Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Boron Rings Enclosing Planar Hypercoordinate Group 14 Elements

View Author Information
Contribution from the Facultad de Química, Universidad de Guanajuato. Col. Noria Alta s/n C.P. 36050, Guanajuato, Gto., México, Physikalische Chemie, Fachbereich Chemie, TU Dresden, D-01062 Dresden, Germany, Center for Computational Chemistry, University of Georgia, Athens, Georgia 30602-2525
Cite this: J. Am. Chem. Soc. 2007, 129, 47, 14767–14774
Publication Date (Web):November 6, 2007
https://doi.org/10.1021/ja074956m
Copyright © 2007 American Chemical Society

    Article Views

    1322

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (2)»

    Abstract

    Abstract Image

    Sets of boron rings enclosing planar hypercoordinate group 14 elements (ABn(n-8); A = group 14 element; n = 6−10) are designed systematically based on geometrical and electronic fit principles:  the size of a boron ring must accommodate the central atom comfortably. The electronic structures of the planar minima with hypercoordinate group 14 elements are doubly aromatic with six π and six in-plane radial MO systems (radial MOs are comprised of boron p orbitals pointing toward the ring center). This is confirmed by induced magnetic field and nucleus-independent chemical shift (NICS) computations. The weakness of the “partial” A−B bonds is compensated by their unusually large number. Although a C7v pyramidal SiB8 structure is more stable than the D8h isomer, Born−Oppenheimer molecular dynamics simulations show the resistance of the D8h local minimum against deformation and isomerization. Such evidence of the viability of the boron ring minima with group 14 elements encourages experimental realization.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     Universidad de Guanajuato.

     TU Dresden.

    §

     University of Georgia.

    *

    In papers with more than one author, the asterisk indicates the name of the author to whom inquiries about the paper should be addressed.

    Supporting Information Available

    ARTICLE SECTIONS
    Jump To

    Complete author list for ref 62. The MO plots, the isosurfaces and contour lines of the induced magnetic field and NICS computations, and the CMO−NICS(1)zzresults. Cartesian coordinates (in Å) and total energies of all compounds discussed in the text. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 131 publications.

    1. Xin-bo Liu, William Tiznado, Li-Juan Cui, Jorge Barroso, Luis Leyva-Parra, Lin-hong Miao, Hui-yu Zhang, Sudip Pan, Gabriel Merino, Zhong-hua Cui. Exploring the Use of “Honorary Transition Metals” To Push the Boundaries of Planar Hypercoordinate Alkaline-Earth Metals. Journal of the American Chemical Society 2024, 146 (24) , 16689-16697. https://doi.org/10.1021/jacs.4c03977
    2. Fengxian Ma, Yalong Jiao, Weikang Wu, Ying Liu, Shengyuan A. Yang, Thomas Heine. Half-Auxeticity and Anisotropic Transport in Pd Decorated Two-Dimensional Boron Sheets. Nano Letters 2021, 21 (6) , 2356-2362. https://doi.org/10.1021/acs.nanolett.0c04154
    3. Sudip Pan, Jorge Barroso, Said Jalife, Thomas Heine, Knut R. Asmis, Gabriel Merino. Fluxional Boron Clusters: From Theory to Reality. Accounts of Chemical Research 2019, 52 (9) , 2732-2744. https://doi.org/10.1021/acs.accounts.9b00336
    4. Shifeng Qian, Xiaowei Sheng, Yong Zhou, Xiaozhen Yan, Yangmei Chen, Yucheng Huang, Xiaofen Huang, Eryin Feng, Wuying Huang. Two-Dimensional Be2C with Octacoordinate Carbons and Negative Poisson’s Ratio. The Journal of Physical Chemistry C 2018, 122 (14) , 7959-7967. https://doi.org/10.1021/acs.jpcc.7b12758
    5. Jing Xu, Xinxing Zhang, Shuang Yu, Yi-hong Ding, and Kit H. Bowen . Identifying the Hydrogenated Planar Tetracoordinate Carbon: A Combined Experimental and Theoretical Study of CAl4H and CAl4H–. The Journal of Physical Chemistry Letters 2017, 8 (10) , 2263-2267. https://doi.org/10.1021/acs.jpclett.7b00732
    6. Xinxin Xia, Xiaoyu Kuang, Cheng Lu, Yuanyuan Jin, Xiaodong Xing, Gabriel Merino, and Andreas Hermann . Deciphering the Structural Evolution and Electronic Properties of Magnesium Clusters: An Aromatic Homonuclear Metal Mg17 Cluster. The Journal of Physical Chemistry A 2016, 120 (40) , 7947-7954. https://doi.org/10.1021/acs.jpca.6b07322
    7. Dang Thi Tuyet Mai, Long Van Duong, Truong Ba Tai, and Minh Tho Nguyen . Electronic Structure and Thermochemical Parameters of the Silicon-Doped Boron Clusters BnSi, with n = 8–14, and Their Anions. The Journal of Physical Chemistry A 2016, 120 (20) , 3623-3633. https://doi.org/10.1021/acs.jpca.6b00847
    8. Rafael Islas, Jordi Poater, and Miquel Solà . Analysis of the Aromaticity of Five-Membered Heterometallacycles Containing Os, Ru, Rh, and Ir. Organometallics 2014, 33 (7) , 1762-1773. https://doi.org/10.1021/om500119c
    9. Jian-Hong Liao, Camille Latouche, Bing Li, Samia Kahlal, Jean-Yves Saillard, and C. W. Liu . A Twelve-Coordinated Iodide in a Cuboctahedral Silver(I) Skeleton. Inorganic Chemistry 2014, 53 (4) , 2260-2267. https://doi.org/10.1021/ic402960e
    10. Nickolas D. Charistos, Anastasios G. Papadopoulos, and Michael P. Sigalas . Interpretation of Electron Delocalization in Benzene, Cyclobutadiene, and Borazine Based on Visualization of Individual Molecular Orbital Contributions to the Induced Magnetic Field. The Journal of Physical Chemistry A 2014, 118 (6) , 1113-1122. https://doi.org/10.1021/jp411410r
    11. Gorkem Gunbas and Mark Mascal . Extraordinary Modes of Bonding Enabled by the Triquinane Framework. The Journal of Organic Chemistry 2013, 78 (19) , 9579-9583. https://doi.org/10.1021/jo401715s
    12. Swaminathan Angeline Vedha, Rajadurai Vijay Solomon, and Ponnambalam Venuvanalingam . On the Nature of Hypercoordination in Dihalogenated Perhalocyclohexasilanes. The Journal of Physical Chemistry A 2013, 117 (16) , 3529-3538. https://doi.org/10.1021/jp401210c
    13. Constantin Romanescu, Timur R. Galeev, Wei-Li Li, Alexander I. Boldyrev, and Lai-Sheng Wang . Transition-Metal-Centered Monocyclic Boron Wheel Clusters (M©Bn): A New Class of Aromatic Borometallic Compounds. Accounts of Chemical Research 2013, 46 (2) , 350-358. https://doi.org/10.1021/ar300149a
    14. Yan-Bo Wu, Yan Duan, Hai-Gang Lu, and Si-Dian Li . CAl2Be32– and Its Salt Complex LiCAl2Be3–: Anionic Global Minima with Planar Pentacoordinate Carbon. The Journal of Physical Chemistry A 2012, 116 (12) , 3290-3294. https://doi.org/10.1021/jp300302w
    15. Rafael Islas, Thomas Heine, and Gabriel Merino . The Induced Magnetic Field. Accounts of Chemical Research 2012, 45 (2) , 215-228. https://doi.org/10.1021/ar200117a
    16. Zhong-hua Cui, Maryel Contreras, Yi-hong Ding, and Gabriel Merino . Planar Tetracoordinate Carbon versus Planar Tetracoordinate Boron: The Case of CB4 and Its Cation. Journal of the American Chemical Society 2011, 133 (34) , 13228-13231. https://doi.org/10.1021/ja203682a
    17. Yafei Li, Fengyu Li, Zhen Zhou, and Zhongfang Chen . SiC2 Silagraphene and Its One-Dimensional Derivatives: Where Planar Tetracoordinate Silicon Happens. Journal of the American Chemical Society 2011, 133 (4) , 900-908. https://doi.org/10.1021/ja107711m
    18. Hua-Jin Zhai, Chang-Qing Miao, Si-Dian Li, and Lai-Sheng Wang. On the Analogy of B−BO and B−Au Chemical Bonding in B11O− and B10Au− Clusters. The Journal of Physical Chemistry A 2010, 114 (46) , 12155-12161. https://doi.org/10.1021/jp108668t
    19. Abril Carolina Castro, Edison Osorio, J. Oscar C. Jiménez-Halla, Eduard Matito, William Tiznado, and Gabriel Merino . Scalar and Spin−Orbit Relativistic Corrections to the NICS and the Induced Magnetic Field: The case of the E122− Spherenes (E = Ge, Sn, Pb). Journal of Chemical Theory and Computation 2010, 6 (9) , 2701-2705. https://doi.org/10.1021/ct100304c
    20. Rafael Islas, Gerardo Martínez-Guajardo, J. Oscar C. Jiménez-Halla, Miquel Solà and Gabriel Merino . Not All That Has a Negative NICS Is Aromatic: The Case of the H-Bonded Cyclic Trimer of HF. Journal of Chemical Theory and Computation 2010, 6 (4) , 1131-1135. https://doi.org/10.1021/ct100098c
    21. Zhifeng Pu, Keigo Ito, Paul v. R. Schleyer and Qian-Shu Li . Planar Hepta-, Octa-, Nona-, and Decacoordinate First Row d-Block Metals Enclosed by Boron Rings. Inorganic Chemistry 2009, 48 (22) , 10679-10686. https://doi.org/10.1021/ic901377h
    22. William Tiznado, Nancy Perez-Peralta, Rafael Islas, Alejandro Toro-Labbe, Jesus M. Ugalde and Gabriel Merino. Designing 3-D Molecular Stars. Journal of the American Chemical Society 2009, 131 (26) , 9426-9431. https://doi.org/10.1021/ja903694d
    23. Hong-Lang Yu, Rui-Li Sang and Yun-Ying Wu. Structure and Aromaticity of B6H5+ Cation: A Novel Borhydride System Containing Planar Pentacoordinated Boron. The Journal of Physical Chemistry A 2009, 113 (14) , 3382-3386. https://doi.org/10.1021/jp809599z
    24. Yan-Bo Wu, Hai-Gang Lu, Si-Dian Li and Zhi-Xiang Wang . Simplest Neutral Singlet C2E4 (E = Al, Ga, In, and Tl) Global Minima with Double Planar Tetracoordinate Carbons: Equivalence of C2 Moieties in C2E4 to Carbon Centers in CAl42− and CAl5+. The Journal of Physical Chemistry A 2009, 113 (14) , 3395-3402. https://doi.org/10.1021/jp8099187
    25. Keigo Ito, Zhifeng Pu, Qian-Shu Li and Paul von Ragué Schleyer. Cyclic Boron Clusters Enclosing Planar Hypercoordinate Cobalt, Iron, and Nickel. Inorganic Chemistry 2008, 47 (23) , 10906-10910. https://doi.org/10.1021/ic800993b
    26. Shant Shahbazian and Shadi Alizadeh. A Computational Study on Some Viable Targets for Gas-Phase Synthesis of Metal Complexes of the Cyclic (B6C)−2 and Their Bonding Pattern. The Journal of Physical Chemistry A 2008, 112 (41) , 10365-10377. https://doi.org/10.1021/jp806874u
    27. Nancy Perez-Peralta, Mario Sanchez, Jesus Martin-Polo, Rafael Islas, Alberto Vela and Gabriel Merino . Planar Tetracoordinate Carbons in Cyclic Semisaturated Hydrocarbons. The Journal of Organic Chemistry 2008, 73 (18) , 7037-7044. https://doi.org/10.1021/jo800885x
    28. Yong Pei, Wei An, Keigo Ito, Paul von Ragué Schleyer and Xiao Cheng Zeng . Planar Pentacoordinate Carbon in CAl5+: A Global Minimum. Journal of the American Chemical Society 2008, 130 (31) , 10394-10400. https://doi.org/10.1021/ja803365x
    29. Yang Wang, Yuanhe Huang, Bing Yin, Baohua Yang and Ruozhuang Liu. Octacoordinate Carbons Encaged Inside Carborane Clusters: A Density Functional Theory Investigation. The Journal of Physical Chemistry A 2008, 112 (33) , 7643-7651. https://doi.org/10.1021/jp801332b
    30. Boris B. Averkiev, Dmitry Yu. Zubarev, Lei-Ming Wang, Wei Huang, Lai-Sheng Wang and Alexander I. Boldyrev . Carbon Avoids Hypercoordination in CB6−, CB62−, and C2B5− Planar Carbon−Boron Clusters. Journal of the American Chemical Society 2008, 130 (29) , 9248-9250. https://doi.org/10.1021/ja801211p
    31. Athanassios C. Tsipis, Christos E. Kefalidis and Constantinos A. Tsipis . The Role of the 5f Orbitals in Bonding, Aromaticity, and Reactivity of Planar Isocyclic and Heterocyclic Uranium Clusters. Journal of the American Chemical Society 2008, 130 (28) , 9144-9155. https://doi.org/10.1021/ja802344z
    32. Congjie Zhang, Wenxiu Sun and Zexing Cao. Zigzag Boron−Carbon Nanotubes with Quasi-planar Tetracoordinate Carbons. Journal of the American Chemical Society 2008, 130 (17) , 5638-5639. https://doi.org/10.1021/ja800540x
    33. Hao Zheng, Huai-Qian Wang, Hui-Fang Li, Jia-Ming Zhang, Yong-Hang Zhang, Lan-Xin Qin, Xun-Jie Mei, Kai-Le Jiang, Jin-Kun Zeng, Bo Zhang, Wen-Hai Wu. Structural evolution and electronic properties of medium-sized boron clusters doped with selenium. Chemical Physics 2024, 583 , 112321. https://doi.org/10.1016/j.chemphys.2024.112321
    34. Bingyi Song, Li‐Ming Yang. Two‐dimensional hypercoordinate chemistry: Challenges and prospects. WIREs Computational Molecular Science 2024, 14 (1) https://doi.org/10.1002/wcms.1699
    35. Jianpei Xing, Bo Zhao, Xin Qu, Xue Jiang, Jijun Zhao. Huge perpendicular magnetic anisotropy in a 12-fold planar hypercoordinate W@B12(NCCN)3 monolayer. Applied Physics Letters 2023, 122 (23) https://doi.org/10.1063/5.0152175
    36. Ying-Jin Wang, Jia-Xin Zhao, Miao Yan, Lin-Yan Feng, Chang-Qing Miao, Cheng-Qi Liu. The dodeca-coordinated La©B 8 C 4 +/0/− molecular wheels: conflicting aromaticity versus double aromaticity. RSC Advances 2023, 13 (5) , 3071-3078. https://doi.org/10.1039/D2RA07155J
    37. Ying-Jin Wang, Lin-Yan Feng, Miao Yan, Chang-Qing Miao, Hua-Jin Zhai. Y©B 8 C 4 cluster: a boron–carbon molecular wheel with dodeca-coordination number in plane. Physical Chemistry Chemical Physics 2022, 24 (46) , 28548-28553. https://doi.org/10.1039/D2CP04195B
    38. Bo Jin, Caixia Yuan, Gang Lu, Yan-Bo Wu. Electron-compensation: a valid strategy for chemically stabilizing boron-based clusters with hypercoordinate centres. Chemical Communications 2022, 58 (94) , 13095-13098. https://doi.org/10.1039/D2CC05654B
    39. Faiqa Khaliq, Aqsa Afzaal, Sobia Tabassum, Tariq Mahmood, Khurshid Ayub, Asim Laeeq Khan, Muhammad Yasin, Mazhar Amjad Gilani. Surface functionalization of Si6Li6 cluster with superalkalis to achieve high nonlinear optical response: A DFT study. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022, 653 , 129985. https://doi.org/10.1016/j.colsurfa.2022.129985
    40. Gautam Garai. Application of Genetic Algorithm in Numerous Scientific Fields. 2022https://doi.org/10.5772/intechopen.105740
    41. Meng-hui Wang, Zhong-hua Cui, Sheng Wang, Quan Li, Jijun Zhao, Zhongfang Chen. A two-dimensional Be 2 Au monolayer with planar hexacoordinate s-block metal atoms: a superconducting global minimum Dirac material with two perfect Dirac node-loops. Chemical Science 2022, 13 (37) , 11099-11109. https://doi.org/10.1039/D2SC03614B
    42. Chen Chen, Meng-hui Wang, Lin-Yan Feng, Lian-Qing Zhao, Jin-Chang Guo, Hua-Jin Zhai, Zhong-hua Cui, Sudip Pan, Gabriel Merino. Bare and ligand protected planar hexacoordinate silicon in SiSb 3 M 3 + (M = Ca, Sr, Ba) clusters. Chemical Science 2022, 13 (27) , 8045-8051. https://doi.org/10.1039/D2SC01761J
    43. Xin-Yi Mou, Yan-Dong Guo, Xiao-Hong Yan, Li-Yan Lin, Mo-Qin Rao, Jun-Yang Xing, Xin-Rui Xu, Hao-Nan Wang. Metallic–semiconducting transition and spin polarized–unpolarized transition in a single molecule with a negative Poisson's ratio. Physical Chemistry Chemical Physics 2022, 24 (21) , 12890-12897. https://doi.org/10.1039/D2CP00816E
    44. Jorge Barroso, Sudip Pan, Gabriel Merino. Structural transformations in boron clusters induced by metal doping. Chemical Society Reviews 2022, 51 (3) , 1098-1123. https://doi.org/10.1039/D1CS00747E
    45. Changyan Zhu, Chaoxia Wen, Miao Wang, Min Zhang, Yun Geng, Zhongmin Su. Non-metal boron atoms on a CuB 12 monolayer as efficient catalytic sites for urea production. Chemical Science 2022, 13 (5) , 1342-1354. https://doi.org/10.1039/D1SC04845G
    46. Maya Khatun, Saikat Roy, Sandip Giri, Sasanka Sankhar Reddy CH, Anakuthil Anoop, Venkatesan S. Thimmakondu. BAl4Mg−/0/+: Global Minima with a Planar Tetracoordinate or Hypercoordinate Boron Atom. Atoms 2021, 9 (4) , 89. https://doi.org/10.3390/atoms9040089
    47. Rui Yu, Sudip Pan, Zhong-hua Cui. OsB9−: An Aromatic Osmium-Centered Monocyclic Boron Ring. Frontiers in Chemistry 2021, 9 https://doi.org/10.3389/fchem.2021.751482
    48. Yuhan Ye, Yiqiao Wang, Min Zhang, Yun Geng, Zhongmin Su. Sulphur-Bridged BAl5S5+ with 17 Counting Electrons: A Regular Planar Pentacoordinate Boron System. Molecules 2021, 26 (17) , 5205. https://doi.org/10.3390/molecules26175205
    49. Jiashu Yang, Linke Yu, Fengyu Li. Computational investigation of two-dimensional borides with planar octacoordinated main group elements. Physical Chemistry Chemical Physics 2021, 23 (30) , 15904-15907. https://doi.org/10.1039/D1CP02505H
    50. Shampa Raghunathan, Komal Yadav, V. C. Rojisha, Tanashree Jaganade, V. Prathyusha, Swetha Bikkina, Upakarasamy Lourderaj, U. Deva Priyakumar. Transition between [ R ]- and [ S ]-stereoisomers without bond breaking. Physical Chemistry Chemical Physics 2020, 22 (26) , 14983-14991. https://doi.org/10.1039/D0CP02918A
    51. Rafael Islas, Diego Inostroza, David Arias-Olivares, Bernardo Zúñiga-Gutiérrez, Jordi Poater, Miquel Solà. Analysis of the electronic delocalization in some isoelectronic analogues of B 12 doped with beryllium and/or carbon. Physical Chemistry Chemical Physics 2020, 22 (21) , 12245-12259. https://doi.org/10.1039/D0CP01844A
    52. Wei Feng, Changyan Zhu, Xingman Liu, Min Zhang, Yun Geng, Liang Zhao, Zhongmin Su. A BPt 4 S 4 cluster: a planar tetracoordinate boron system with three charges all at their global energy minima. New Journal of Chemistry 2020, 44 (3) , 767-772. https://doi.org/10.1039/C9NJ05456A
    53. Hai‐Feng Zheng, Jing Xu, Yi‐Hong Ding. Mono‐silicon isoelectronic replacement in CAl 4 : van't hoff/le bel carbon or not?. Journal of Computational Chemistry 2020, 41 (2) , 119-128. https://doi.org/10.1002/jcc.26079
    54. Frederico T. Silva, Mateus X. Silva, Jadson C. Belchior. A New Genetic Algorithm Approach Applied to Atomic and Molecular Cluster Studies. Frontiers in Chemistry 2019, 7 https://doi.org/10.3389/fchem.2019.00707
    55. Wei-yan Liang, Jorge Barroso, Said Jalife, Mesías Orozco-Ic, Ximena Zarate, Xue Dong, Zhong-hua Cui, Gabriel Merino. B 10 M 2 (M = Rh, Ir): finally a stable boron-based icosahedral cluster. Chemical Communications 2019, 55 (52) , 7490-7493. https://doi.org/10.1039/C9CC03732B
    56. William C. McKee, Saurin H. Rawal, Ye Xu. Efficiency enhancements of a restricted stochastic search algorithm for locating local and global minima. Chemical Physics Letters 2019, 725 , 1-7. https://doi.org/10.1016/j.cplett.2019.03.059
    57. Yonghong Tian, Donghe Wei, Yuanyuan Jin, Jorge Barroso, Cheng Lu, Gabriel Merino. Exhaustive exploration of MgB n ( n = 10–20) clusters and their anions. Physical Chemistry Chemical Physics 2019, 21 (13) , 6935-6941. https://doi.org/10.1039/C9CP00201D
    58. Rafael Islas, Diego P. Oyarzún, Plinio Cantero-López. Analysis of the aromaticity in extended systems formed from isoelectronic Al42− and C42+ aromatic clusters. Structural Chemistry 2018, 29 (5) , 1383-1395. https://doi.org/10.1007/s11224-018-1120-6
    59. Mosayeb Naseri, Jaafar Jalilian, Faribrz Parandin, Khaled Salehi. A new stable polycrystalline Be2C monolayer: A direct semiconductor with hexa-coordinate carbons. Physics Letters A 2018, 382 (32) , 2144-2148. https://doi.org/10.1016/j.physleta.2018.05.030
    60. Valentin Vassilev-Galindo, Sudip Pan, Kelling J. Donald, Gabriel Merino. Planar pentacoordinate carbons. Nature Reviews Chemistry 2018, 2 (2) https://doi.org/10.1038/s41570-018-0114
    61. Xue-Feng Zhao, Jia-Jia Li, Hai-Ru Li, Caixia Yuan, Xinxin Tian, Si-Dian Li, Yan-Bo Wu, Jin-Chang Guo, Zhi-Xiang Wang. Viable aromatic Be n H n stars enclosing a planar hypercoordinate boron or late transition metal. Physical Chemistry Chemical Physics 2018, 20 (10) , 7217-7222. https://doi.org/10.1039/C7CP06955C
    62. Yu Wang, Man Qiao, Yafei Li, Zhongfang Chen. A two-dimensional CaSi monolayer with quasi-planar pentacoordinate silicon. Nanoscale Horizons 2018, 3 (3) , 327-334. https://doi.org/10.1039/C7NH00091J
    63. Shuang Yu, Yi‐Hong Ding. New structural motif of 18 valence electron molecules with a planar tetracoordinate heavier group 14 center: Unique stabilization effect of a π‐type skeleton. International Journal of Quantum Chemistry 2017, 117 (22) https://doi.org/10.1002/qua.25436
    64. Alejandro Vásquez-Espinal, Jordi Poater, Miquel Solà, William Tiznado, Rafael Islas. Testing the effectiveness of the isoelectronic substitution principle through the transformation of aromatic osmathiophene derivatives into their inorganic analogues. New Journal of Chemistry 2017, 41 (3) , 1168-1178. https://doi.org/10.1039/C6NJ02972H
    65. Peifang Li, Guoliang Sun, Jianping Bai, Weihua Wang, Gang Bao, Cheng Lu. A detailed investigation into the geometric and electronic structures of CoBQn (n = 2–10, Q = 0, −1) clusters. New Journal of Chemistry 2017, 41 (19) , 11208-11214. https://doi.org/10.1039/C7NJ02377D
    66. Chun-Sheng Liu, Hao-Hao Zhu, Xiao-Juan Ye, Xiao-Hong Yan. Prediction of a new BeC monolayer with perfectly planar tetracoordinate carbons. Nanoscale 2017, 9 (18) , 5854-5858. https://doi.org/10.1039/C7NR00762K
    67. Xin Qu, Jinghai Yang, Yanchao Wang, Jian Lv, Zhongfang Chen, Yanming Ma. A two-dimensional TiB 4 monolayer exhibits planar octacoordinate Ti. Nanoscale 2017, 9 (45) , 17983-17990. https://doi.org/10.1039/C7NR05688E
    68. Wan‐Lu Li, Tian Jian, Xin Chen, Teng‐Teng Chen, Gary V. Lopez, Jun Li, Lai‐Sheng Wang. The Planar CoB 18 − Cluster as a Motif for Metallo‐Borophenes. Angewandte Chemie 2016, 128 (26) , 7484-7489. https://doi.org/10.1002/ange.201601548
    69. Wan‐Lu Li, Tian Jian, Xin Chen, Teng‐Teng Chen, Gary V. Lopez, Jun Li, Lai‐Sheng Wang. The Planar CoB 18 − Cluster as a Motif for Metallo‐Borophenes. Angewandte Chemie International Edition 2016, 55 (26) , 7358-7363. https://doi.org/10.1002/anie.201601548
    70. Xue‐Feng Zhao, Haixia Li, Cai‐Xia Yuan, Yan‐Qin Li, Yan‐Bo Wu, Zhi‐Xiang Wang. Linear, planar, and tubular molecular structures constructed by double planar tetracoordinate carbon D 2 h C 2 (BeH) 4 species via hydrogen‐bridged BeH 2 Be bonds. Journal of Computational Chemistry 2016, 37 (2) , 261-269. https://doi.org/10.1002/jcc.24018
    71. Alexander I. Boldyrev, Lai-Sheng Wang. Beyond organic chemistry: aromaticity in atomic clusters. Physical Chemistry Chemical Physics 2016, 18 (17) , 11589-11605. https://doi.org/10.1039/C5CP07465G
    72. Jing-jing Sui, Jing Xu, Yi-hong Ding. A template for a planar tetracoordinate heavier group 14 atom: a global study of C 2 Si 2 X q (X = C, Si, Ge, Sn, Pb; q = +1, 0, −1). Dalton Transactions 2016, 45 (1) , 56-60. https://doi.org/10.1039/C5DT03989D
    73. Hadi Behzadi, Zahra khalilnia. Aromatic-like behavior of germanium nanocrystals. RSC Advances 2016, 6 (53) , 47434-47442. https://doi.org/10.1039/C6RA02635D
    74. Jiao Li, Xinyu Fan, Yanpei Wei, Jinxiang Liu, Jinghua Guo, Xiaoxue Li, Vei Wang, Yunye Liang, Gang Chen. Voltage-gated spin-filtering properties and global minimum of planar MnB 6 , and half-metallicity and room-temperature ferromagnetism of its oxide sheet. Journal of Materials Chemistry C 2016, 4 (46) , 10866-10875. https://doi.org/10.1039/C6TC03584A
    75. Li‐Ming Yang, Eric Ganz, Zhongfang Chen, Zhi‐Xiang Wang, Paul von Ragué Schleyer. Vier Jahrzehnte Chemie der planar hyperkoordinierten Verbindungen. Angewandte Chemie 2015, 127 (33) , 9602-9637. https://doi.org/10.1002/ange.201410407
    76. Li‐Ming Yang, Eric Ganz, Zhongfang Chen, Zhi‐Xiang Wang, Paul von Ragué Schleyer. Four Decades of the Chemistry of Planar Hypercoordinate Compounds. Angewandte Chemie International Edition 2015, 54 (33) , 9468-9501. https://doi.org/10.1002/anie.201410407
    77. Stefan Vogt-Geisse, Judy I-Chia Wu, Paul v. R. Schleyer, Henry F. Schaefer. Bonding, aromaticity, and planar tetracoordinated carbon in Si2CH2 and Ge2CH2. Journal of Molecular Modeling 2015, 21 (8) https://doi.org/10.1007/s00894-015-2736-8
    78. Rafael Grande-Aztatzi, José Luis Cabellos, Rafael Islas, Ivan Infante, José M. Mercero, Albeiro Restrepo, Gabriel Merino. Planar pentacoordinate carbons in CBe 5 4− derivatives. Physical Chemistry Chemical Physics 2015, 17 (6) , 4620-4624. https://doi.org/10.1039/C4CP05659K
    79. Zhong-hua Cui, Yi-hong Ding, José Luis Cabellos, Edison Osorio, Rafael Islas, Albeiro Restrepo, Gabriel Merino. Planar tetracoordinate carbons with a double bond in CAl 3 E clusters. Physical Chemistry Chemical Physics 2015, 17 (14) , 8769-8775. https://doi.org/10.1039/C4CP05707D
    80. Jinzhen Zhu, Beizhou Wang, Jianjun Liu, Huanwen Chen, Wenqing Zhang. Theoretical studies of a 3D-to-planar structural transition in Si n Al 5−n +1,0,−1 (n = 0–5) clusters. RSC Advances 2015, 5 (18) , 13923-13929. https://doi.org/10.1039/C4RA15955A
    81. Jianhua Hou, Qian Duan, Jieming Qin, Xiande Shen, Jianxun Zhao, Qingcheng Liang, Dayong Jiang, Shang Gao. Unconventional charge distribution in the planar wheel-type M©B 6 H 6 −/0/+ (M = Mn, Fe and Co): central M with negative charges and peripheral boron ring with positive charges. Physical Chemistry Chemical Physics 2015, 17 (15) , 9644-9650. https://doi.org/10.1039/C5CP00254K
    82. Li-Ming Yang, Ivan A. Popov, Alexander I. Boldyrev, Thomas Heine, Thomas Frauenheim, Eric Ganz. Post-anti-van't Hoff-Le Bel motif in atomically thin germanium–copper alloy film. Physical Chemistry Chemical Physics 2015, 17 (27) , 17545-17551. https://doi.org/10.1039/C5CP02827B
    83. Zhong-hua Cui, Jing-jing Sui, Yi-hong Ding. How can carbon favor planar multi-coordination in boron-based clusters? Global structures of CB x E y 2− (E = Al, Ga, x + y = 4). Physical Chemistry Chemical Physics 2015, 17 (47) , 32016-32022. https://doi.org/10.1039/C5CP04776E
    84. Jianhua Hou, Ying Chen, Qian Duan, Qingcheng Liang, Dayong Jiang, Wanqiang Liu, Bing Yan, Zhiru Li, Fenglong Gu, Qianshu Li. Exploring the geometrical structures of X©B n H n m [(X, m) = (B, +1), (C, +2) for n = 5; (X, m) = (Be, 0), (B, +1) for n = 6] by an electronic method. New Journal of Chemistry 2015, 39 (11) , 8630-8637. https://doi.org/10.1039/C5NJ01324K
    85. Jianhua Hou, Qian Duan, Jieming Qin, Xiande Shen, Jianxun Zhao, Qingcheng Liang, Dayong Jiang, Shang Gao. Planar wheel-type M©B n H n 2−/−/0 clusters (M = Cr, Mn and Fe for dianion, anion and neutral, respectively; n = 6 and 7). RSC Advances 2015, 5 (49) , 38873-38879. https://doi.org/10.1039/C5RA02724A
    86. Xiao-yong Zhang, Yi-hong Ding. Computational prediction of a global planar penta-coordinate carbon structure CAl4Ga+. Computational and Theoretical Chemistry 2014, 1048 , 18-24. https://doi.org/10.1016/j.comptc.2014.08.019
    87. M. Tang. Theoretical studies on the penta-atomic planar coordinate carbon molecules [CGa3Sn] and [CGa3Sn]−. Russian Journal of Coordination Chemistry 2014, 40 (8) , 594-597. https://doi.org/10.1134/S1070328414080107
    88. Yafei Li, Yunlong Liao, Zhongfang Chen. Be 2 C Monolayer with Quasi‐Planar Hexacoordinate Carbons: A Global Minimum Structure. Angewandte Chemie 2014, 126 (28) , 7376-7380. https://doi.org/10.1002/ange.201403833
    89. Yafei Li, Yunlong Liao, Zhongfang Chen. Be 2 C Monolayer with Quasi‐Planar Hexacoordinate Carbons: A Global Minimum Structure. Angewandte Chemie International Edition 2014, 53 (28) , 7248-7252. https://doi.org/10.1002/anie.201403833
    90. Fengyu Li, De-en Jiang, Zhongfang Chen. Computational quest for spherical C12B68 fullerenes with “magic” π-electrons and quasi-planar tetra-coordinated carbon. Journal of Molecular Modeling 2014, 20 (2) https://doi.org/10.1007/s00894-014-2085-z
    91. Sambath Baskaran, Chinnappan Sivasankar. Molecular and electronic structure analysis of some novel copper and zinc complexes of hypervalent carbon based ligand: DFT studies. Journal of Organometallic Chemistry 2014, 752 , 123-132. https://doi.org/10.1016/j.jorganchem.2013.12.013
    92. Lifen Li, Chang Xu, Baokang Jin, Longjiu Cheng. Benzene analogues of (quasi-)planar M@B n H n compounds (M = V−, Cr, Mn+): A theoretical investigation. The Journal of Chemical Physics 2013, 139 (17) https://doi.org/10.1063/1.4827517
    93. Laetitia Bomble, Stephan N. Steinmann, Nancy Perez‐Peralta, Gabriel Merino, Clemence Corminboeuf. Bonding analysis of planar hypercoordinate atoms via the generalized BLW‐LOL. Journal of Computational Chemistry 2013, 34 (26) , 2242-2248. https://doi.org/10.1002/jcc.23383
    94. Menghao Wu, Yong Pei, Xiao Cheng Zeng. Edge decorated SiC nanoribbons with metal: Coexistence of planar tetracoordinate carbon and silicon. Chemical Physics Letters 2013, 580 , 78-81. https://doi.org/10.1016/j.cplett.2013.06.051
    95. Constantin Romanescu, Timur R. Galeev, Wei-Li Li, Alexander I. Boldyrev, Lai-Sheng Wang. Geometric and electronic factors in the rational design of transition-metal-centered boron molecular wheels. The Journal of Chemical Physics 2013, 138 (13) https://doi.org/10.1063/1.4798935
    96. Ke Zhou. Theoretical studies on the pentaatomic planar tetracoordinate carbon molecules CGa3Si and CGa3Si−. Computational and Theoretical Chemistry 2013, 1009 , 30-34. https://doi.org/10.1016/j.comptc.2012.12.024
    97. Timur R. Galeev, Wei-Li Li, Constantin Romanescu, Ivan Černušák, Lai-Sheng Wang, Alexander I. Boldyrev. Photoelectron spectroscopy and ab initio study of boron-carbon mixed clusters: CB9− and C2B8−. The Journal of Chemical Physics 2012, 137 (23) https://doi.org/10.1063/1.4770231
    98. Constantin Romanescu, Timur R. Galeev, Alina P. Sergeeva, Wei-Li Li, Lai-Sheng Wang, Alexander I. Boldyrev. Experimental and computational evidence of octa- and nona-coordinated planar iron-doped boron clusters: Fe©B8− and Fe©B9−. Journal of Organometallic Chemistry 2012, 721-722 , 148-154. https://doi.org/10.1016/j.jorganchem.2012.07.050
    99. Thomas Heine, Gabriel Merino. Was ist die höchste Koordinationszahl in einer ebenen Struktur?. Angewandte Chemie 2012, 124 (18) , 4349-4350. https://doi.org/10.1002/ange.201201166
    100. Thomas Heine, Gabriel Merino. What Is the Maximum Coordination Number in a Planar Structure?. Angewandte Chemie International Edition 2012, 51 (18) , 4275-4276. https://doi.org/10.1002/anie.201201166
    Load all citations