ACS Publications. Most Trusted. Most Cited. Most Read
Metallacarboranes: Toward Promising Hydrogen Storage Metal Organic Frameworks
My Activity

Figure 1Loading Img
    Article

    Metallacarboranes: Toward Promising Hydrogen Storage Metal Organic Frameworks
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Mechanical Engineering and Materials Science, Department of Chemistry, and The Richard E. Smalley Institute for Nanoscale Science and Technology, Rice University, Houston, Texas 77005, and Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
    †Rice University.
    ‡Indian Institute of Science.
    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2010, 132, 40, 14126–14129
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja104544s
    Published September 22, 2010
    Copyright © 2010 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Using first principles calculations, we show the high hydrogen storage capacity of metallacarboranes, where the transition metal (TM) atoms can bind up to 5 H2-molecules. The average binding energy of ∼0.3 eV/H favorably lies within the reversible adsorption range. Among the first row TM atoms, Sc and Ti are found to be the optimum in maximizing the H2 storage (∼8 wt %) on the metallacarborane cluster. Being an integral part of the cage, TMs do not suffer from the aggregation problem, which has been the biggest hurdle for the success of TM-decorated graphitic materials for hydrogen storage. Furthermore, the presence of carbon atom in the cages permits linking the metallacarboranes to form metal organic frameworks, which are thus able to adsorb hydrogen via Kubas interaction, in addition to van der Waals physisorption.

    Copyright © 2010 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Energies and Cartesian coordinates of all the optimized geometries discussed. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 54 publications.

    1. Pravas Kumar Panigrahi, Basavaiah Chandu, Mallikarjuna Rao Motapothula, Nagaprasad Puvvada. Potential Benefits, Challenges and Perspectives of Various Methods and Materials Used for Hydrogen Storage. Energy & Fuels 2024, 38 (4) , 2630-2653. https://doi.org/10.1021/acs.energyfuels.3c04084
    2. Khaleel I. Assaf, Barbara Begaj, Angelina Frank, Mohamed Nilam, Ali S. Mougharbel, Ulrich Kortz, Jan Nekvinda, Bohumír Grüner, Detlef Gabel, Werner M. Nau. High-Affinity Binding of Metallacarborane Cobalt Bis(dicarbollide) Anions to Cyclodextrins and Application to Membrane Translocation. The Journal of Organic Chemistry 2019, 84 (18) , 11790-11798. https://doi.org/10.1021/acs.joc.9b01688
    3. Qianku Hu, Dandan Sun, Qinghua Wu, Haiyan Wang, Libo Wang, Baozhong Liu, Aiguo Zhou, and Julong He . MXene: A New Family of Promising Hydrogen Storage Medium. The Journal of Physical Chemistry A 2013, 117 (51) , 14253-14260. https://doi.org/10.1021/jp409585v
    4. K. Srinivasu and Swapan K. Ghosh . Transition Metal Decorated Porphyrin-like Porous Fullerene: Promising Materials for Molecular Hydrogen Adsorption. The Journal of Physical Chemistry C 2012, 116 (48) , 25184-25189. https://doi.org/10.1021/jp3047517
    5. Ho Jun Hwang, Yongkyung Kwon, and Hoonkyung Lee . Thermodynamically Stable Calcium-Decorated Graphyne as a Hydrogen Storage Medium. The Journal of Physical Chemistry C 2012, 116 (38) , 20220-20224. https://doi.org/10.1021/jp306222v
    6. Claire V. J. Skipper, David M. Antonelli, and Nikolas Kaltsoyannis . Are Metal–Metal Interactions Involved in the Rising Enthalpies Observed in The Kubas Binding of H2 to Hydrazine-Linked Hydrogen Storage Materials?. The Journal of Physical Chemistry C 2012, 116 (36) , 19134-19144. https://doi.org/10.1021/jp3051643
    7. K. Srinivasu and Swapan K. Ghosh . Graphyne and Graphdiyne: Promising Materials for Nanoelectronics and Energy Storage Applications. The Journal of Physical Chemistry C 2012, 116 (9) , 5951-5956. https://doi.org/10.1021/jp212181h
    8. Tingting Zhang, Liyan Zhu, Zhi Tian, and Jinlan Wang . Structural, Electronic, and Magnetic Properties of Neutral and Charged Transition Metal–Bis(dicarbollide) Sandwich Clusters. The Journal of Physical Chemistry C 2011, 115 (30) , 14542-14547. https://doi.org/10.1021/jp202531c
    9. Pavel B. Sorokin, Hoonkyung Lee, Lyubov Yu. Antipina, Abhishek K. Singh, and Boris I. Yakobson . Calcium-Decorated Carbyne Networks as Hydrogen Storage Media. Nano Letters 2011, 11 (7) , 2660-2665. https://doi.org/10.1021/nl200721v
    10. A. Reyhani, S. Z. Mortazavi, S. Mirershadi, A. Z. Moshfegh, P. Parvin, and A. Nozad Golikand . Hydrogen Storage in Decorated Multiwalled Carbon Nanotubes by Ca, Co, Fe, Ni, and Pd Nanoparticles under Ambient Conditions. The Journal of Physical Chemistry C 2011, 115 (14) , 6994-7001. https://doi.org/10.1021/jp108797p
    11. K. Srinivasu and Swapan K. Ghosh . An ab Initio Investigation of Hydrogen Adsorption in Li-Doped closo-Boranes. The Journal of Physical Chemistry C 2011, 115 (5) , 1450-1456. https://doi.org/10.1021/jp1076092
    12. Mrinal Kanti Dash, Santanab Giri, Gourisankar Roymahapatra. Isomeric Thiadiazole-xLi+(x = 1, 2) templates found to be efficient in search of potential H2 storage systems; a computational study. Computational and Theoretical Chemistry 2023, 1230 , 114362. https://doi.org/10.1016/j.comptc.2023.114362
    13. Nadeem Hussain Solangi, Rama Rao Karri, Nabisab Mujawar Mubarak, Shaukat Ali Mazari, Abul Kalam Azad. Emerging 2D MXenes as next-generation materials for energy storage applications. Journal of Energy Storage 2023, 70 , 108004. https://doi.org/10.1016/j.est.2023.108004
    14. Soon Hyeong So, Sungwoo Lee, Jungho Mun, Junsuk Rho, Chong Rae Park. What induces the dense storage of hydrogen of liquid- or solid-like density levels in carbon nanopores with sub-1 nm diameters?. Carbon 2023, 204 , 594-600. https://doi.org/10.1016/j.carbon.2022.12.057
    15. Chunfei Wang, Wenjing Wang, Jingyun Tan, Xuanjun Zhang, Daqiang Yuan, Hong-Cai Zhou. Coordination-based molecular nanomaterials for biomedically relevant applications. Coordination Chemistry Reviews 2021, 438 , 213752. https://doi.org/10.1016/j.ccr.2020.213752
    16. Pradip Kumar, Shiv Singh, S.A.R. Hashmi, Ki-Hyun Kim. MXenes: Emerging 2D materials for hydrogen storage. Nano Energy 2021, 85 , 105989. https://doi.org/10.1016/j.nanoen.2021.105989
    17. Akari Narayama Sosa, Francisco de Santiago, Álvaro Miranda, Alejandro Trejo, Fernando Salazar, Luis Antonio Pérez, Miguel Cruz-Irisson. Alkali and transition metal atom-functionalized germanene for hydrogen storage: A DFT investigation. International Journal of Hydrogen Energy 2021, 46 (38) , 20245-20256. https://doi.org/10.1016/j.ijhydene.2020.04.129
    18. Aditya Kumar, Nidhi Vyas, Animesh K. Ojha. Hydrogen storage in magnesium decorated boron clusters (Mg2Bn, n = 4–14): A density functional theory study. International Journal of Hydrogen Energy 2020, 45 (23) , 12961-12971. https://doi.org/10.1016/j.ijhydene.2020.03.018
    19. Guang Wu, Jin Li, Chao Tang, Tao Ouyang, Chaoyu He, Chunxiao Zhang, Jianxin Zhong. A comparative investigation of metal (Li, Ca and Sc)-decorated 6,6,12-graphyne monolayers and 6,6,12-graphyne nanotubes for hydrogen storage. Applied Surface Science 2019, 498 , 143763. https://doi.org/10.1016/j.apsusc.2019.143763
    20. Ana B. Buades, Victor S. Arderiu, Lindley Maxwell, Martín Amoza, Duane Choquesillo-Lazarte, Núria Aliaga-Alcalde, Clara Viñas, Francesc Teixidor, Eliseo Ruiz. Slow-spin relaxation of a low-spin S = 1/2 Fe III carborane complex. Chemical Communications 2019, 55 (26) , 3825-3828. https://doi.org/10.1039/C9CC01123D
    21. Shakti S. Ray, Smruti R. Sahoo, Sridhar Sahu. Hydrogen storage in scandium doped small boron clusters (BnSc2, n=3–10): A density functional study. International Journal of Hydrogen Energy 2019, 44 (12) , 6019-6030. https://doi.org/10.1016/j.ijhydene.2018.12.109
    22. Wei Ye, Qianqian Chi, Han Zhou, Peng Gao. Ball-milling preparation of titanium/graphene composites and its enhanced hydrogen storage ability. International Journal of Hydrogen Energy 2018, 43 (41) , 19164-19173. https://doi.org/10.1016/j.ijhydene.2018.08.166
    23. Rupak Kishor, Sohan Bir Singh, Aloke Kumar Ghoshal. Role of metal type on mesoporous KIT-6 for hydrogen storage. International Journal of Hydrogen Energy 2018, 43 (22) , 10376-10385. https://doi.org/10.1016/j.ijhydene.2018.04.107
    24. M. Yu. Arsentev, A. V. Petrov, A. B. Missyul, M. Hammouri. Exfoliation, point defects and hydrogen storage properties of monolayer TiS 3 : an ab initio study. RSC Advances 2018, 8 (46) , 26169-26179. https://doi.org/10.1039/C8RA04417A
    25. Feng Mei, Xinguo Ma, Yeguang Bie, Guowang Xu. Probing hydrogen adsorption behaviors of Ti- and Ni-decorated carbon nanotube by density functional theory. Journal of Theoretical and Computational Chemistry 2017, 16 (07) , 1750065. https://doi.org/10.1142/S0219633617500651
    26. Ines Bennour, Matti Haukka, Francesc Teixidor, Clara Viñas, Ahlem Kabadou. Crystal structure and Hirshfeld surface analysis of [N(CH3)4][2,2′-Fe(1,7-closo-C2B9H11)2]. Journal of Organometallic Chemistry 2017, 846 , 74-80. https://doi.org/10.1016/j.jorganchem.2017.05.047
    27. A. Yadav, Alpa Dashora, N. Patel, A. Miotello, M. Press, D.C. Kothari. Study of 2D MXene Cr2C material for hydrogen storage using density functional theory. Applied Surface Science 2016, 389 , 88-95. https://doi.org/10.1016/j.apsusc.2016.07.083
    28. C. Morera-Boado, J.A. Reyes-Retana, M. Avila, H. Mikosch. First principle calculations of the adsorption of molecular H2 in Cu[Fe(CN)5NO] metal nitroprussides. An insight into H2–host interactions. Computational Materials Science 2016, 117 , 54-64. https://doi.org/10.1016/j.commatsci.2016.01.026
    29. Rafia Ahmad, Pankaj Lochan Bora, Abhishek Kumar Singh. “Capping” out oxygen interference: An approach to achieve efficient hydrogen storage via Kubas binding. International Journal of Hydrogen Energy 2016, 41 (14) , 5979-5985. https://doi.org/10.1016/j.ijhydene.2016.02.081
    30. C. Morera-Boado, J.A. Reyes-Retana, M. Avila, I. Zumeta, H. Mikosch, C. Rodríguez. First principle calculations on the adsorption of molecular H2 in the largest pore of Co[Fe(CN)5NO] and Ni[Fe(CN)5NO] metal nitroprussides. Effect of the charged cavities on the adsorption and H2-host interactions. Computational Materials Science 2016, 114 , 102-111. https://doi.org/10.1016/j.commatsci.2015.12.019
    31. Russell N. Grimes. Metallacarboranes of the Transition and Lanthanide Elements. 2016, 711-903. https://doi.org/10.1016/B978-0-12-801894-1.00013-5
    32. Russell N. Grimes. Carboranes in Other Applications. 2016, 985-1019. https://doi.org/10.1016/B978-0-12-801894-1.00017-2
    33. Srestha Basu, Anumita Paul, Arun Chattopadhyay. Zinc mediated crystalline assembly of gold nanoclusters for expedient hydrogen storage and sensing. Journal of Materials Chemistry A 2016, 4 (4) , 1218-1223. https://doi.org/10.1039/C5TA08452K
    34. Yangjian Quan, Cen Tang, Zuowei Xie. Palladium catalyzed regioselective B–C(sp) coupling via direct cage B–H activation: synthesis of B(4)-alkynylated o-carboranes. Chemical Science 2016, 7 (9) , 5838-5845. https://doi.org/10.1039/C6SC00901H
    35. Nurapati Pantha, Asim Khaniya, Narayan Prasad Adhikari. Hydrogen storage on palladium adsorbed graphene: A density functional theory study. International Journal of Modern Physics B 2015, 29 (20) , 1550143. https://doi.org/10.1142/S021797921550143X
    36. Pankaj Lochan Bora, Rafia Ahmad, Abhishek K. Singh. Remarkable enhancement in hydrogen storage on free-standing Ti 3 B and BC 3 supported Ti 3 clusters. International Journal of Hydrogen Energy 2015, 40 (2) , 1054-1061. https://doi.org/10.1016/j.ijhydene.2014.11.039
    37. Chokkapu Eswara Rao, K. Yuvaraj, Sundargopal Ghosh. Diruthenium analogues of Hexaborane(12) and Pentaborane(9): Synthesis and structural characterization of [(1,2-Cp*Ru)2B2H6S2] and [(2,3-Cp*Ru)2B3H6(μ-η1-EPh)], (E = S, Se and Te) (Cp* = η5-C5Me5). Journal of Organometallic Chemistry 2015, 776 , 123-128. https://doi.org/10.1016/j.jorganchem.2014.10.049
    38. Russell N. Grimes. Carboranes in the chemist's toolbox. Dalton Transactions 2015, 44 (13) , 5939-5956. https://doi.org/10.1039/C5DT00231A
    39. Alexandru Lupan, R. Bruce King. Computational Studies of Metallaboranes and Metallacarboranes. 2015, 49-95. https://doi.org/10.1007/978-3-319-22282-0_3
    40. Pei Ma, Tiffany M. Smith, Jon Zubieta, James T. Spencer. Synthesis of alkoxy derivatives of the 10-vertex manganadecaborane [nido-6-Mn(CO)3B9H13][NMe4]. Inorganic Chemistry Communications 2014, 46 , 223-225. https://doi.org/10.1016/j.inoche.2014.04.038
    41. Qianku Hu, Haiyan Wang, Qinghua Wu, Xiaotao Ye, Aiguo Zhou, Dandan Sun, Libo Wang, Baozhong Liu, Julong He. Two-dimensional Sc2C: A reversible and high-capacity hydrogen storage material predicted by first-principles calculations. International Journal of Hydrogen Energy 2014, 39 (20) , 10606-10612. https://doi.org/10.1016/j.ijhydene.2014.05.037
    42. Pankaj Lochan Bora, Abhishek K. Singh. Enhancing hydrogen storage capacity of pyridine-based metal organic framework. International Journal of Hydrogen Energy 2014, 39 (17) , 9293-9299. https://doi.org/10.1016/j.ijhydene.2014.04.060
    43. Li Xiang, Zuowei Xie. Conversion of (η5-C2B9H10R)TaX3 (X = Me, NMe2) to (η6-C2B9H10R)TaX′ (X′ = NMe2, azaallyl) in the absence of a reducing agent: synthesis and structure of tantallacarboranes incorporating an arachno-η6-C2B94− ligand. Chemical Communications 2014, 50 (60) , 8249. https://doi.org/10.1039/c4cc03981e
    44. Pankaj Lochan Bora, Abhishek K. Singh. New insights into designing metallacarborane based room temperature hydrogen storage media. The Journal of Chemical Physics 2013, 139 (16) https://doi.org/10.1063/1.4826594
    45. Daniel P. Hashim, Narayanan T. Narayanan, Jose M. Romo-Herrera, David A. Cullen, Myung Gwan Hahm, Peter Lezzi, Joseph R. Suttle, Doug Kelkhoff, E. Muñoz-Sandoval, Sabyasachi Ganguli, Ajit K. Roy, David J. Smith, Robert Vajtai, Bobby G. Sumpter, Vincent Meunier, Humberto Terrones, Mauricio Terrones, Pulickel M. Ajayan. Covalently bonded three-dimensional carbon nanotube solids via boron induced nanojunctions. Scientific Reports 2012, 2 (1) https://doi.org/10.1038/srep00363
    46. Abhishek Kumar Singh, Boris I. Yakobson. First principles calculations of H-storage in sorption materials. Journal of Materials Science 2012, 47 (21) , 7356-7366. https://doi.org/10.1007/s10853-012-6551-7
    47. Seul-Yi Lee, Soo-Jin Park. Comprehensive review on synthesis and adsorption behaviors of graphene-based materials. Carbon letters 2012, 13 (2) , 73-87. https://doi.org/10.5714/CL.2012.13.2.073
    48. Abbie Trewin. Analyzing the Surface Area Properties of Microporous Materials. 2012, 71-95. https://doi.org/10.1002/9783527645787.ch4
    49. Soo-Jin Park, Seul-Yi Lee. Adsorption Behaviors of Graphene and Graphene-related Materials. 2012, 435-467. https://doi.org/10.1016/B978-0-08-097744-7.00014-4
    50. Ali Reyhani, Seyedeh Zahra Mortazavi, Soghra Mirershadi, Ahmad Nozad Golikand, Alireaza Z. Moshfegh. H 2 adsorption mechanism in Mg modified multi-walled carbon nanotubes for hydrogen storage. International Journal of Hydrogen Energy 2012, 37 (2) , 1919-1926. https://doi.org/10.1016/j.ijhydene.2011.05.085
    51. Pau Farràs, Emilio J. Juárez-Pérez, Martin Lepšík, Rafael Luque, Rosario Núñez, Francesc Teixidor. Metallacarboranes and their interactions: theoretical insights and their applicability. Chemical Society Reviews 2012, 41 (9) , 3445. https://doi.org/10.1039/c2cs15338f
    52. K. Srinivasu, Swapan K. Ghosh, R. Das, S. Giri, P. K. Chattaraj. Theoretical investigation of hydrogen adsorption in all-metal aromatic clusters. RSC Advances 2012, 2 (7) , 2914. https://doi.org/10.1039/c2ra00643j
    53. V.J. Surya, K. Iyakutti, V. Prasanna Venkatesh, H. Mizuseki, Y. Kawazoe. First principles investigation on carbon nanostructures functionalized with borane: An analysis on their hydrogen storage capacity. Physica E: Low-dimensional Systems and Nanostructures 2011, 43 (8) , 1528-1534. https://doi.org/10.1016/j.physe.2011.05.003
    54. Julian Sculley, Daqiang Yuan, Hong-Cai Zhou. The current status of hydrogen storage in metal–organic frameworks—updated. Energy & Environmental Science 2011, 4 (8) , 2721. https://doi.org/10.1039/c1ee01240a

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2010, 132, 40, 14126–14129
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja104544s
    Published September 22, 2010
    Copyright © 2010 American Chemical Society

    Article Views

    3036

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.