ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

A Mechanistic Study of Electron Transfer from the Distal Termini of Electrode-Bound, Single-Stranded DNAs

View Author Information
Department of Chemistry and Biochemistry, Interdepartmental Program in Biomolecular Science and Engineering, University of California, Santa Barbara, California 93106, and Department of Chemistry and Biochemistry, The University of Texas, Austin, Texas 78712
†Present address: Biochemistry lab, Riken, Wako 351-0198, Japan.
‡Department of Chemistry and Biochemistry, University of California.
§Interdepartmental Program in Biomolecular Science and Engineering, University of California.
∥The University of Texas.
Cite this: J. Am. Chem. Soc. 2010, 132, 45, 16120–16126
Publication Date (Web):October 21, 2010
https://doi.org/10.1021/ja106345d
Copyright © 2010 American Chemical Society

    Article Views

    2238

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (486 KB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    Electrode-bound, redox-reporter-modified oligonucleotides play roles in the functioning of a number of electrochemical biosensors, and thus the question of electron transfer through or from such molecules has proven of significant interest. In response, we have experimentally characterized the rate with which electrons are transferred between a methylene blue moiety on the distal end of a short, single-stranded polythymine DNA to a monolayer-coated gold electrode to which the other end of the DNA is site-specifically attached. We find that this rate scales with oligonucleotide length to the −1.16 ± 0.09 power. This weak, approximately inverse length dependence differs dramatically from the much stronger dependencies observed for the rates of end-to-end collisions in single-stranded DNA and through-oligonucleotide electron hopping. It instead coincides with the expected length dependence of a reaction-limited process in which the overall rate is proportional to the equilibrium probability that the end of the oligonucleotide chain approaches the surface. Studies of the ionic strength and viscosity dependencies of electron transfer further support this “chain-flexibility” mechanism, and studies of the electron transfer rate of methylene blue attached to the hexanethiol monolayer suggest that heterogeneous electron transfer through the monolayer is rate limiting. Thus, under the circumstances we have employed, the flexibility (i.e., the equilibrium statistical properties) of the oligonucleotide chain defines the rate with which an attached redox reporter transfers electrons to an underlying electrode, an observation that may be of utility in the design of new biosensor architectures.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Description of the material included. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 52 publications.

    1. Erfan Rahbarimehr, Hoi Pui Chao, Zachary R. Churcher, Sladjana Slavkovic, Yunus A. Kaiyum, Philip E. Johnson, Philippe Dauphin-Ducharme. Finding the Lost Dissociation Constant of Electrochemical Aptamer-Based Biosensors. Analytical Chemistry 2023, 95 (4) , 2229-2237. https://doi.org/10.1021/acs.analchem.2c03566
    2. Ramya Vishnubhotla, Christopher B. Montgomery, Kristen L. Steffens, Steve Semancik. Conformational Changes of Immobilized Polythymine due to External Stressors Studied with Temperature-Controlled Electrochemical Microdevices. Langmuir 2021, 37 (8) , 2607-2618. https://doi.org/10.1021/acs.langmuir.0c03219
    3. Alex M. Downs, Julian Gerson, Kyle L. Ploense, Kevin W. Plaxco, Philippe Dauphin-Ducharme. Subsecond-Resolved Molecular Measurements Using Electrochemical Phase Interrogation of Aptamer-Based Sensors. Analytical Chemistry 2020, 92 (20) , 14063-14068. https://doi.org/10.1021/acs.analchem.0c03109
    4. Philippe Dauphin-Ducharme, Netzahualcóyotl Arroyo-Currás, Ramesh Adhikari, Jacob Somerson, Gabriel Ortega, Dmitrii E. Makarov, Kevin W. Plaxco. Chain Dynamics Limit Electron Transfer from Electrode-Bound, Single-Stranded Oligonucleotides. The Journal of Physical Chemistry C 2018, 122 (37) , 21441-21448. https://doi.org/10.1021/acs.jpcc.8b06111
    5. Subramaniam Somasundaram, Mark D. Holtan, Christopher J. Easley. Understanding Signal and Background in a Thermally Resolved, Single-Branched DNA Assay Using Square Wave Voltammetry. Analytical Chemistry 2018, 90 (5) , 3584-3591. https://doi.org/10.1021/acs.analchem.8b00036
    6. Hui Li, Philippe Dauphin-Ducharme, Gabriel Ortega, and Kevin W. Plaxco . Calibration-Free Electrochemical Biosensors Supporting Accurate Molecular Measurements Directly in Undiluted Whole Blood. Journal of the American Chemical Society 2017, 139 (32) , 11207-11213. https://doi.org/10.1021/jacs.7b05412
    7. Philippe Dauphin-Ducharme, Netzahualcóyotl Arroyo-Currás, Martin Kurnik, Gabriel Ortega, Hui Li, and Kevin W. Plaxco . Simulation-Based Approach to Determining Electron Transfer Rates Using Square-Wave Voltammetry. Langmuir 2017, 33 (18) , 4407-4413. https://doi.org/10.1021/acs.langmuir.7b00359
    8. Isabel Álvarez-Martos and Elena E. Ferapontova . Electrochemical Label-Free Aptasensor for Specific Analysis of Dopamine in Serum in the Presence of Structurally Related Neurotransmitters. Analytical Chemistry 2016, 88 (7) , 3608-3616. https://doi.org/10.1021/acs.analchem.5b04207
    9. Chris H. Wohlgamuth, Marc A. McWilliams, Amir Mazaheripour, Anthony M. Burke, Kuo-Yao Lin, Linh Doan, Jason D. Slinker, and Alon A. Gorodetsky . Electrochemistry of DNA Monolayers Modified With a Perylenediimide Base Surrogate. The Journal of Physical Chemistry C 2014, 118 (50) , 29084-29090. https://doi.org/10.1021/jp5041508
    10. Chris H. Wohlgamuth, Marc A. McWilliams, and Jason D. Slinker . DNA as a Molecular Wire: Distance and Sequence Dependence. Analytical Chemistry 2013, 85 (18) , 8634-8640. https://doi.org/10.1021/ac401229q
    11. Kuan-Chun Huang and Ryan J. White . Random Walk on a Leash: A Simple Single-Molecule Diffusion Model for Surface-Tethered Redox Molecules with Flexible Linkers. Journal of the American Chemical Society 2013, 135 (34) , 12808-12817. https://doi.org/10.1021/ja4060788
    12. Xinhui Lou, Tao Zhao, Ran Liu, Jie Ma, and Yi Xiao . Self-Assembled DNA Monolayer Buffered Dynamic Ranges of Mercuric Electrochemical Sensor. Analytical Chemistry 2013, 85 (15) , 7574-7580. https://doi.org/10.1021/ac401680c
    13. Chris H. Wohlgamuth, Marc A. McWilliams, and Jason D. Slinker . Temperature Dependence of Electrochemical DNA Charge Transport: Influence of a Mismatch. Analytical Chemistry 2013, 85 (3) , 1462-1467. https://doi.org/10.1021/ac302508f
    14. Robert P. Johnson, James A. Richardson, Tom Brown, and Philip N. Bartlett . A Label-Free, Electrochemical SERS-Based Assay for Detection of DNA Hybridization and Discrimination of Mutations. Journal of the American Chemical Society 2012, 134 (34) , 14099-14107. https://doi.org/10.1021/ja304663t
    15. Jason M. Thomas, Banani Chakraborty, Dipankar Sen, and Hua-Zhong Yu . Analyte-Driven Switching of DNA Charge Transport: De Novo Creation of Electronic Sensors for an Early Lung Cancer Biomarker. Journal of the American Chemical Society 2012, 134 (33) , 13823-13833. https://doi.org/10.1021/ja305458u
    16. Na Lu, Hao Pei, Zhilei Ge, Chad R. Simmons, Hao Yan, and Chunhai Fan . Charge Transport within a Three-Dimensional DNA Nanostructure Framework. Journal of the American Chemical Society 2012, 134 (32) , 13148-13151. https://doi.org/10.1021/ja302447r
    17. Herschel M. Watkins, Alexis Vallée-Bélisle, Francesco Ricci, Dmitrii E. Makarov, and Kevin W. Plaxco . Entropic and Electrostatic Effects on the Folding Free Energy of a Surface-Attached Biomolecule: An Experimental and Theoretical Study. Journal of the American Chemical Society 2012, 134 (4) , 2120-2126. https://doi.org/10.1021/ja208436p
    18. Nicholas M. Adams, Stephen R. Jackson, Frederick R. Haselton, and David W. Wright . Design, Synthesis, and Characterization of Nucleic-Acid-Functionalized Gold Surfaces for Biomarker Detection. Langmuir 2012, 28 (2) , 1068-1082. https://doi.org/10.1021/la2028862
    19. Michelle C. Benson, Rose E. Ruther, James B. Gerken, Matthew L. Rigsby, Lee M. Bishop, Yizheng Tan, Shannon S. Stahl, and Robert J. Hamers . Modular “Click” Chemistry for Electrochemically and Photoelectrochemically Active Molecular Interfaces to Tin Oxide Surfaces. ACS Applied Materials & Interfaces 2011, 3 (8) , 3110-3119. https://doi.org/10.1021/am200615r
    20. Ping Yu, Heng Zhou, Hanjun Cheng, Qin Qian, and Lanqun Mao . Rational Design and One-Step Formation of Multifunctional Gel Transducer for Simple Fabrication of Integrated Electrochemical Biosensors. Analytical Chemistry 2011, 83 (14) , 5715-5720. https://doi.org/10.1021/ac200942a
    21. Nicolas Fontaine, Philippe Dauphin-Ducharme. Confounding effects on the response of electrochemical aptamer-based biosensors. Current Opinion in Electrochemistry 2023, 41 , 101361. https://doi.org/10.1016/j.coelec.2023.101361
    22. Kon Son, Takanori Uzawa, Yoshihiro Ito, Tod Kippin, Kevin W. Plaxco, Toshinori Fujie. Survey of oligoethylene glycol-based self-assembled monolayers on electrochemical aptamer-based sensor in biological fluids. Biochemical and Biophysical Research Communications 2023, 668 , 1-7. https://doi.org/10.1016/j.bbrc.2023.05.032
    23. Zhiyong Zheng, Soo Hyeon Kim, Arnaud Chovin, Nicolas Clement, Christophe Demaille. Electrochemical response of surface-attached redox DNA governed by low activation energy electron transfer kinetics. Chemical Science 2023, 14 (13) , 3652-3660. https://doi.org/10.1039/D3SC00320E
    24. Xiaoqian Wei, Shanlin Wang, Yujuan Zhan, Tianhan Kai, Ping Ding. Sensitive Identification of Microcystin-LR via a Reagent-Free and Reusable Electrochemical Biosensor Using a Methylene Blue-Labeled Aptamer. Biosensors 2022, 12 (8) , 556. https://doi.org/10.3390/bios12080556
    25. Israel Belmonte, Ryan J. White. 3-D printed microfluidics for rapid prototyping and testing of electrochemical, aptamer-based sensor devices under flow conditions. Analytica Chimica Acta 2022, 1192 , 339377. https://doi.org/10.1016/j.aca.2021.339377
    26. Jagotamoy Das, Surath Gomis, Jenise B. Chen, Hanie Yousefi, Sharif Ahmed, Alam Mahmud, Wendi Zhou, Edward H. Sargent, Shana O. Kelley. Reagentless biomolecular analysis using a molecular pendulum. Nature Chemistry 2021, 13 (5) , 428-434. https://doi.org/10.1038/s41557-021-00644-y
    27. Alireza Abi, Afsaneh Safavi. Determination of the binding site size of hexaammineruthenium( iii ) inside monolayers of DNA on gold. The Analyst 2021, 146 (2) , 547-557. https://doi.org/10.1039/D0AN01685C
    28. Sarah A. Goodchild, Rachel Gao, Daniel P. Shenton, Alastair J. S. McIntosh, Tom Brown, Philip N. Bartlett. Direct Detection and Discrimination of Nucleotide Polymorphisms Using Anthraquinone Labeled DNA Probes. Frontiers in Chemistry 2020, 8 https://doi.org/10.3389/fchem.2020.00381
    29. Yu Chen, Lina Sun, Xinrui Qiao, Yuanfu Zhang, Yan Li, Fen Ma. Signal-off/on electrogenerated chemiluminescence deoxyribosensors for assay of early lung cancer biomarker (NAP2) based on target-caused DNA charge transfer. Analytica Chimica Acta 2020, 1103 , 67-74. https://doi.org/10.1016/j.aca.2019.12.049
    30. An Chen Fu, Yue Hu, Zi-Han Zhao, Ruilin Su, Yilin Song, Dong Zhu. Functionalized paper microzone plate for colorimetry and up-conversion fluorescence dual-mode detection of telomerase based on elongation and capturing amplification. Sensors and Actuators B: Chemical 2018, 259 , 642-649. https://doi.org/10.1016/j.snb.2017.12.124
    31. Jessica Daniel, Lisa Fetter, Susan Jett, Teisha J. Rowland, Andrew J. Bonham. Electrochemical Aptamer Scaffold Biosensors for Detection of Botulism and Ricin Proteins. 2017, 9-23. https://doi.org/10.1007/978-1-4939-6958-6_2
    32. Fengqin Li, Yanmei Xu, Xiang Yu, Zhigang Yu, Hongrui Ji, Yongbin Song, Hong Yan, Guiling Zhang. Effect of the duplex length on the sensing performance of a displacement-based electrochemical nucleic acid sensor with an adjustable point mutation discrimination function. Sensors and Actuators B: Chemical 2016, 234 , 648-657. https://doi.org/10.1016/j.snb.2016.05.025
    33. Lingyan Feng, Zhaozi Lyu, Andreas Offenhäusser, Dirk Mayer. Electrochemically triggered aptamer immobilization via click reaction for vascular endothelial growth factor detection. Engineering in Life Sciences 2016, 16 (6) , 550-559. https://doi.org/10.1002/elsc.201600068
    34. Lauren R. Schoukroun-Barnes, Florika C. Macazo, Brenda Gutierrez, Justine Lottermoser, Juan Liu, Ryan J. White. Reagentless, Structure-Switching, Electrochemical Aptamer-Based Sensors. Annual Review of Analytical Chemistry 2016, 9 (1) , 163-181. https://doi.org/10.1146/annurev-anchem-071015-041446
    35. Anne-Marie Dallaire, Sergiy Patskovsky, Alexis Vallée-Bélisle, Michel Meunier. Electrochemical plasmonic sensing system for highly selective multiplexed detection of biomolecules based on redox nanoswitches. Biosensors and Bioelectronics 2015, 71 , 75-81. https://doi.org/10.1016/j.bios.2015.04.011
    36. Lauren Schoukroun-Barnes, Ryan White. Rationally Designing Aptamer Sequences with Reduced Affinity for Controlled Sensor Performance. Sensors 2015, 15 (4) , 7754-7767. https://doi.org/10.3390/s150407754
    37. Lisa Fetter, Jonathan Richards, Jessica Daniel, Laura Roon, Teisha J. Rowland, Andrew J. Bonham. Electrochemical aptamer scaffold biosensors for detection of botulism and ricin toxins. Chemical Communications 2015, 51 (82) , 15137-15140. https://doi.org/10.1039/C5CC05933J
    38. Allen H. J. Yang, Kuangwen Hsieh, Adriana S. Patterson, B. Scott Ferguson, Michael Eisenstein, Kevin W. Plaxco, H. Tom Soh. Accurate Zygote-Specific Discrimination of Single-Nucleotide Polymorphisms Using Microfluidic Electrochemical DNA Melting Curves. Angewandte Chemie 2014, 126 (12) , 3227-3231. https://doi.org/10.1002/ange.201310059
    39. Allen H. J. Yang, Kuangwen Hsieh, Adriana S. Patterson, B. Scott Ferguson, Michael Eisenstein, Kevin W. Plaxco, H. Tom Soh. Accurate Zygote-Specific Discrimination of Single-Nucleotide Polymorphisms Using Microfluidic Electrochemical DNA Melting Curves. Angewandte Chemie International Edition 2014, 53 (12) , 3163-3167. https://doi.org/10.1002/anie.201310059
    40. Brian Scott Ferguson, David A. Hoggarth, Dan Maliniak, Kyle Ploense, Ryan J. White, Nick Woodward, Kuangwen Hsieh, Andrew J. Bonham, Michael Eisenstein, Tod E. Kippin, Kevin W. Plaxco, Hyongsok Tom Soh. Real-Time, Aptamer-Based Tracking of Circulating Therapeutic Agents in Living Animals. Science Translational Medicine 2013, 5 (213) https://doi.org/10.1126/scitranslmed.3007095
    41. Toshihiro Kondo, Ryo Yamada, Kohei Uosaki. Self‐Assembled Monolayer (SAM). 2013, 7-42. https://doi.org/10.1002/9783527654666.ch2
    42. Dmitrii E. Makarov. Interplay of non-Markov and internal friction effects in the barrier crossing kinetics of biopolymers: Insights from an analytically solvable model. The Journal of Chemical Physics 2013, 138 (1) https://doi.org/10.1063/1.4773283
    43. Andrew J. Bonham, Nicole G. Paden, Francesco Ricci, Kevin W. Plaxco. Detection of IP-10 protein marker in undiluted blood serum via an electrochemical E-DNA scaffold sensor. The Analyst 2013, 138 (19) , 5580. https://doi.org/10.1039/c3an01079a
    44. Ulrich Rant. Sensing with electro-switchable biosurfaces. Bioanalytical Reviews 2012, 4 (2-4) , 97-114. https://doi.org/10.1007/s12566-012-0030-0
    45. Bingling Li, Andrew D. Ellington*. Electrochemical Techniques as Powerful Readout Methods for Aptamer-based Biosensors. 2012, 211-241. https://doi.org/10.1039/9781849734936-00211
    46. Lingyan Feng, Bailu Xu, Jinsong Ren, Chuanqi Zhao, Xiaogang Qu. A human telomeric DNA-based chiral biosensor. Chemical Communications 2012, 48 (72) , 9068. https://doi.org/10.1039/c2cc34776h
    47. Alessandro Bosco, Fouzia Bano, Pietro Parisse, Loredana Casalis, Antonio DeSimone, Cristian Micheletti. Hybridization in nanostructured DNA monolayers probed by AFM: theory versus experiment. Nanoscale 2012, 4 (5) , 1734. https://doi.org/10.1039/c2nr11662f
    48. Kuangwen Hsieh, Ryan J. White, Brian S. Ferguson, Kevin W. Plaxco, Yi Xiao, H. Tom Soh. Polarity-Switching Electrochemical Sensor for Specific Detection of Single-Nucleotide Mismatches. Angewandte Chemie 2011, 123 (47) , 11372-11376. https://doi.org/10.1002/ange.201103482
    49. Kuangwen Hsieh, Ryan J. White, Brian S. Ferguson, Kevin W. Plaxco, Yi Xiao, H. Tom Soh. Polarity-Switching Electrochemical Sensor for Specific Detection of Single-Nucleotide Mismatches. Angewandte Chemie International Edition 2011, 50 (47) , 11176-11180. https://doi.org/10.1002/anie.201103482
    50. Pengcheng Huang, Junjie Mao, Lifen Yang, Ping Yu, Lanqun Mao. Bioelectrochemically Active Infinite Coordination Polymer Nanoparticles: One-Pot Synthesis and Biosensing Property. Chemistry - A European Journal 2011, 17 (41) , 11390-11393. https://doi.org/10.1002/chem.201101634
    51. Aaron A. Rowe, Andrew J. Bonham, Ryan J. White, Michael P. Zimmer, Ramsin J. Yadgar, Tony M. Hobza, Jim W. Honea, Ilan Ben-Yaacov, Kevin W. Plaxco, . CheapStat: An Open-Source, “Do-It-Yourself” Potentiostat for Analytical and Educational Applications. PLoS ONE 2011, 6 (9) , e23783. https://doi.org/10.1371/journal.pone.0023783
    52. David Loakes. Nucleotides and nucleic acids; oligo- and polynucleotides. , 169-250. https://doi.org/10.1039/9781849734875-00169

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect