ACS Publications. Most Trusted. Most Cited. Most Read
Direct C−H Arylation of Electron-Deficient Heterocycles with Arylboronic Acids
My Activity

Figure 1Loading Img
    Communication

    Direct C−H Arylation of Electron-Deficient Heterocycles with Arylboronic Acids
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry and Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
    Other Access OptionsSupporting Information (2)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2010, 132, 38, 13194–13196
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja1066459
    Published September 2, 2010
    Copyright © 2010 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    A direct arylation of a variety of electron-deficient heterocycles with arylboronic acids has been developed. This new reaction proceeds readily at room temperature using inexpensive reagents: catalytic silver(I) nitrate in the presence of persulfate co-oxidant. The scope with respect to heterocycle and boronic acid coupling partner is broad, and sensitive functional groups are tolerated. This method allows for rapid access to a variety of arylated heterocycles that would be more difficult to access with traditional methods.

    Copyright © 2010 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Detailed experimental procedures, copies of all spectral data, and full characterization. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 542 publications.

    1. Yingsibing Fan, Tan Zhang, Mengyun Wu, Ping Liu, Peipei Sun. Alkylthiolation of Aryl Halides under Electrochemical Conditions. The Journal of Organic Chemistry 2024, Article ASAP.
    2. Vinh T. Nguyen, R. Noah Sladek, Yihan Cao, Nattamai Bhuvanesh, Jia Zhou, Oleg V. Ozerov. C–H Activation of Pyridines by Boryl Pincer Complexes: Elucidation of Boryl-Directed C–H Oxidative Addition to Ir and Discovery of Transition Metal-Assisted Reductive Elimination from Boron at Rh. Journal of the American Chemical Society 2024, 146 (45) , 31281-31294. https://doi.org/10.1021/jacs.4c12143
    3. Daniel C. Schultz, Upendra Rathnayake, Renn A. Duncan, Alexa E. Richardson, Aaron M. Bender. Synthesis of the Dimeric Diarylheptanoids Alpinidinoid C and Officinine B Enabled by Blue-Light-Mediated Triple-Minisci-Type Alkylation. Organic Letters 2024, 26 (42) , 9028-9033. https://doi.org/10.1021/acs.orglett.4c03227
    4. SangHyun Lee, Jianyang D. Yu, Alex L. Monterde, Sarah E. Tung, Ya-Nong Wang, Brittany L. Gay, Kami L. Hull. Chemoselective Cu-Catalyzed Cross-Nucleophile Alkylarylation of Alkenes. ACS Catalysis 2024, 14 (18) , 14242-14250. https://doi.org/10.1021/acscatal.4c03955
    5. Raman Kumar, Anoop Sharma, Anuj Sharma. Mechanochemically Induced Thianthrenium Salts-Based Arylation of Diverse Heterocyclic Scaffolds. ACS Sustainable Chemistry & Engineering 2024, 12 (34) , 12808-12818. https://doi.org/10.1021/acssuschemeng.4c03163
    6. Serhii Holovach, Illia Poroshyn, Kostiantyn P. Melnykov, Oleksandr S. Liashuk, Olena O. Pariiska, Sergey V. Kolotilov, Alexander B. Rozhenko, Dmytro M. Volochnyuk, Oleksandr O. Grygorenko. Parallel Minisci Reaction of gem-Difluorocycloalkyl Building Blocks. ACS Organic & Inorganic Au 2024, 4 (4) , 424-431. https://doi.org/10.1021/acsorginorgau.4c00028
    7. Xingyu Lei, Yihan Wang, Shanshan Ma, Peng Jiao. Purple Light-Promoted Coupling of Bromopyridines with Grignard Reagents via SET. The Journal of Organic Chemistry 2024, 89 (10) , 7148-7155. https://doi.org/10.1021/acs.joc.4c00525
    8. Lusina Mantry, Parthasarathy Gandeepan. Visible-Light-Induced PhI(OAc)2-Mediated Alkylation of Heteroarenes with Simple Alkanes and Ethers. The Journal of Organic Chemistry 2024, 89 (9) , 6539-6544. https://doi.org/10.1021/acs.joc.4c00140
    9. Wan-Cong Liu, Xiang Zhang, Lin Chen, Rong Zeng, Yuan-Hang Tian, En-Dian Ma, Ya-Peng Wang, Bin Zhang, Jun-Long Li. Energy-Transfer-Enabled Radical Acylation Using Free Alkyl Boronic Acids through Photo and NHC Dual Catalysis. ACS Catalysis 2024, 14 (5) , 3181-3190. https://doi.org/10.1021/acscatal.3c06027
    10. Elisabetta Rosadoni, Elena Bombonato, Antonio Del Vecchio, Sara Guariento, Paolo Ronchi, Fabio Bellina. Direct Decarboxylative C-2 Alkylation of Azoles through Minisci-Type Coupling. The Journal of Organic Chemistry 2023, 88 (19) , 14236-14241. https://doi.org/10.1021/acs.joc.3c01625
    11. Celena M. Josephitis, Hillary M. H. Nguyen, Andrew McNally. Late-Stage C–H Functionalization of Azines. Chemical Reviews 2023, 123 (12) , 7655-7691. https://doi.org/10.1021/acs.chemrev.2c00881
    12. David Joram Mendoza, Meri Ayurini, Vikram Singh Raghuwanshi, George P. Simon, Joel F. Hooper, Gil Garnier. Synthesis of Superabsorbent Polyacrylic Acid-Grafted Cellulose Nanofibers via Silver-Promoted Decarboxylative Radical Polymerization. Macromolecules 2023, 56 (10) , 3497-3506. https://doi.org/10.1021/acs.macromol.3c00431
    13. Rahul Dev Mandal, Moumita Saha, Dwaipayan Das, Asish R. Das. Electrochemically Enabled C4–H and C3–H Functionalization of 2-Phenyl Quinazoline and Quinoxaline through Dehydrogenative C–H/C–H, C–H/P–H, and C–H/O–H Cross-Coupling. The Journal of Organic Chemistry 2023, 88 (9) , 6071-6095. https://doi.org/10.1021/acs.joc.3c00418
    14. Seyyedamirhossein Hosseini, Jordyn N. Janusz, Mayank Tanwar, Andrew D. Pendergast, Matthew Neurock, Henry S. White. Oxidation by Reduction: Efficient and Selective Oxidation of Alcohols by the Electrocatalytic Reduction of Peroxydisulfate. Journal of the American Chemical Society 2022, 144 (46) , 21103-21115. https://doi.org/10.1021/jacs.2c07305
    15. Souvik Guha, Tejas Prabakar, Subhabrata Sen. Blue Light-Emitting Diode-Induced Direct C–H Functionalization of 1,4-Quinones with Aryl and Alkyl Boronic Acids. The Journal of Organic Chemistry 2022, 87 (22) , 15421-15434. https://doi.org/10.1021/acs.joc.2c01972
    16. Votarikari Dinesh, Rajagopal Nagarajan. (NH4)2S2O8-Mediated Metal-Free Decarboxylative Formylation/Acylation of α-Oxo/Ketoacids and Its Application to the Synthesis of Indole Alkaloids. The Journal of Organic Chemistry 2022, 87 (15) , 10359-10365. https://doi.org/10.1021/acs.joc.2c00552
    17. Ewelina Kowalska, Angelika Artelska, Anna Albrecht. Visible Light-Driven Reductive Azaarylation of Coumarin-3-carboxylic Acids. The Journal of Organic Chemistry 2022, 87 (15) , 9645-9653. https://doi.org/10.1021/acs.joc.2c00683
    18. Cui-Lian Zeng, Hao Wang, Di Gao, Zhen Zhang, Dong Ji, Wei He, Cheng-Kou Liu, Zhao Yang, Zheng Fang, Kai Guo. CF3SO2Na-Mediated Visible-Light-Induced Cross-Dehydrogenative Coupling of Heteroarenes with Aliphatic C(sp3)–H Bonds. Organic Letters 2022, 24 (17) , 3244-3248. https://doi.org/10.1021/acs.orglett.2c01032
    19. Eunchan Jeong, Joon Heo, Seongho Jin, Dongwook Kim, Sukbok Chang. KOtBu-Catalyzed 1,2-Silaboration of N-Heteroarenes to Access 2-Silylheterocycles: A Cooperative Model for the Regioselectivity. ACS Catalysis 2022, 12 (9) , 4898-4905. https://doi.org/10.1021/acscatal.2c01126
    20. Shengjie Song, Xiangjun Shi, Yunsheng Zhu, Quanlei Ren, Peng Zhou, Jiadi Zhou, Jianjun Li. Electrochemical Oxidative C–H Arylation of Quinoxalin(on)es with Arylhydrazine Hydrochlorides under Mild Conditions. The Journal of Organic Chemistry 2022, 87 (7) , 4764-4776. https://doi.org/10.1021/acs.joc.2c00043
    21. Peng Dai, Yufei Li, Yu Chen, Jian Jiao, Qingqing Wang, Chenxiao Li, Yucheng Gu, Yanbin Zhang, Qing Xia, Wei-Hua Zhang. (Fluoromethylsulfonyl)methylation of Quinoxalinones Using NaSO2CH2F for C–F Bond Cleavage. Organic Letters 2022, 24 (6) , 1357-1361. https://doi.org/10.1021/acs.orglett.2c00048
    22. Natalie Holmberg-Douglas, David A. Nicewicz. Photoredox-Catalyzed C–H Functionalization Reactions. Chemical Reviews 2022, 122 (2) , 1925-2016. https://doi.org/10.1021/acs.chemrev.1c00311
    23. Hannah L. D. Hayes, Ran Wei, Michele Assante, Katherine J. Geogheghan, Na Jin, Simone Tomasi, Gary Noonan, Andrew G. Leach, Guy C. Lloyd-Jones. Protodeboronation of (Hetero)Arylboronic Esters: Direct versus Prehydrolytic Pathways and Self-/Auto-Catalysis. Journal of the American Chemical Society 2021, 143 (36) , 14814-14826. https://doi.org/10.1021/jacs.1c06863
    24. Prabhat Ranjan, Serena Pillitteri, Guglielmo Coppola, Monica Oliva, Erik V. Van der Eycken, Upendra K. Sharma. Unlocking the Accessibility of Alkyl Radicals from Boronic Acids through Solvent-Assisted Organophotoredox Activation. ACS Catalysis 2021, 11 (17) , 10862-10870. https://doi.org/10.1021/acscatal.1c02823
    25. Eduardo de Pedro Beato, Davide Spinnato, Wei Zhou, Paolo Melchiorre. A General Organocatalytic System for Electron Donor–Acceptor Complex Photoactivation and Its Use in Radical Processes. Journal of the American Chemical Society 2021, 143 (31) , 12304-12314. https://doi.org/10.1021/jacs.1c05607
    26. Jin Choi, Gabriele Laudadio, Edouard Godineau, Phil S. Baran. Practical and Regioselective Synthesis of C-4-Alkylated Pyridines. Journal of the American Chemical Society 2021, 143 (31) , 11927-11933. https://doi.org/10.1021/jacs.1c05278
    27. Balu D. Dherange, Patrick Q. Kelly, Jordan P. Liles, Matthew S. Sigman, Mark D. Levin. Carbon Atom Insertion into Pyrroles and Indoles Promoted by Chlorodiazirines. Journal of the American Chemical Society 2021, 143 (30) , 11337-11344. https://doi.org/10.1021/jacs.1c06287
    28. Carla Obradors, Benjamin List. Azine Activation via Silylium Catalysis. Journal of the American Chemical Society 2021, 143 (18) , 6817-6822. https://doi.org/10.1021/jacs.1c03257
    29. Le Yang, Zhihong Qiu, Jintao Wu, Jianyou Zhao, Tong Shen, Xuan Huang, Zhong-Quan Liu. Molecular Oxygen-Mediated Radical Alkylation of C(sp3)–H Bonds with Boronic Acids. Organic Letters 2021, 23 (8) , 3207-3210. https://doi.org/10.1021/acs.orglett.1c00948
    30. Fuyang Yue, Jianyang Dong, Yuxiu Liu, Qingmin Wang. Visible-Light-Mediated Alkenylation of Alkyl Boronic Acids without an External Lewis Base as an Activator. Organic Letters 2021, 23 (7) , 2477-2481. https://doi.org/10.1021/acs.orglett.1c00399
    31. Nikolaos Papaioannou, M. Jonathan Fray, Andreas Rennhack, Thomas J. Sanderson, Jamie E. Stokes. Regioselective Amidomethylation of 4-Chloro-3-fluoropyridine by Metalation and Minisci-Type Reactions. The Journal of Organic Chemistry 2020, 85 (19) , 12067-12079. https://doi.org/10.1021/acs.joc.0c01168
    32. Amitava Rakshit, Prashant Kumar, Tipu Alam, Hirendranath Dhara, Bhisma K. Patel. Visible-Light-Accelerated Pd-Catalyzed Cascade Addition/Cyclization of Arylboronic Acids to γ- and β-Ketodinitriles for the Construction of 3-Cyanopyridines and 3-Cyanopyrrole Analogues. The Journal of Organic Chemistry 2020, 85 (19) , 12482-12504. https://doi.org/10.1021/acs.joc.0c01703
    33. Patrick S. Fier, Suhong Kim, Ryan D. Cohen. A Multifunctional Reagent Designed for the Site-Selective Amination of Pyridines. Journal of the American Chemical Society 2020, 142 (19) , 8614-8618. https://doi.org/10.1021/jacs.0c03537
    34. Harrison A. Mills, Joshua L. Martin, Arnold L. Rheingold, Alexander M. Spokoyny. Oxidative Generation of Boron-Centered Radicals in Carboranes. Journal of the American Chemical Society 2020, 142 (10) , 4586-4591. https://doi.org/10.1021/jacs.0c00300
    35. Saibal Sar, Jyoti Chauhan, Subhabrata Sen. Generation of Aryl Radicals from Aryl Hydrazines via Catalytic Iodine in Air: Arylation of Substituted 1,4-Naphthoquinones. ACS Omega 2020, 5 (8) , 4213-4222. https://doi.org/10.1021/acsomega.9b04014
    36. Xiaoqing Li, Xiaoyu Yan, Zhi Wang, Xiaoxue He, Yuyu Dai, Xinhuan Yan, Deming Zhao, Xiangsheng Xu. Complementary Oxidative Generation of Iminyl Radicals from α-Imino-oxy Acids: Silver-Catalyzed C–H Cyanoalkylation of Heterocycles and Quinones. The Journal of Organic Chemistry 2020, 85 (4) , 2504-2511. https://doi.org/10.1021/acs.joc.9b03204
    37. He Huang, Zack M. Strater, Tristan H. Lambert. Electrophotocatalytic C–H Functionalization of Ethers with High Regioselectivity. Journal of the American Chemical Society 2020, 142 (4) , 1698-1703. https://doi.org/10.1021/jacs.9b11472
    38. Rakesh Kumar, Ritika Sharma, Rohit Kumar, Upendra Sharma. Cp*Rh(III)-Catalyzed Regioselective C(sp3)–H Methylation of 8-Methylquinolines with Organoborons. Organic Letters 2020, 22 (1) , 305-309. https://doi.org/10.1021/acs.orglett.9b04331
    39. Zhen Wang, Jianyang Dong, Yanan Hao, Yongqiang Li, Yuxiu Liu, Hongjian Song, Qingmin Wang. Photoredox-Mediated Minisci C–H Alkylation Reactions between N-Heteroarenes and Alkyl Iodides with Peroxyacetate as a Radical Relay Initiator. The Journal of Organic Chemistry 2019, 84 (24) , 16245-16253. https://doi.org/10.1021/acs.joc.9b02848
    40. Xiaojuan Li, Qiang Zhang, Weigang Zhang, Yi Wang, Yi Pan. Decarboxylative Alkylation of Heteroarenes Using N-Hydroxybenzimidoyl Chloride Esters. The Journal of Organic Chemistry 2019, 84 (21) , 14360-14368. https://doi.org/10.1021/acs.joc.9b02318
    41. Liuzhou Gao, Guoqiang Wang, Jia Cao, Hui Chen, Yuming Gu, Xueting Liu, Xu Cheng, Jing Ma, Shuhua Li. Lewis Acid-Catalyzed Selective Reductive Decarboxylative Pyridylation of N-Hydroxyphthalimide Esters: Synthesis of Congested Pyridine-Substituted Quaternary Carbons. ACS Catalysis 2019, 9 (11) , 10142-10151. https://doi.org/10.1021/acscatal.9b03798
    42. Wan-Fa Tian, Chun-Hong Hu, Ke-Han He, Xiao-Ya He, Yang Li. Visible-Light Photoredox-Catalyzed Decarboxylative Alkylation of Heteroarenes Using Carboxylic Acids with Hydrogen Release. Organic Letters 2019, 21 (17) , 6930-6935. https://doi.org/10.1021/acs.orglett.9b02539
    43. Chiranjit Sen, Tapan Sahoo, Harshvardhan Singh, Eringathodi Suresh, Subhash Chandra Ghosh. Visible Light-Promoted Photocatalytic C-5 Carboxylation of 8-Aminoquinoline Amides and Sulfonamides via a Single Electron Transfer Pathway. The Journal of Organic Chemistry 2019, 84 (16) , 9869-9896. https://doi.org/10.1021/acs.joc.9b00942
    44. Aloisio de A. Bartolomeu, Rodrigo C. Silva, Timothy J. Brocksom, Timothy Noël, Kleber T. de Oliveira. Photoarylation of Pyridines Using Aryldiazonium Salts and Visible Light: An EDA Approach. The Journal of Organic Chemistry 2019, 84 (16) , 10459-10471. https://doi.org/10.1021/acs.joc.9b01879
    45. Xuan Zhang, Andrew McNally. Cobalt-Catalyzed Alkylation of Drug-Like Molecules and Pharmaceuticals Using Heterocyclic Phosphonium Salts. ACS Catalysis 2019, 9 (6) , 4862-4866. https://doi.org/10.1021/acscatal.9b00851
    46. J. Quentin Buquoi, Jeremy M. Lear, Xin Gu, David A. Nagib. Heteroarene Phosphinylalkylation via a Catalytic, Polarity-Reversing Radical Cascade. ACS Catalysis 2019, 9 (6) , 5330-5335. https://doi.org/10.1021/acscatal.9b01580
    47. Yuhei Kumagai, Nanami Murakami, Futa Kamiyama, Ryo Tanaka, Tatsuhiko Yoshino, Masahiro Kojima, Shigeki Matsunaga. C–H γ,γ,γ-Trifluoroalkylation of Quinolines via Visible-Light-Induced Sequential Radical Additions. Organic Letters 2019, 21 (10) , 3600-3605. https://doi.org/10.1021/acs.orglett.9b01015
    48. Anna Tomberg, Magnus J. Johansson, Per-Ola Norrby. A Predictive Tool for Electrophilic Aromatic Substitutions Using Machine Learning. The Journal of Organic Chemistry 2019, 84 (8) , 4695-4703. https://doi.org/10.1021/acs.joc.8b02270
    49. Sadhanendu Samanta, Alakananda Hajra. Mn(II)-Catalyzed C–H Alkylation of Imidazopyridines and N-Heteroarenes via Decarbonylative and Cross-Dehydrogenative Coupling. The Journal of Organic Chemistry 2019, 84 (7) , 4363-4371. https://doi.org/10.1021/acs.joc.9b00366
    50. Spencer P. Pitre, Mikko Muuronen, Dmitry A. Fishman, Larry E. Overman. Tertiary Alcohols as Radical Precursors for the Introduction of Tertiary Substituents into Heteroarenes. ACS Catalysis 2019, 9 (4) , 3413-3418. https://doi.org/10.1021/acscatal.9b00405
    51. Joel M. Smith, Janice A. Dixon, Justine N. deGruyter, Phil S. Baran. Alkyl Sulfinates: Radical Precursors Enabling Drug Discovery. Journal of Medicinal Chemistry 2019, 62 (5) , 2256-2264. https://doi.org/10.1021/acs.jmedchem.8b01303
    52. Danqing Zheng, Armido Studer. Photoinitiated Three-Component α-Perfluoroalkyl-β-heteroarylation of Unactivated Alkenes via Electron Catalysis. Organic Letters 2019, 21 (1) , 325-329. https://doi.org/10.1021/acs.orglett.8b03849
    53. Anbo Ling, Lizhi Zhang, Ren Xiang Tan, Zhong-Quan Liu. Molecular Oxygen-Promoted General and Site-Specific Alkylation with Organoboronic Acid. The Journal of Organic Chemistry 2018, 83 (23) , 14489-14497. https://doi.org/10.1021/acs.joc.8b02277
    54. Daniel R. Sutherland, Marcos Veguillas, Conor L. Oates, Ai-Lan Lee. Metal-, Photocatalyst-, and Light-Free, Late-Stage C–H Alkylation of Heteroarenes and 1,4-Quinones Using Carboxylic Acids. Organic Letters 2018, 20 (21) , 6863-6867. https://doi.org/10.1021/acs.orglett.8b02988
    55. Ritika Sharma, Rakesh Kumar, Rohit Kumar, Pooja Upadhyay, Dinkar Sahal, Upendra Sharma. Rh(III)-Catalyzed C(8)–H Functionalization of Quinolines via Simultaneous C–C and C–O Bond Formation: Direct Synthesis of Quinoline Derivatives with Antiplasmodial Potential. The Journal of Organic Chemistry 2018, 83 (20) , 12702-12710. https://doi.org/10.1021/acs.joc.8b02042
    56. Xiangyuan Liu, Yang Liu, Guobi Chai, Baokun Qiao, Xiaowei Zhao, Zhiyong Jiang. Organocatalytic Enantioselective Addition of α-Aminoalkyl Radicals to Isoquinolines. Organic Letters 2018, 20 (19) , 6298-6301. https://doi.org/10.1021/acs.orglett.8b02791
    57. Susmita Mondal, Alakananda Hajra. Metal-Free C-5 Hydroxylation of 8-Aminoquinoline Amide. The Journal of Organic Chemistry 2018, 83 (18) , 11392-11398. https://doi.org/10.1021/acs.joc.8b01635
    58. Hiroyuki Kitano, Jae-Hoon Choi, Ayaka Ueda, Hideto Ito, Shinya Hagihara, Toshiyuki Kan, Hirokazu Kawagishi, Kenichiro Itami. Discovery of Plant Growth Stimulants by C–H Arylation of 2-Azahypoxanthine. Organic Letters 2018, 20 (18) , 5684-5687. https://doi.org/10.1021/acs.orglett.8b02407
    59. Henry S. Rzepa, Sergey Arkhipenko, Emily Wan, Marco T. Sabatini, Valerija Karaluka, Andrew Whiting, Tom D. Sheppard. An Accessible Method for DFT Calculation of 11B NMR Shifts of Organoboron Compounds. The Journal of Organic Chemistry 2018, 83 (15) , 8020-8025. https://doi.org/10.1021/acs.joc.8b00859
    60. Xiao-Yu Zhang, Wei-Zhi Weng, Hao Liang, Hua Yang, Bo Zhang. Visible-Light-Initiated, Photocatalyst-Free Decarboxylative Coupling of Carboxylic Acids with N-Heterocycles. Organic Letters 2018, 20 (15) , 4686-4690. https://doi.org/10.1021/acs.orglett.8b02016
    61. Julien Genovino, Yajing Lian, Yuan Zhang, Taylor O. Hope, Antoine Juneau, Yohann Gagné, Gajendra Ingle, Mathieu Frenette. Metal-Free-Visible Light C–H Alkylation of Heteroaromatics via Hypervalent Iodine-Promoted Decarboxylation. Organic Letters 2018, 20 (11) , 3229-3232. https://doi.org/10.1021/acs.orglett.8b01085
    62. Sudip Mandal, Tishyasoumya Bera, Gurudutt Dubey, Jaideep Saha, Joydev K. Laha. Uses of K2S2O8 in Metal-Catalyzed and Metal-Free Oxidative Transformations. ACS Catalysis 2018, 8 (6) , 5085-5144. https://doi.org/10.1021/acscatal.8b00743
    63. Pankaj S. Mahajan, Santosh B. Mhaske. Silver-Mediated Oxidative Decarboxylative Intramolecular Asymmetric Radical Cyclization (Csp3–Csp2) via Memory of Chirality: Access to Circumdatin Alkaloids. Organic Letters 2018, 20 (7) , 2092-2095. https://doi.org/10.1021/acs.orglett.8b00652
    64. Eric D. Nacsa, David W. C. MacMillan. Spin-Center Shift-Enabled Direct Enantioselective α-Benzylation of Aldehydes with Alcohols. Journal of the American Chemical Society 2018, 140 (9) , 3322-3330. https://doi.org/10.1021/jacs.7b12768
    65. Andrei Nikolaev, Claude Y. Legault, Minhao Zhang, and Arturo Orellana . The Acid-Free Cyclopropanol-Minisci Reaction Reveals the Catalytic Role of Silver–Pyridine Complexes. Organic Letters 2018, 20 (3) , 796-799. https://doi.org/10.1021/acs.orglett.7b03938
    66. Lizhi Zhang and Zhong-Quan Liu . Molecular Oxygen-Mediated Minisci-Type Radical Alkylation of Heteroarenes with Boronic Acids. Organic Letters 2017, 19 (24) , 6594-6597. https://doi.org/10.1021/acs.orglett.7b03297
    67. Bingyu Liang, Qinglong Wang, and Zhong-Quan Liu . A Fe(III)/NaBH4-Promoted Free-Radical Hydroheteroarylation of Alkenes. Organic Letters 2017, 19 (24) , 6463-6465. https://doi.org/10.1021/acs.orglett.7b03313
    68. Wei-Chun Shih and Oleg V. Ozerov . Selective ortho C–H Activation of Pyridines Directed by Lewis Acidic Boron of PBP Pincer Iridium Complexes. Journal of the American Chemical Society 2017, 139 (48) , 17297-17300. https://doi.org/10.1021/jacs.7b10570
    69. Dmytro Ryzhakov, Maxime Jarret, Régis Guillot, Cyrille Kouklovsky, and Guillaume Vincent . Radical-Mediated Dearomatization of Indoles with Sulfinate Reagents for the Synthesis of Fluorinated Spirocyclic Indolines. Organic Letters 2017, 19 (23) , 6336-6339. https://doi.org/10.1021/acs.orglett.7b03155
    70. Jordan D. Galloway, Duy N. Mai, and Ryan D. Baxter . Silver-Catalyzed Minisci Reactions Using Selectfluor as a Mild Oxidant. Organic Letters 2017, 19 (21) , 5772-5775. https://doi.org/10.1021/acs.orglett.7b02706
    71. Paul A. Cox, Marc Reid, Andrew G. Leach, Andrew D. Campbell, Edward J. King, and Guy C. Lloyd-Jones . Base-Catalyzed Aryl-B(OH)2 Protodeboronation Revisited: From Concerted Proton Transfer to Liberation of a Transient Aryl Anion. Journal of the American Chemical Society 2017, 139 (37) , 13156-13165. https://doi.org/10.1021/jacs.7b07444
    72. Jin-Ling Dai, Nan-Qi Shao, Jin Zhang, Run-Ping Jia, and Dong-Hui Wang . Cu(II)-Catalyzed ortho-Selective Aminomethylation of Phenols. Journal of the American Chemical Society 2017, 139 (36) , 12390-12393. https://doi.org/10.1021/jacs.7b06785
    73. Álvaro Gutiérrez-Bonet, Camille Remeur, Jennifer K. Matsui, and Gary A. Molander . Late-Stage C–H Alkylation of Heterocycles and 1,4-Quinones via Oxidative Homolysis of 1,4-Dihydropyridines. Journal of the American Chemical Society 2017, 139 (35) , 12251-12258. https://doi.org/10.1021/jacs.7b05899
    74. Patrick S. Fier . A Bifunctional Reagent Designed for the Mild, Nucleophilic Functionalization of Pyridines. Journal of the American Chemical Society 2017, 139 (28) , 9499-9502. https://doi.org/10.1021/jacs.7b05414
    75. Kei Murakami, Shuya Yamada, Takeshi Kaneda, and Kenichiro Itami . C–H Functionalization of Azines. Chemical Reviews 2017, 117 (13) , 9302-9332. https://doi.org/10.1021/acs.chemrev.7b00021
    76. Jing Li, Xiaofei Zhang, Haoyue Xiang, Linjiang Tong, Fang Feng, Hua Xie, Jian Ding, and Chunhao Yang . C–H Trifluoromethylation of 2-Substituted/Unsubstituted Aminonaphthoquinones at Room Temperature with Bench-Stable (CF3SO2)2Zn: Synthesis and Antiproliferative Evaluation. The Journal of Organic Chemistry 2017, 82 (13) , 6795-6800. https://doi.org/10.1021/acs.joc.7b00940
    77. Wenbo Liu, Xiaobo Yang, Yang Gao, and Chao-Jun Li . Simple and Efficient Generation of Aryl Radicals from Aryl Triflates: Synthesis of Aryl Boronates and Aryl Iodides at Room Temperature. Journal of the American Chemical Society 2017, 139 (25) , 8621-8627. https://doi.org/10.1021/jacs.7b03538
    78. Allyson J. Boyington, Martin-Louis Y. Riu, and Nathan T. Jui . Anti-Markovnikov Hydroarylation of Unactivated Olefins via Pyridyl Radical Intermediates. Journal of the American Chemical Society 2017, 139 (19) , 6582-6585. https://doi.org/10.1021/jacs.7b03262
    79. Xiaoshen Ma, Hester Dang, John A. Rose, Paul Rablen, and Seth B. Herzon . Hydroheteroarylation of Unactivated Alkenes Using N-Methoxyheteroarenium Salts. Journal of the American Chemical Society 2017, 139 (16) , 5998-6007. https://doi.org/10.1021/jacs.7b02388
    80. Yang Zeng, Chunchun Zhang, Changzhen Yin, Maoshen Sun, Haiyan Fu, Xueli Zheng, Maolin Yuan, Ruixiang Li, and Hua Chen . Direct C–H Functionalization of Pyridine via a Transient Activator Strategy: Synthesis of 2,6-Diarylpyridines. Organic Letters 2017, 19 (8) , 1970-1973. https://doi.org/10.1021/acs.orglett.7b00498
    81. Guoqiang Wang, Jia Cao, Liuzhou Gao, Wenxin Chen, Wenhao Huang, Xu Cheng, and Shuhua Li . Metal-Free Synthesis of C-4 Substituted Pyridine Derivatives Using Pyridine-boryl Radicals via a Radical Addition/Coupling Mechanism: A Combined Computational and Experimental Study. Journal of the American Chemical Society 2017, 139 (10) , 3904-3910. https://doi.org/10.1021/jacs.7b00823
    82. Virendra Kumar Tiwari, Neha Kamal, and Manmohan Kapur . One Substrate, Two Modes of C–H Functionalization: A Metal-Controlled Site-Selectivity Switch in C–H Arylation Reactions. Organic Letters 2017, 19 (1) , 262-265. https://doi.org/10.1021/acs.orglett.6b03558
    83. Adam J. S. Johnston, Kenneth B. Ling, David Sale, Nathalie Lebrasseur, and Igor Larrosa . Direct ortho-Arylation of Pyridinecarboxylic Acids: Overcoming the Deactivating Effect of sp2-Nitrogen. Organic Letters 2016, 18 (23) , 6094-6097. https://doi.org/10.1021/acs.orglett.6b03085
    84. Wu Yang, Haojie Zhang, Liuxiao Li, Chun Meng Tam, Shiyu Feng, Ka Lai Wong, Wai Yan Lai, Sheung Hei Ng, Chen Chen, and Kin Shing Chan . Base-Promoted, Aerobic, and Regioselective Carbon–Hydrogen Bond Activation of Thiophene with Group 9 Metalloporphyrins. Organometallics 2016, 35 (19) , 3295-3300. https://doi.org/10.1021/acs.organomet.6b00490
    85. Ming Yan, Julian C. Lo, Jacob T. Edwards, and Phil S. Baran . Radicals: Reactive Intermediates with Translational Potential. Journal of the American Chemical Society 2016, 138 (39) , 12692-12714. https://doi.org/10.1021/jacs.6b08856
    86. Nathan A. Romero and David A. Nicewicz . Organic Photoredox Catalysis. Chemical Reviews 2016, 116 (17) , 10075-10166. https://doi.org/10.1021/acs.chemrev.6b00057
    87. Xiajun Wang, Yongqin He, Mengdan Ren, Shengkang Liu, He Liu, and Guosheng Huang . Pd-Catalyzed Ligand-Free Synthesis of Arylated Heteroaromatics by Coupling of N-Heteroaromatic Bromides with Iodobenzene Diacetate, Iodosobenzene, or Diphenyliodonium Salts. The Journal of Organic Chemistry 2016, 81 (17) , 7958-7962. https://doi.org/10.1021/acs.joc.6b01103
    88. Amandeep Arora and Jimmie D. Weaver . Photocatalytic Generation of 2-Azolyl Radicals: Intermediates for the Azolylation of Arenes and Heteroarenes via C–H Functionalization. Organic Letters 2016, 18 (16) , 3996-3999. https://doi.org/10.1021/acs.orglett.6b01718
    89. Andreas Hafner, Mark Meisenbach, and Joerg Sedelmeier . Flow Chemistry on Multigram Scale: Continuous Synthesis of Boronic Acids within 1 s. Organic Letters 2016, 18 (15) , 3630-3633. https://doi.org/10.1021/acs.orglett.6b01681
    90. Duy N. Mai and Ryan D. Baxter . Unprotected Amino Acids as Stable Radical Precursors for Heterocycle C–H Functionalization. Organic Letters 2016, 18 (15) , 3738-3741. https://doi.org/10.1021/acs.orglett.6b01754
    91. Xiaoshen Ma and Seth B. Herzon . Intermolecular Hydropyridylation of Unactivated Alkenes. Journal of the American Chemical Society 2016, 138 (28) , 8718-8721. https://doi.org/10.1021/jacs.6b05271
    92. John C. Tellis, Christopher B. Kelly, David N. Primer, Matthieu Jouffroy, Niki R. Patel, and Gary A. Molander . Single-Electron Transmetalation via Photoredox/Nickel Dual Catalysis: Unlocking a New Paradigm for sp3–sp2 Cross-Coupling. Accounts of Chemical Research 2016, 49 (7) , 1429-1439. https://doi.org/10.1021/acs.accounts.6b00214
    93. Aymeric P. Colleville, Richard A. J. Horan, Sandrine Olazabal, and Nicholas C. O. Tomkinson . C–H Arylation of Heterocyclic N-Oxides Through in Situ Diazotisation Of Anilines without Added Promoters: A Green And Selective Coupling Process. Organic Process Research & Development 2016, 20 (7) , 1283-1296. https://doi.org/10.1021/acs.oprd.6b00117
    94. Shuya Yamada, Kei Murakami, and Kenichiro Itami . Regiodivergent Cross-Dehydrogenative Coupling of Pyridines and Benzoxazoles: Discovery of Organic Halides as Regio-Switching Oxidants. Organic Letters 2016, 18 (10) , 2415-2418. https://doi.org/10.1021/acs.orglett.6b00932
    95. Radha M. Laha, Saikat Khamarui, Saikat K. Manna, and Dilip K. Maiti . In Situ Generated AgII-Catalyzed Selective Oxo-Esterification of Alkyne with Alcohol to α-Ketoester: Photophysical Study. Organic Letters 2016, 18 (1) , 144-147. https://doi.org/10.1021/acs.orglett.5b03484
    96. Ryan D. Baxter, Yong Liang, Xin Hong, Timothy A. Brown, Richard N. Zare, K. N. Houk, Phil S. Baran, and Donna G. Blackmond . Mechanistic Insights into Two-Phase Radical C–H Arylations. ACS Central Science 2015, 1 (8) , 456-462. https://doi.org/10.1021/acscentsci.5b00332
    97. Marvin M. Hansen, Robert A. Jolly, and Ryan J. Linder . Boronic Acids and Derivatives—Probing the Structure–Activity Relationships for Mutagenicity. Organic Process Research & Development 2015, 19 (11) , 1507-1516. https://doi.org/10.1021/acs.oprd.5b00150
    98. Yang Zheng, Yue He, Guangwei Rong, Xiaolu Zhang, Yuecheng Weng, Kuiyong Dong, Xinfang Xu, and Jincheng Mao . NaI-Mediated Acetamidosulphenylation of Alkenes with Nitriles as the Nucleophiles: A Direct Access to Acetamidosulfides. Organic Letters 2015, 17 (21) , 5444-5447. https://doi.org/10.1021/acs.orglett.5b02752
    99. Tomohiro Iwai and Masaya Sawamura . Transition-Metal-Catalyzed Site-Selective C–H Functionalization of Quinolines beyond C2 Selectivity. ACS Catalysis 2015, 5 (9) , 5031-5040. https://doi.org/10.1021/acscatal.5b01143
    100. Peng-Fei Zheng, Qin Ouyang, Sheng-Li Niu, Li Shuai, Yi Yuan, Kun Jiang, Tian-Yu Liu, and Ying-Chun Chen . Enantioselective [4 + 1] Annulation Reactions of α-Substituted Ammonium Ylides To Construct Spirocyclic Oxindoles. Journal of the American Chemical Society 2015, 137 (29) , 9390-9399. https://doi.org/10.1021/jacs.5b04792
    Load more citations

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2010, 132, 38, 13194–13196
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja1066459
    Published September 2, 2010
    Copyright © 2010 American Chemical Society

    Article Views

    38k

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.