Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Ultrafast Dynamics of the Low-Lying 3MLCT States of [Ru(bpy)2(dppp2)]2+
My Activity

Figure 1Loading Img
    Communication

    Ultrafast Dynamics of the Low-Lying 3MLCT States of [Ru(bpy)2(dppp2)]2+
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry, The Ohio State University, Columbus, Ohio 43210
    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2010, 132, 16, 5594–5595
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja101703w
    Published April 5, 2010
    Copyright © 2010 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The solvent dependence of the excited state dynamics of [Ru(bpy)2(dppp2)]2+ (bpy = 2,2′-bipyridine, dppp2 = pyrido[2′,3′:5,6]pyrazino[2,3-f][1,10]phenanthroline) were investigated using ultrafast transient absorption spectroscopy. In contrast to the “DNA light-switch” complex [Ru(bpy)2(dppz)]2+ (dppz = dipyrido[3,2-a:2′,3′-c]phenzine), the structurally related [Ru(bpy)2(dppp2)]2+ exhibits discrete formation of the lowest-lying 3MLCTdis (MLCT = metal-to-ligand charge transfer) state from the higher-energy 3MLCTprox state in the picosecond time scale. In 3MLCTdis and 3MLCTprox, the transferred electron is localized on the portion of the dppp2 ligand distal and proximal to the metal, respectively. The greater dipole moment of 3MLCTdis compared to 3MCLTprox, together with the ability of the dppp2 ligand to hydrogen bond, results in a strong dependence of the kinetics of the interconversion process on solvent polarity, decreasing from 67 to 26 ps in CH2Cl2 and CH3CN, respectively. Similarly, the lifetime of the emission of the lowest energy state of [Ru(bpy)2(dppp2)]2+ also decreases from 273 to 35 ns in the same solvents. In CH3CH2OH, both the rate of interconversion and the decay of 3MLCTdis are significantly faster, 6.7 ps and 1.7 ns, respectively. Such dependence of the excited state properties is not observed for [Ru(bpy)2(dppz)]2+. The results are consistent with the relative stabilization of 3MLCTdis of the dppp2 complex in CH3CN compared to CH2Cl2 due to solvent polarity, which may be further stabilized by hydrogen bonding in CH3CH2OH.

    Copyright © 2010 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Ultrafast spectra of 1 and 2. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 76 publications.

    1. Gina Elena Giacomazzo, Sandra Doria, Andrea Revilla-Cuesta, Nicola De Monte, Marco Pagliai, Giangaetano Pietraperzia, Barbara Valtancoli, Tomás Torroba, Luca Conti, Mariangela Di Donato, Claudia Giorgi. Photosensitizers Based on Bichromophoric Dyads Combining Ru(II)-Polypyridyl Complexes and Dissymmetric Perylene Monoimide Derivatives: The Nontrivial Role of Ligand Substitution. Inorganic Chemistry 2024, 63 (14) , 6248-6259. https://doi.org/10.1021/acs.inorgchem.3c04569
    2. Agustina Cotic, Simon Cerfontaine, Leonardo D. Slep, Benjamin Elias, Ludovic Troian-Gautier, Alejandro Cadranel. Anti-Dissipative Strategies toward More Efficient Solar Energy Conversion. Journal of the American Chemical Society 2023, 145 (9) , 5163-5173. https://doi.org/10.1021/jacs.2c11593
    3. Mark Stitch, Rayhaan Z. Boota, Alannah S. Chalkley, Tony D. Keene, Jeremy C. Simpson, Paul A. Scattergood, Paul I. P. Elliott, Susan J Quinn. Photophysical Properties and DNA Binding of Two Intercalating Osmium Polypyridyl Complexes Showing Light-Switch Effects. Inorganic Chemistry 2022, 61 (38) , 14947-14961. https://doi.org/10.1021/acs.inorgchem.2c01231
    4. Miguel A. Argüello Cordero, Pit Jean Boden, Martin Rentschler, Patrick Di Martino-Fumo, Wolfgang Frey, Yingya Yang, Markus Gerhards, Michael Karnahl, Stefan Lochbrunner, Stefanie Tschierlei. Comprehensive Picture of the Excited State Dynamics of Cu(I)- and Ru(II)-Based Photosensitizers with Long-Lived Triplet States. Inorganic Chemistry 2022, 61 (1) , 214-226. https://doi.org/10.1021/acs.inorgchem.1c02771
    5. Runhui Liang, Wenjuan Xiong, Kin Cheung Lo, Po Yuen Ho, Xueqin Bai, Wenquan Lai, Wai Kin Chan, Lili Du, David Lee Phillips. Revealing the Photophysical Dynamics of Selected Rigid Donor–Acceptor Systems: From Ligands to Ruthenium(II) Complexes. The Journal of Physical Chemistry Letters 2021, 12 (44) , 10927-10935. https://doi.org/10.1021/acs.jpclett.1c03122
    6. Dajana Isakov, Marie-Ann Schmid, Djawed Nauroozi, Sven Rau, Stefanie Tschierlei. Prolonged Luminescence Lifetime of a Dual Emissive Ruthenium Dipyridophenazine-Type Complex in Aprotic and Protic Solvents. Inorganic Chemistry 2021, 60 (18) , 14002-14010. https://doi.org/10.1021/acs.inorgchem.1c01214
    7. Carolin Müller, Dajana Isakov, Sven Rau, Benjamin Dietzek. Influence of the Protonation State on the Excited-State Dynamics of Ruthenium(II) Complexes with Imidazole π-Extended Dipyridophenazine Ligands. The Journal of Physical Chemistry A 2021, 125 (27) , 5911-5921. https://doi.org/10.1021/acs.jpca.1c03856
    8. Martin Kaufmann, Carolin Müller, Aoibhin A. Cullen, Michael P. Brandon, Benjamin Dietzek, Mary T. Pryce. Photophysics of Ruthenium(II) Complexes with Thiazole π-Extended Dipyridophenazine Ligands. Inorganic Chemistry 2021, 60 (2) , 760-773. https://doi.org/10.1021/acs.inorgchem.0c02765
    9. Dajana Isakov, Robin Giereth, Djawed Nauroozi, Stefanie Tschierlei, Sven Rau. Two Emissive Long-Lived Excited States of an Imidazole-Functionalized Ruthenium Dipyridophenazine Complex. Inorganic Chemistry 2019, 58 (19) , 12646-12653. https://doi.org/10.1021/acs.inorgchem.9b01372
    10. William T. Kender, Claudia Turro. Unusually Slow Internal Conversion in N-Heterocyclic Carbene/Carbanion Cyclometallated Ru(II) Complexes: A Hammett Relationship. The Journal of Physical Chemistry A 2019, 123 (13) , 2650-2660. https://doi.org/10.1021/acs.jpca.9b00858
    11. Julian Schindler, Philipp Traber, Linda Zedler, Ying Zhang, Jean-François Lefebvre, Stephan Kupfer, Stefanie Gräfe, Martine Demeunynck, Murielle Chavarot-Kerlidou, Benjamin Dietzek. Photophysics of a Ruthenium Complex with a π-Extended Dipyridophenazine Ligand for DNA Quadruplex Labeling. The Journal of Physical Chemistry A 2018, 122 (32) , 6558-6569. https://doi.org/10.1021/acs.jpca.8b05274
    12. Thomas J. Penfold, Etienne Gindensperger, Chantal Daniel, Christel M. Marian. Spin-Vibronic Mechanism for Intersystem Crossing. Chemical Reviews 2018, 118 (15) , 6975-7025. https://doi.org/10.1021/acs.chemrev.7b00617
    13. Julian Schindler, Ying Zhang, Philipp Traber, Jean-François Lefebvre, Stephan Kupfer, Martine Demeunynck, Stefanie Gräfe, Murielle Chavarot-Kerlidou, and Benjamin Dietzek . A ππ* State Enables Photoaccumulation of Charges on a π-Extended Dipyridophenazine Ligand in a Ru(II) Polypyridine Complex. The Journal of Physical Chemistry C 2018, 122 (1) , 83-95. https://doi.org/10.1021/acs.jpcc.7b08989
    14. Tyler J. Whittemore, Travis A. White, and Claudia Turro . New Ligand Design Provides Delocalization and Promotes Strong Absorption throughout the Visible Region in a Ru(II) Complex. Journal of the American Chemical Society 2018, 140 (1) , 229-234. https://doi.org/10.1021/jacs.7b09389
    15. Lauren M. Loftus, Ao Li, Kathlyn L. Fillman, Philip D. Martin, Jeremy J. Kodanko, and Claudia Turro . Unusual Role of Excited State Mixing in the Enhancement of Photoinduced Ligand Exchange in Ru(II) Complexes. Journal of the American Chemical Society 2017, 139 (50) , 18295-18306. https://doi.org/10.1021/jacs.7b09937
    16. Koushik Singha, Paltan Laha, Falguni Chandra, Niranjan Dehury, Apurba L. Koner, and Srikanta Patra . Long-Lived Polypyridyl Based Mononuclear Ruthenium Complexes: Synthesis, Structure, and Azo Dye Decomposition. Inorganic Chemistry 2017, 56 (11) , 6489-6498. https://doi.org/10.1021/acs.inorgchem.7b00536
    17. Teresa L. Rapp, Susan R. Phillips, and Ivan J. Dmochowski . Kinetics and Photochemistry of Ruthenium Bisbipyridine Diacetonitrile Complexes: An Interdisciplinary Inorganic and Physical Chemistry Laboratory Exercise. Journal of Chemical Education 2016, 93 (12) , 2101-2105. https://doi.org/10.1021/acs.jchemed.6b00173
    18. Georgina E. Shillito, Christopher B. Larsen, James R. W. McLay, Nigel T. Lucas, and Keith C. Gordon . Effect of Bridge Alteration on Ground- and Excited-State Properties of Ruthenium(II) Complexes with Electron-Donor-Substituted Dipyrido[3,2-a:2′,3′-c]phenazine Ligands. Inorganic Chemistry 2016, 55 (21) , 11170-11184. https://doi.org/10.1021/acs.inorgchem.6b01810
    19. Katsuaki Kobayashi, Hideki Ohtsu, Koichi Nozaki, Susumu Kitagawa, and Koji Tanaka . Photochemical Properties and Reactivity of a Ru Compound Containing an NAD/NADH-Functionalized 1,10-Phenanthroline Ligand. Inorganic Chemistry 2016, 55 (5) , 2076-2084. https://doi.org/10.1021/acs.inorgchem.5b02390
    20. Jessica D. Knoll, Bryan A. Albani, and Claudia Turro . New Ru(II) Complexes for Dual Photoreactivity: Ligand Exchange and 1O2 Generation. Accounts of Chemical Research 2015, 48 (8) , 2280-2287. https://doi.org/10.1021/acs.accounts.5b00227
    21. Yousf K. Radwan, Ayan Maity, and Thomas S. Teets . Manipulating the Excited States of Cyclometalated Iridium Complexes with β-Ketoiminate and β-Diketiminate Ligands. Inorganic Chemistry 2015, 54 (14) , 7122-7131. https://doi.org/10.1021/acs.inorgchem.5b01401
    22. Albert W. King, Beth Anne McClure, Yuhuan Jin, and Jeffrey J. Rack . Investigating the Effects of Solvent on the Ultrafast Dynamics of a Photoreversible Ruthenium Sulfoxide Complex. The Journal of Physical Chemistry A 2014, 118 (45) , 10425-10432. https://doi.org/10.1021/jp504078g
    23. David J. Boston, Yeimi M. Franco Pachón, Reynaldo O. Lezna, N. R. de Tacconi, and Frederick M. MacDonnell . Electrocatalytic and Photocatalytic Conversion of CO2 to Methanol using Ruthenium Complexes with Internal Pyridyl Cocatalysts. Inorganic Chemistry 2014, 53 (13) , 6544-6553. https://doi.org/10.1021/ic500051m
    24. Kang Li, Lu-Yin Zhang, Cheng Yan, Shi-Chao Wei, Mei Pan, Li Zhang, and Cheng-Yong Su . Stepwise Assembly of Pd6(RuL3)8 Nanoscale Rhombododecahedral Metal–Organic Cages via Metalloligand Strategy for Guest Trapping and Protection. Journal of the American Chemical Society 2014, 136 (12) , 4456-4459. https://doi.org/10.1021/ja410044r
    25. Rajeev K. Dubey, Marja Niemi, Kimmo Kaunisto, Kati Stranius, Alexander Efimov, Nikolai V. Tkachenko, and Helge Lemmetyinen . Excited-State Interaction of Red and Green Perylene Diimides with Luminescent Ru(II) Polypyridine Complex. Inorganic Chemistry 2013, 52 (17) , 9761-9773. https://doi.org/10.1021/ic400474b
    26. Shyamal Das, Srikanta Karmakar, Debasish Saha, and Sujoy Baitalik . A Combined Experimental and DFT/TD-DFT Investigation of Structural, Electronic, and Cation-Induced Switching of Photophysical Properties of Bimetallic Ru(II) and Os(II) Complexes Derived from Imidazole-4,5-Dicarboxylic Acid and 2,2′-Bipyridine. Inorganic Chemistry 2013, 52 (12) , 6860-6879. https://doi.org/10.1021/ic302566p
    27. Bruno Peña, Nicholas A. Leed, Kim R. Dunbar, and Claudia Turro . Excited State Dynamics of Two New Ru(II) Cyclometallated Dyes: Relation to Cells for Solar Energy Conversion and Comparison to Conventional Systems. The Journal of Physical Chemistry C 2012, 116 (42) , 22186-22195. https://doi.org/10.1021/jp306352f
    28. Maximilian Bräutigam, Maria Wächtler, Sven Rau, Jürgen Popp, and Benjamin Dietzek . Photophysical Dynamics of a Ruthenium Polypyridine Dye Controlled by Solvent pH. The Journal of Physical Chemistry C 2012, 116 (1) , 1274-1281. https://doi.org/10.1021/jp209103m
    29. Marek B. Majewski, Norma R. de Tacconi, Frederick M. MacDonnell, and Michael O. Wolf . Ligand-Triplet-Fueled Long-Lived Charge Separation in Ruthenium(II) Complexes with Bithienyl-Functionalized Ligands. Inorganic Chemistry 2011, 50 (20) , 9939-9941. https://doi.org/10.1021/ic201895y
    30. Beth Anne McClure and Jeffrey J. Rack . Ultrafast Spectroscopy of a Photochromic Ruthenium Sulfoxide Complex. Inorganic Chemistry 2011, 50 (16) , 7586-7590. https://doi.org/10.1021/ic200532p
    31. Ronald Siebert, Christoph Hunger, Julien Guthmuller, Florian Schlütter, Andreas Winter, Ulrich S. Schubert, Leticia González, Benjamin Dietzek, and Jürgen Popp . Direct Observation of Temperature-Dependent Excited-State Equilibrium in Dinuclear Ruthenium Terpyridine Complexes Bearing Electron-Poor Bridging Ligands. The Journal of Physical Chemistry C 2011, 115 (25) , 12677-12688. https://doi.org/10.1021/jp203958f
    32. Stephanie A. Moore, Jeffrey K. Nagle, Michael O. Wolf, and Brian O. Patrick . Coordination Mode Dependent Excited State Behavior in Group 8 Phosphino(terthiophene) Complexes. Inorganic Chemistry 2011, 50 (11) , 5113-5122. https://doi.org/10.1021/ic200392n
    33. Robert N. Garner, Lauren E. Joyce, and Claudia Turro . Effect of Electronic Structure on the Photoinduced Ligand Exchange of Ru(II) Polypyridine Complexes. Inorganic Chemistry 2011, 50 (10) , 4384-4391. https://doi.org/10.1021/ic102482c
    34. Daniel P. Lazzaro, Robert McGuire, Jr., and David R. McMillin . Regiospecific Quenching of a Photoexcited Platinum(II) Complex at Acidic and Basic Sites. Inorganic Chemistry 2011, 50 (10) , 4437-4444. https://doi.org/10.1021/ic2000359
    35. David J. Stewart, Phillip E. Fanwick and David R. McMillin. A Red-Emitting Light Switch Based on a Heteroleptic Ruthenium(II) Complex Containing a Tridentate dppz Analogue. Inorganic Chemistry 2010, 49 (15) , 6814-6816. https://doi.org/10.1021/ic1010117
    36. Yujie Sun and Claudia Turro. Highly Solvent Dependent Luminescence from [Ru(bpy)n(dppp2)3−n]2+ (n = 0−2). Inorganic Chemistry 2010, 49 (11) , 5025-5032. https://doi.org/10.1021/ic100106b
    37. Agustina Cotic, Ivana Ramírez-Wierzbicki, Alejandro Cadranel. Harnessing high-energy MLCT excited states for artificial photosynthesis. Coordination Chemistry Reviews 2024, 514 , 215878. https://doi.org/10.1016/j.ccr.2024.215878
    38. Oliver Bysewski, Maria Sittig, Andreas Winter, Benjamin Dietzek-Ivanšić, Ulrich S. Schubert. Photobasic transition-metal complexes. Coordination Chemistry Reviews 2024, 498 , 215441. https://doi.org/10.1016/j.ccr.2023.215441
    39. Jiangping Liu, Andrew W. Prentice, Guy J. Clarkson, Jack M. Woolley, Vasilios G. Stavros, Martin J. Paterson, Peter J. Sadler. A Concerted Redox‐ and Light‐Activated Agent for Controlled Multimodal Therapy against Hypoxic Cancer Cells. Advanced Materials 2023, 35 (19) https://doi.org/10.1002/adma.202210363
    40. Linda Zedler, Pascal Wintergerst, Alexander K. Mengele, Carolin Müller, Chunyu Li, Benjamin Dietzek-Ivanšić, Sven Rau. Outpacing conventional nicotinamide hydrogenation catalysis by a strongly communicating heterodinuclear photocatalyst. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-30147-4
    41. Linda Zedler, Carolin Müller, Pascal Wintergerst, Alexander K. Mengele, Sven Rau, Benjamin Dietzek‐Ivanšić. Influence of the Linker Chemistry on the Photoinduced Charge‐Transfer Dynamics of Hetero‐dinuclear Photocatalysts. Chemistry – A European Journal 2022, 28 (35) https://doi.org/10.1002/chem.202200490
    42. Carolin Müller, Alexander Schwab, Nicholas M. Randell, Stephan Kupfer, Benjamin Dietzek‐Ivanšić, Murielle Chavarot‐Kerlidou. A Combined Spectroscopic and Theoretical Study on a Ruthenium Complex Featuring a π‐Extended dppz Ligand for Light‐Driven Accumulation of Multiple Reducing Equivalents. Chemistry – A European Journal 2022, 28 (18) https://doi.org/10.1002/chem.202103882
    43. Chunfan Yang, Qian Zhou, Zeqing Jiao, Hongmei Zhao, Chun-Hua Huang, Ben-Zhan Zhu, Hongmei Su. Ultrafast excited state dynamics and light-switching of [Ru(phen)2(dppz)]2+ in G-quadruplex DNA. Communications Chemistry 2021, 4 (1) https://doi.org/10.1038/s42004-021-00507-0
    44. Paulina Dreyse, Mireya Santander‐Nelli, David Zambrano, Luis Rosales, Luis Sanhueza. Electron‐donor substituents on the dppz‐based ligands to control luminescence from dark to bright emissive state in Ir(III) complexes. International Journal of Quantum Chemistry 2020, 120 (12) https://doi.org/10.1002/qua.26167
    45. Josep M. Anglada, Marilia T. C. Martins-Costa, Joseph S. Francisco, Manuel F. Ruiz-López. Triplet state promoted reaction of SO 2 with H 2 O by competition between proton coupled electron transfer (pcet) and hydrogen atom transfer (hat) processes. Physical Chemistry Chemical Physics 2019, 21 (19) , 9779-9784. https://doi.org/10.1039/C9CP01105F
    46. Peter A. Summers, Bethany S. Adams, Nasiru Ibrahim, Katherine E.A. Reynolds, Kam Loon Fow, E. Stephen Davies, Michael Towrie, Michael W. George. Photophysical and electrochemical properties of [Re(CO)3Cl(NN)] (NN = dppp3, dppp2, dppp2Br) complexes functionalised with pendant pyridyl ligands. Vibrational Spectroscopy 2019, 100 , 86-92. https://doi.org/10.1016/j.vibspec.2018.08.011
    47. Páraic M. Keane, John M. Kelly. Transient absorption and time-resolved vibrational studies of photophysical and photochemical processes in DNA-intercalating polypyridyl metal complexes or cationic porphyrins. Coordination Chemistry Reviews 2018, 364 , 137-154. https://doi.org/10.1016/j.ccr.2018.02.018
    48. Sebastian Mai, Felix Plasser, Johann Dorn, Maria Fumanal, Chantal Daniel, Leticia González. Quantitative wave function analysis for excited states of transition metal complexes. Coordination Chemistry Reviews 2018, 361 , 74-97. https://doi.org/10.1016/j.ccr.2018.01.019
    49. Iván González, Mirco Natali, Alan R. Cabrera, Bárbara Loeb, Jerónimo Maze, Paulina Dreyse. Substituent influence in phenanthroline-derived ancillary ligands on the excited state nature of novel cationic Ir( iii ) complexes. New Journal of Chemistry 2018, 42 (9) , 6644-6654. https://doi.org/10.1039/C8NJ00334C
    50. Ying‐Zhong Ma, Chenkun Zhou, Benjamin Doughty, Davis C. Easley, Justin Deterding, Biwu Ma. Solvent Effect on the Photoinduced Structural Change of a Phosphorescent Molecular Butterfly. Chemistry – A European Journal 2017, 23 (70) , 17734-17739. https://doi.org/10.1002/chem.201703259
    51. Zhuoran Kuang, Xian Wang, Zhen Wang, Guiying He, Qianjin Guo, Lei He, Andong Xia. Phosphorescent Cationic Iridium(III) Complexes with 1,3,4-Oxadiazole Cyclometalating Ligands: Solvent-Dependent Excited-State Dynamics. Chinese Journal of Chemical Physics 2017, 30 (3) , 259-267. https://doi.org/10.1063/1674-0068/30/cjcp1703058
    52. Isabelle M. Dixon, Jean-Louis Heully, Fabienne Alary, Paul I. P. Elliott. Theoretical illumination of highly original photoreactive 3 MC states and the mechanism of the photochemistry of Ru( ii ) tris(bidentate) complexes. Phys. Chem. Chem. Phys. 2017, 19 (40) , 27765-27778. https://doi.org/10.1039/C7CP05532C
    53. L. Troian-Gautier, L. Marcélis, J. De Winter, P. Gerbaux, C. Moucheron. Two ruthenium complexes capable of storing multiple electrons on a single ligand – photophysical, photochemical and electrochemical properties of [Ru(phen) 2 (TAPHAT)] 2+ and [Ru(phen) 2 (TAPHAT)Ru(phen) 2 ] 4+. Dalton Transactions 2017, 46 (44) , 15287-15300. https://doi.org/10.1039/C7DT03232C
    54. Alejandro De la Cadena, Dar’ya Davydova, Tatiana Tolstik, Christian Reichardt, Sapna Shukla, Denis Akimov, Rainer Heintzmann, Jürgen Popp, Benjamin Dietzek. Ultrafast in cellulo photoinduced dynamics processes of the paradigm molecular light switch [Ru(bpy)2dppz]2+. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep33547
    55. Jibo Liu, Huijie Shi, Xiaofeng Huang, Qi Shen, Guohua Zhao. Efficient Photoelectrochemical Reduction of CO 2 on Pyridyl Covalent Bonded Ruthenium(II) Based-Photosensitizer. Electrochimica Acta 2016, 216 , 228-238. https://doi.org/10.1016/j.electacta.2016.08.135
    56. Alejandro Cadranel, German E. Pieslinger, Pornthip Tongying, Masaru K. Kuno, Luis M. Baraldo, José H. Hodak. Spectroscopic signatures of ligand field states in {Ru II (imine)} complexes. Dalton Transactions 2016, 45 (13) , 5464-5475. https://doi.org/10.1039/C5DT04332H
    57. Guanying Li, Lingli Sun, Liangnian Ji, Hui Chao. Ruthenium( ii ) complexes with dppz: from molecular photoswitch to biological applications. Dalton Transactions 2016, 45 (34) , 13261-13276. https://doi.org/10.1039/C6DT01624C
    58. Páraic M. Keane, Fergus E. Poynton, James P. Hall, Igor V. Sazanovich, Michael Towrie, Thorfinnur Gunnlaugsson, Susan J. Quinn, Christine J. Cardin, John M. Kelly. Reversal of a Single Base‐Pair Step Controls Guanine Photo‐Oxidation by an Intercalating Ruthenium(II) Dipyridophenazine Complex. Angewandte Chemie International Edition 2015, 54 (29) , 8364-8368. https://doi.org/10.1002/anie.201502608
    59. Páraic M. Keane, Fergus E. Poynton, James P. Hall, Igor V. Sazanovich, Michael Towrie, Thorfinnur Gunnlaugsson, Susan J. Quinn, Christine J. Cardin, John M. Kelly. Reversal of a Single Base‐Pair Step Controls Guanine Photo‐Oxidation by an Intercalating Ruthenium(II) Dipyridophenazine Complex. Angewandte Chemie 2015, 127 (29) , 8484-8488. https://doi.org/10.1002/ange.201502608
    60. James A. Calladine, Raphael Horvath, Andrew J. Davies, Alisdair Wriglesworth, Xue-Zhong Sun, Michael W. George. Probing Organometallic Reactions by Time-Resolved Infrared Spectroscopy in Solution and in the Solid State Using Quantum Cascade Lasers. Applied Spectroscopy 2015, 69 (5) , 519-524. https://doi.org/10.1366/14-07708
    61. Thibaut Véry, David Ambrosek, Miho Otsuka, Christophe Gourlaouen, Xavier Assfeld, Antonio Monari, Chantal Daniel. Photophysical Properties of Ruthenium(II) Polypyridyl DNA Intercalators: Effects of the Molecular Surroundings Investigated by Theory. Chemistry – A European Journal 2014, 20 (40) , 12901-12909. https://doi.org/10.1002/chem.201402963
    62. Shyamal Das, Srikanta Karmakar, Sourav Mardanya, Debasish Saha, Sujoy Baitalik. Cation-induced switching on–off luminescence in an imidazole 4,5-dicarboxylate-bridged RuIIOsII bipyridine complex: A combined experimental and DFT/TD-DFT investigation. Polyhedron 2014, 76 , 55-70. https://doi.org/10.1016/j.poly.2014.03.026
    63. Ludovic Troian-Gautier, Cécile Moucheron. RutheniumII Complexes bearing Fused Polycyclic Ligands: From Fundamental Aspects to Potential Applications. Molecules 2014, 19 (4) , 5028-5087. https://doi.org/10.3390/molecules19045028
    64. Linda Zedler, Stephan Kupfer, Inês Rabelo de Moraes, Maria Wächtler, Rainer Beckert, Michael Schmitt, Jürgen Popp, Sven Rau, Benjamin Dietzek. Trapped in Imidazole: How to Accumulate Multiple Photoelectrons on a Black‐Absorbing Ruthenium Complex. Chemistry – A European Journal 2014, 20 (13) , 3793-3799. https://doi.org/10.1002/chem.201304937
    65. Rajib Ghosh, Dipak K. Palit. Probing excited state charge transfer dynamics in a heteroleptic ruthenium complex. Phys. Chem. Chem. Phys. 2014, 16 (1) , 219-226. https://doi.org/10.1039/C3CP53886A
    66. Zhanyong Li, Nicholas A. Leed, Nicole M. Dickson-Karn, Kim R. Dunbar, Claudia Turro. Directional charge transfer and highly reducing and oxidizing excited states of new dirhodium( ii , ii ) complexes: potential applications in solar energy conversion. Chem. Sci. 2014, 5 (2) , 727-737. https://doi.org/10.1039/C3SC52366G
    67. J.A. Smith, F.R. Keene, F. Li, J.G. Collins. Noncovalent DNA Binding of Metal Complexes. 2013, 709-750. https://doi.org/10.1016/B978-0-08-097774-4.00329-6
    68. Victor F. Plyusnin, Aleksandr V. Kolomeets, Darya S. Budkina, Ivan P. Pozdnyakov, Nikolai V. Tkachenko, Helge Lemmetyinen. Photophysics of bis(ethylxanthato)nickel(II) [Ni(EtOCS2)2] complex studied by femtosecond pump-probe spectroscopy. Journal of Photochemistry and Photobiology A: Chemistry 2013, 251 , 57-62. https://doi.org/10.1016/j.jphotochem.2012.08.005
    69. Yongjie Chen, Wanhua Lei, Guoyu Jiang, Qianxiong Zhou, Yuanjun Hou, Chao Li, Baowen Zhang, Xuesong Wang. A ruthenium(ii) arene complex showing emission enhancement and photocleavage activity towards DNA from singlet and triplet excited states respectively. Dalton Transactions 2013, 42 (16) , 5924. https://doi.org/10.1039/c3dt33090g
    70. Debasish Saha, Shyamal Das, Srikanta Karmakar, Supriya Dutta, Sujoy Baitalik. Synthesis, structural characterization and anion-, cation- and solvent-induced tuning of photophysical properties of a bimetallic Ru(ii) complex: combined experimental and DFT/TDDFT investigation. RSC Advances 2013, 3 (38) , 17314. https://doi.org/10.1039/c3ra41114a
    71. Daniel Escudero, Bobby Happ, Andreas Winter, Martin D. Hager, Ulrich S. Schubert, Leticia González. The Radiative Decay Rates Tune the Emissive Properties of Ruthenium(II) Polypyridyl Complexes: A Computational Study. Chemistry – An Asian Journal 2012, 7 (4) , 667-671. https://doi.org/10.1002/asia.201100864
    72. Andrew W. McKinley, Per Lincoln, Eimer M. Tuite. Environmental effects on the photophysics of transition metal complexes with dipyrido[2,3-a:3′,2′-c]phenazine (dppz) and related ligands. Coordination Chemistry Reviews 2011, 255 (21-22) , 2676-2692. https://doi.org/10.1016/j.ccr.2011.06.012
    73. Tomoya Ishizuka, Takuya Sawaki, Soushi Miyazaki, Masaki Kawano, Yoshihito Shiota, Kazunari Yoshizawa, Shunichi Fukuzumi, Takahiko Kojima. Mechanistic Insights into Photochromic Behavior of a Ruthenium(II)–Pterin Complex. Chemistry – A European Journal 2011, 17 (24) , 6652-6662. https://doi.org/10.1002/chem.201003522
    74. Daniel A. Lutterman, Laurie A. Lazinski-Melanson, Yogen Asher, Dean H. Johnston, Judith C. Gallucci, Claudia Turro. Effect of intraligand π-delocalization on the photophysical properties of two new Ru(II) complexes. Journal of Photochemistry and Photobiology A: Chemistry 2011, 217 (1) , 100-107. https://doi.org/10.1016/j.jphotochem.2010.09.025
    75. Scott J. Burya, Daniel A. Lutterman, Claudia Turro. Absence of quenching by [Fe(CN)6]4− is not proof of DNA intercalation. Chemical Communications 2011, 47 (6) , 1848. https://doi.org/10.1039/c0cc04973e
    76. Paul I. P. Elliott. Photophysical properties of metal complexes. Annual Reports Section "A" (Inorganic Chemistry) 2011, 107 , 399. https://doi.org/10.1039/c1ic90012a

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2010, 132, 16, 5594–5595
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja101703w
    Published April 5, 2010
    Copyright © 2010 American Chemical Society

    Article Views

    2895

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.