, J. Delhommelle. Optimisation of multiple time-step hybrid Monte Carlo Wang–Landau simulations in the isobaric–isothermal ensemble for the determination of phase equilibria. Molecular Simulation 2010, 36 (7-8) , 544-551. https://doi.org/10.1080/08927021003762738
    53. C. Desgranges, J.M. Hicks, A. Magness, J. Delhommelle. Phase equilibria of polyaromatic hydrocarbons by hybrid Monte Carlo Wang–Landau simulations. Molecular Physics 2010, 108 (2) , 151-158. https://doi.org/10.1080/00268970903544238
    54. T. Aleksandrov, C. Desgranges, J. Delhommelle. Vapor–liquid equilibria of copper using hybrid Monte Carlo Wang—Landau simulations. Fluid Phase Equilibria 2010, 287 (2) , 79-83. https://doi.org/10.1016/j.fluid.2009.09.009
    55. Kenneth Ndumbe Ngale, Caroline Desgranges, Jerome Delhommelle. Nucleation and growth of C60 nanoparticles from the supersaturated vapor and from the undercooled liquid: A molecular simulation study. The Journal of Chemical Physics 2009, 131 (24) https://doi.org/10.1063/1.3283901
    56. Tianshu Li, Davide Donadio, Giulia Galli. Nucleation of tetrahedral solids: A molecular dynamics study of supercooled liquid silicon. The Journal of Chemical Physics 2009, 131 (22) https://doi.org/10.1063/1.3268346
    57. H. Li, Y. F. Li, K. M. Liew, J. X. Zhang, X. F. Liu. Spiral nucleation of silicon solidified on heterogeneous surface of carbon nanocones. Applied Physics Letters 2009, 95 (18) , 183101. https://doi.org/10.1063/1.3258492
    58. H. Li, Y. F. Li, K. M. Liew, J. X. Zhang, X. F. Liu, R. H. Fan. Theoretical study of hierarchical structures and heredity effect of silicon solidifying on carbon nanotube. Applied Physics Letters 2009, 95 (6) https://doi.org/10.1063/1.3200227
    59. Caroline Desgranges, Jerome Delhommelle. Phase equilibria of molecular fluids via hybrid Monte Carlo Wang–Landau simulations: Applications to benzene and n-alkanes. The Journal of Chemical Physics 2009, 130 (24) https://doi.org/10.1063/1.3158605
    60. Andrey V Brukhno, Jamshed Anwar, Ruslan Davidchack, Richard Handel. Challenges in molecular simulation of homogeneous ice nucleation. Journal of Physics: Condensed Matter 2008, 20 (49) , 494243. https://doi.org/10.1088/0953-8984/20/49/494243
    61. Caroline Desgranges, Jerome Delhommelle. Rheology of liquid fcc metals: Equilibrium and transient-time correlation-function nonequilibrium molecular dynamics simulations. Physical Review B 2008, 78 (18) https://doi.org/10.1103/PhysRevB.78.184202
    62. Caroline Desgranges, Jerome Delhommelle. Shear viscosity of liquid copper at experimentally accessible shear rates: Application of the transient-time correlation function formalism. The Journal of Chemical Physics 2008, 128 (8) https://doi.org/10.1063/1.2829872
    63. Caroline Desgranges, Jerome Delhommelle. Crystallization mechanisms for supercooled liquid Xe at high pressure and temperature: Hybrid Monte Carlo molecular simulations. Physical Review B 2008, 77 (5) https://doi.org/10.1103/PhysRevB.77.054201
    64. F. Juan-Coloa, D. Osorio-González, P. Rosendo-Francisco, J. López-Lemus. Structural and dynamic properties of liquid alkali metals: molecular dynamics. Molecular Simulation 2007, 33 (14) , 1167-1172. https://doi.org/10.1080/08927020701586928
    65. Caroline Desgranges, Jerome Delhommelle. Viscosity of liquid iron under high pressure and high temperature: Equilibrium and nonequilibrium molecular dynamics simulation studies. Physical Review B 2007, 76 (17) https://doi.org/10.1103/PhysRevB.76.172102
    66. Caroline Desgranges, Jerome Delhommelle. Molecular simulation of the crystallization of aluminum from the supercooled liquid. The Journal of Chemical Physics 2007, 127 (14) https://doi.org/10.1063/1.2784120

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2007, 129, 22, 7012–7013
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja072260n
    Published May 16, 2007
    Copyright © 2007 American Chemical Society

    Article Views

    713

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.