ACS Publications. Most Trusted. Most Cited. Most Read
Multiscale Simulation Reveals Multiple Pathways for H2 and O2 Transport in a [NiFe]-Hydrogenase
My Activity

Figure 1Loading Img
    Article

    Multiscale Simulation Reveals Multiple Pathways for H2 and O2 Transport in a [NiFe]-Hydrogenase
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom
    Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2011, 133, 10, 3548–3556
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja109712q
    Published February 22, 2011
    Copyright © 2011 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Hydrogenases are enzymes that catalyze the reversible conversion of hydrogen molecules to protons and electrons. The mechanism by which the gas molecules reach the active site is important for understanding the function of the enzyme and may play a role in the selectivity for hydrogen over inhibitor molecules. Here, we develop a general multiscale molecular simulation approach for the calculation of diffusion rates and determination of pathways by which substrate or inhibitor gases can reach the protein active site. Combining kinetic data from both equilibrium simulations and enhanced sampling, we construct a master equation describing the movement of gas molecules within the enzyme. We find that the time-dependent gas population of the active site can be fit to the same phenomenological rate law used to interpret experiments, with corresponding diffusion rates in very good agreement with experimental data. However, in contrast to the conventional picture, in which the gases follow a well-defined hydrophobic tunnel, we find that there is a diverse network of accessible pathways by which the gas molecules can reach the active site. The previously identified tunnel accounts for only about 60% of the total flux. Our results suggest that the dramatic decrease in the diffusion rate for mutations involving the residue Val74 could be in part due to the narrowing of the passage Val74−Arg476, immediately adjacent to the binding site, explaining why mutations of Leu122 had only a negligible effect in experiment. Our method is not specific to the [NiFe]-hydrogenase and should be generally applicable to the transport of small molecules in proteins.

    Copyright © 2011 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Details of the MD simulation protocols and of the determination of CO poses, a graph showing the percentage of gas molecules inside the protein versus time, a table summarizing the number of CO poses for each mutant, and the full refs 13 and 14. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 68 publications.

    1. Farzin Sohraby, Jing-Yao Guo, Ariane Nunes-Alves. PathInHydro, a Set of Machine Learning Models to Identify Unbinding Pathways of Gas Molecules in [NiFe] Hydrogenases. Journal of Chemical Information and Modeling 2025, 65 (2) , 589-602. https://doi.org/10.1021/acs.jcim.4c01656
    2. Farzin Sohraby, Ariane Nunes-Alves. Characterization of the Bottlenecks and Pathways for Inhibitor Dissociation from [NiFe] Hydrogenase. Journal of Chemical Information and Modeling 2024, 64 (10) , 4193-4203. https://doi.org/10.1021/acs.jcim.4c00187
    3. Aharon Gomez, Tobias J. Erb, Helmut Grubmüller, Esteban Vöhringer-Martinez. Conformational Dynamics of the Most Efficient Carboxylase Contributes to Efficient CO2 Fixation. Journal of Chemical Information and Modeling 2023, 63 (24) , 7807-7815. https://doi.org/10.1021/acs.jcim.3c01447
    4. Sven T. Stripp, Benjamin R. Duffus, Vincent Fourmond, Christophe Léger, Silke Leimkühler, Shun Hirota, Yilin Hu, Andrew Jasniewski, Hideaki Ogata, Markus W. Ribbe. Second and Outer Coordination Sphere Effects in Nitrogenase, Hydrogenase, Formate Dehydrogenase, and CO Dehydrogenase. Chemical Reviews 2022, 122 (14) , 11900-11973. https://doi.org/10.1021/acs.chemrev.1c00914
    5. Rahul Banerjee, John D. Lipscomb. Small-Molecule Tunnels in Metalloenzymes Viewed as Extensions of the Active Site. Accounts of Chemical Research 2021, 54 (9) , 2185-2195. https://doi.org/10.1021/acs.accounts.1c00058
    6. Matti Javanainen, Ilpo Vattulainen, Luca Monticelli. Correction to “On Atomistic Models for Molecular Oxygen”. The Journal of Physical Chemistry B 2020, 124 (31) , 6943-6946. https://doi.org/10.1021/acs.jpcb.0c06376
    7. Carmen Domene, Christian Jorgensen, Christopher J. Schofield. Mechanism of Molecular Oxygen Diffusion in a Hypoxia-Sensing Prolyl Hydroxylase Using Multiscale Simulation. Journal of the American Chemical Society 2020, 142 (5) , 2253-2263. https://doi.org/10.1021/jacs.9b09236
    8. Melisa del Barrio, Chloé Guendon, Arlette Kpebe, Carole Baffert, Vincent Fourmond, Myriam Brugna, Christophe Léger. Valine-to-Cysteine Mutation Further Increases the Oxygen Tolerance of Escherichia coli NiFe Hydrogenase Hyd-1. ACS Catalysis 2019, 9 (5) , 4084-4088. https://doi.org/10.1021/acscatal.9b00543
    9. Gong Chen, Diannan Lu, Jianzhong Wu, Zheng Liu. Detachment of HCO3– from the Active Site of Carbonic Anhydrase: Molecular Dynamics Simulation and Machine Learning. The Journal of Physical Chemistry C 2018, 122 (35) , 20539-20549. https://doi.org/10.1021/acs.jpcc.8b05298
    10. Matti Javanainen, Ilpo Vattulainen, and Luca Monticelli . On Atomistic Models for Molecular Oxygen. The Journal of Physical Chemistry B 2017, 121 (3) , 518-528. https://doi.org/10.1021/acs.jpcb.6b11183
    11. Paween Mahinthichaichan, Robert B. Gennis, and Emad Tajkhorshid . All the O2 Consumed by Thermus thermophilus Cytochrome ba3 Is Delivered to the Active Site through a Long, Open Hydrophobic Tunnel with Entrances within the Lipid Bilayer. Biochemistry 2016, 55 (8) , 1265-1278. https://doi.org/10.1021/acs.biochem.5b01255
    12. Jochen Blumberger . Recent Advances in the Theory and Molecular Simulation of Biological Electron Transfer Reactions. Chemical Reviews 2015, 115 (20) , 11191-11238. https://doi.org/10.1021/acs.chemrev.5b00298
    13. David De Sancho, Adam Kubas, Po-Hung Wang, Jochen Blumberger, and Robert B. Best . Identification of Mutational Hot Spots for Substrate Diffusion: Application to Myoglobin. Journal of Chemical Theory and Computation 2015, 11 (4) , 1919-1927. https://doi.org/10.1021/ct5011455
    14. Francesco Oteri, Marc Baaden, Elisabeth Lojou, and Sophie Sacquin-Mora . Multiscale Simulations Give Insight into the Hydrogen In and Out Pathways of [NiFe]-Hydrogenases from Aquifex aeolicus and Desulfovibrio fructosovorans. The Journal of Physical Chemistry B 2014, 118 (48) , 13800-13811. https://doi.org/10.1021/jp5089965
    15. Arndt R. Finkelmann, Martin T. Stiebritz, and Markus Reiher . Activation Barriers of Oxygen Transformation at the Active Site of [FeFe] Hydrogenases. Inorganic Chemistry 2014, 53 (22) , 11890-11902. https://doi.org/10.1021/ic501049z
    16. João M. Damas, António M. Baptista, and Cláudio M. Soares . The Pathway for O2 Diffusion inside CotA Laccase and Possible Implications on the Multicopper Oxidases Family. Journal of Chemical Theory and Computation 2014, 10 (8) , 3525-3531. https://doi.org/10.1021/ct500196e
    17. Jérémie Topin, Julien Diharce, Sébastien Fiorucci, Serge Antonczak, and Jérôme Golebiowski . O2 Migration Rates in [NiFe] Hydrogenases. A Joint Approach Combining Free-Energy Calculations and Kinetic Modeling. The Journal of Physical Chemistry B 2014, 118 (3) , 676-681. https://doi.org/10.1021/jp4093964
    18. Po-hung Wang, Maurizio Bruschi, Luca De Gioia, and Jochen Blumberger . Uncovering a Dynamically Formed Substrate Access Tunnel in Carbon Monoxide Dehydrogenase/Acetyl-CoA Synthase. Journal of the American Chemical Society 2013, 135 (25) , 9493-9502. https://doi.org/10.1021/ja403110s
    19. Dayle M. A. Smith, Yijia Xiong, T. P. Straatsma, Kevin M. Rosso, and Thomas C. Squier . Force-Field Development and Molecular Dynamics of [NiFe] Hydrogenase. Journal of Chemical Theory and Computation 2012, 8 (6) , 2103-2114. https://doi.org/10.1021/ct300185u
    20. Abbas Abou Hamdan, Sébastien Dementin, Pierre-Pol Liebgott, Oscar Gutierrez-Sanz, Pierre Richaud, Antonio L. De Lacey, Marc Rousset, Patrick Bertrand, Laurent Cournac, and Christophe Léger . Understanding and Tuning the Catalytic Bias of Hydrogenase. Journal of the American Chemical Society 2012, 134 (20) , 8368-8371. https://doi.org/10.1021/ja301802r
    21. Marta K. Bruska, Martin T. Stiebritz, and Markus Reiher . Regioselectivity of H Cluster Oxidation. Journal of the American Chemical Society 2011, 133 (50) , 20588-20603. https://doi.org/10.1021/ja209165r
    22. H. Geraili Daronkola, Bashar Moussa, Óscar Millet, Oktavian Krenczyk, Gabriel Ortega‐Quintanilla, Poul B. Petersen, Ana Vila Verde. How sensitive are protein hydration shells to electrolyte concentration and protein composition?. Protein Science 2025, 34 (1) https://doi.org/10.1002/pro.5241
    23. Hosein Geraili Daronkola, Benedikt Söldner, Himanshu Singh, Rasmus Linser, Ana Vila Verde. Nonlinear Impact of Electrolyte Solutions on Protein Dynamics. ChemBioChem 2024, 25 (11) https://doi.org/10.1002/cbic.202400057
    24. Rodrigo Recabarren, Aharon Gómez Llanos, Esteban Vöhringer-Martinez. Computational methods for the study of carboxylases: The case of crotonyl-CoA carboxylase/reductase. 2024, 353-387. https://doi.org/10.1016/bs.mie.2024.10.025
    25. Lumbini R. Yadav, Vasudha Sharma, Maheswaran Shanmugam, Shekhar C. Mande. Structural insights into the initiation of free radical formation in the Class Ib ribonucleotide reductases in Mycobacteria. Current Research in Structural Biology 2024, 8 , 100157. https://doi.org/10.1016/j.crstbi.2024.100157
    26. Maylis Orio, Dimitrios A. Pantazis. Successes, challenges, and opportunities for quantum chemistry in understanding metalloenzymes for solar fuels research. Chemical Communications 2021, 57 (33) , 3952-3974. https://doi.org/10.1039/D1CC00705J
    27. Anna Rovaletti, Claudio Greco, Ulf Ryde. QM/MM study of the binding of H2 to MoCu CO dehydrogenase: development and applications of improved H2 van der Waals parameters. Journal of Molecular Modeling 2021, 27 (3) https://doi.org/10.1007/s00894-020-04655-3
    28. Linhao Fan, Yun Wang, Kui Jiao. Molecular Dynamics Simulation of Diffusion and O 2 Dissolution in Water Using Four Water Molecular Models. Journal of The Electrochemical Society 2021, 168 (3) , 034520. https://doi.org/10.1149/1945-7111/abf060
    29. Tiago M. Barbosa, Carla S. A. Baltazar, Davide R. Cruz, Diana Lousa, Cláudio M. Soares. Studying O2 pathways in [NiFe]- and [NiFeSe]-hydrogenases. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-67494-5
    30. Sónia Zacarias, Adriana Temporão, Philippe Carpentier, Peter van der Linden, Inês A. C. Pereira, Pedro M. Matias. Exploring the gas access routes in a [NiFeSe] hydrogenase using crystals pressurized with krypton and oxygen. JBIC Journal of Biological Inorganic Chemistry 2020, 25 (6) , 863-874. https://doi.org/10.1007/s00775-020-01814-y
    31. Hulin Tai, Shun Hirota. Mechanism and Application of the Catalytic Reaction of [NiFe] Hydrogenase: Recent Developments. ChemBioChem 2020, 21 (11) , 1573-1581. https://doi.org/10.1002/cbic.202000058
    32. Ahmed M. Rozza, Dóra K. Menyhárd, Julianna Oláh. Gas Sensing by Bacterial H-NOX Proteins: An MD Study. Molecules 2020, 25 (12) , 2882. https://doi.org/10.3390/molecules25122882
    33. Orestis George Ziogos, Samuele Giannini, Matthew Ellis, Jochen Blumberger. Identifying high-mobility tetracene derivatives using a non-adiabatic molecular dynamics approach. Journal of Materials Chemistry C 2020, 8 (3) , 1054-1064. https://doi.org/10.1039/C9TC05270D
    34. Antoine Carof, Samuele Giannini, Jochen Blumberger. How to calculate charge mobility in molecular materials from surface hopping non-adiabatic molecular dynamics – beyond the hopping/band paradigm. Physical Chemistry Chemical Physics 2019, 21 (48) , 26368-26386. https://doi.org/10.1039/C9CP04770K
    35. Yuan Lu, Jamin Koo. O 2 sensitivity and H 2 production activity of hydrogenases—A review. Biotechnology and Bioengineering 2019, 116 (11) , 3124-3135. https://doi.org/10.1002/bit.27136
    36. Mauro Bringas, Leandro E. Lombardi, F. Javier Luque, Darío A. Estrin, Luciana Capece. Ligand Binding Rate Constants in Heme Proteins Using Markov State Models and Molecular Dynamics Simulations. ChemPhysChem 2019, 20 (19) , 2451-2460. https://doi.org/10.1002/cphc.201900589
    37. Vivek Hitaishi, Romain Clement, Nicolas Bourassin, Marc Baaden, Anne De Poulpiquet, Sophie Sacquin-Mora, Alexandre Ciaccafava, Elisabeth Lojou. Controlling Redox Enzyme Orientation at Planar Electrodes. Catalysts 2018, 8 (5) , 192. https://doi.org/10.3390/catal8050192
    38. Anikó Lábas, Dóra K. Menyhárd, Jeremy N. Harvey, Julianna Oláh. First Principles Calculation of the Reaction Rates for Ligand Binding to Myoglobin: The Cases of NO and CO. Chemistry – A European Journal 2018, 24 (20) , 5350-5358. https://doi.org/10.1002/chem.201704867
    39. Jacqueline Kalms, Andrea Schmidt, Stefan Frielingsdorf, Tillmann Utesch, Guillaume Gotthard, David von Stetten, Peter van der Linden, Antoine Royant, Maria Andrea Mroginski, Philippe Carpentier, Oliver Lenz, Patrick Scheerer. Tracking the route of molecular oxygen in O 2 -tolerant membrane-bound [NiFe] hydrogenase. Proceedings of the National Academy of Sciences 2018, 115 (10) https://doi.org/10.1073/pnas.1712267115
    40. Ariane Nunes-Alves, Daniel M. Zuckerman, Guilherme Menegon Arantes. Escape of a Small Molecule from Inside T4 Lysozyme by Multiple Pathways. Biophysical Journal 2018, 114 (5) , 1058-1066. https://doi.org/10.1016/j.bpj.2018.01.014
    41. Gong Chen, Weina Xu, Diannan Lu, Jianzhong Wu, Zheng Liu. Markov-state model for CO2 binding with carbonic anhydrase under confinement. The Journal of Chemical Physics 2018, 148 (3) https://doi.org/10.1063/1.5003298
    42. , , Valerie Vaissier, Troy Van Voorhis. Quantum chemical approaches to [NiFe] hydrogenase. Essays in Biochemistry 2017, 61 (2) , 293-303. https://doi.org/10.1042/EBC20160079
    43. Po-hung Wang, Isseki Yu, Michael Feig, Yuji Sugita. Influence of protein crowder size on hydration structure and dynamics in macromolecular crowding. Chemical Physics Letters 2017, 671 , 63-70. https://doi.org/10.1016/j.cplett.2017.01.012
    44. Amaresh Mishra, Volker Schmidt, René A. J. Janssen, Peter Bäuerle. Organic and Hybrid Solar Cells Based on Well-Defined Organic Semiconductors and Morphologies. 2017, 25-49. https://doi.org/10.1007/978-3-319-28338-8_2
    45. Adam Kubas, Christophe Orain, David De Sancho, Laure Saujet, Matteo Sensi, Charles Gauquelin, Isabelle Meynial-Salles, Philippe Soucaille, Hervé Bottin, Carole Baffert, Vincent Fourmond, Robert B. Best, Jochen Blumberger, Christophe Léger. Mechanism of O2 diffusion and reduction in FeFe hydrogenases. Nature Chemistry 2017, 9 (1) , 88-95. https://doi.org/10.1038/nchem.2592
    46. Gong Chen, Xian Kong, Diannan Lu, Jianzhong Wu, Zheng Liu. Kinetics of CO 2 diffusion in human carbonic anhydrase: a study using molecular dynamics simulations and the Markov-state model. Physical Chemistry Chemical Physics 2017, 19 (18) , 11690-11697. https://doi.org/10.1039/C7CP00887B
    47. Hideaki Ogata, Wolfgang Lubitz, Yoshiki Higuchi. Structure and function of [NiFe] hydrogenases. Journal of Biochemistry 2016, 160 (5) , 251-258. https://doi.org/10.1093/jb/mvw048
    48. Christopher G. Mayne, Mark J. Arcario, Paween Mahinthichaichan, Javier L. Baylon, Josh V. Vermaas, Latifeh Navidpour, Po-Chao Wen, Sundarapandian Thangapandian, Emad Tajkhorshid. The cellular membrane as a mediator for small molecule interaction with membrane proteins. Biochimica et Biophysica Acta (BBA) - Biomembranes 2016, 1858 (10) , 2290-2304. https://doi.org/10.1016/j.bbamem.2016.04.016
    49. Anshul Sirur, David De Sancho, Robert B. Best. Markov state models of protein misfolding. The Journal of Chemical Physics 2016, 144 (7) https://doi.org/10.1063/1.4941579
    50. P.-H. Wang, D. De Sancho, R.B. Best, J. Blumberger. Computation of Rate Constants for Diffusion of Small Ligands to and from Buried Protein Active Sites. 2016, 299-326. https://doi.org/10.1016/bs.mie.2016.05.039
    51. J.V. Vermaas, N. Trebesch, C.G. Mayne, S. Thangapandian, M. Shekhar, P. Mahinthichaichan, J.L. Baylon, T. Jiang, Y. Wang, M.P. Muller, E. Shinn, Z. Zhao, P.-C. Wen, E. Tajkhorshid. Microscopic Characterization of Membrane Transporter Function by In Silico Modeling and Simulation. 2016, 373-428. https://doi.org/10.1016/bs.mie.2016.05.042
    52. Alessandra Pesce, Juan P. Bustamante, Axel Bidon‐Chanal, Leonardo Boechi, Darío A. Estrin, Francisco Javier Luque, Anne Sebilo, Michel Guertin, Martino Bolognesi, Paolo Ascenzi, Marco Nardini. The N‐terminal pre‐A region of Mycobacterium tuberculosis 2/2HbN promotes NO ‐dioxygenase activity. The FEBS Journal 2016, 283 (2) , 305-322. https://doi.org/10.1111/febs.13571
    53. Anne de Poulpiquet, David Ranava, Karen Monsalve, Marie‐Thérèse Giudici‐Orticoni, Elisabeth Lojou. Biohydrogen for a New Generation of H 2 /O 2 Biofuel Cells: A Sustainable Energy Perspective. ChemElectroChem 2014, 1 (11) , 1724-1750. https://doi.org/10.1002/celc.201402249
    54. Adam Kubas, David De Sancho, Robert B. Best, Jochen Blumberger. Aerobic Damage to [FeFe]‐Hydrogenases: Activation Barriers for the Chemical Attachment of O 2. Angewandte Chemie 2014, 126 (16) , 4165-4168. https://doi.org/10.1002/ange.201400534
    55. Adam Kubas, David De Sancho, Robert B. Best, Jochen Blumberger. Aerobic Damage to [FeFe]‐Hydrogenases: Activation Barriers for the Chemical Attachment of O 2. Angewandte Chemie International Edition 2014, 53 (16) , 4081-4084. https://doi.org/10.1002/anie.201400534
    56. Claudio Greco, Vincent Fourmond, Carole Baffert, Po-hung Wang, Sébastien Dementin, Patrick Bertrand, Maurizio Bruschi, Jochen Blumberger, Luca de Gioia, Christophe Léger. Combining experimental and theoretical methods to learn about the reactivity of gas-processing metalloenzymes. Energy Environ. Sci. 2014, 7 (11) , 3543-3573. https://doi.org/10.1039/C4EE01848F
    57. Swaminathan Angeline Vedha, Rajadurai Vijay Solomon, Ponnambalam Venuvanalingam. Atomic partitioning of M–H2 bonds in [NiFe] hydrogenase – a test case of concurrent binding. Physical Chemistry Chemical Physics 2014, 16 (22) , 10698. https://doi.org/10.1039/c4cp00526k
    58. Ole Stenzel, Christian Hirsch, Tim Brereton, Bjoern Baumeier, Denis Andrienko, Dirk Kroese, Volker Schmidt. A General Framework for Consistent Estimation of Charge Transport Properties via Random Walks in Random Environments. Multiscale Modeling & Simulation 2014, 12 (3) , 1108-1134. https://doi.org/10.1137/130942504
    59. Martin Winkler, Julian Esselborn, Thomas Happe. Molecular basis of [FeFe]-hydrogenase function. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2013, 1827 (8-9) , 974-985. https://doi.org/10.1016/j.bbabio.2013.03.004
    60. Edward Schwartz, Johannes Fritsch, Bärbel Friedrich. H2-Metabolizing Prokaryotes. 2013, 119-199. https://doi.org/10.1007/978-3-642-30141-4_65
    61. L. De Gioia. Hydrogenases. 2013, 343-383. https://doi.org/10.1016/B978-0-08-097774-4.00318-1
    62. Stefania Abbruzzetti, Francesca Spyrakis, Axel Bidon-Chanal, F. Javier Luque, Cristiano Viappiani. Ligand migration through hemeprotein cavities: insights from laser flash photolysis and molecular dynamics simulations. Physical Chemistry Chemical Physics 2013, 15 (26) , 10686. https://doi.org/10.1039/c3cp51149a
    63. Po-hung Wang, Jochen Blumberger. Mechanistic insight into the blocking of CO diffusion in [NiFe]-hydrogenase mutants through multiscale simulation. Proceedings of the National Academy of Sciences 2012, 109 (17) , 6399-6404. https://doi.org/10.1073/pnas.1121176109
    64. Carla S. A. Baltazar, Vitor H. Teixeira, Cláudio M. Soares. Structural features of [NiFeSe] and [NiFe] hydrogenases determining their different properties: a computational approach. JBIC Journal of Biological Inorganic Chemistry 2012, 17 (4) , 543-555. https://doi.org/10.1007/s00775-012-0875-2
    65. . Anorganische Chemie 2011. Nachrichten aus der Chemie 2012, 216-250. https://doi.org/10.1002/nadc.201290117
    66. Jérémie Topin, Marc Rousset, Serge Antonczak, Jérôme Golebiowski. Kinetics and thermodynamics of gas diffusion in a NiFe hydrogenase. Proteins: Structure, Function, and Bioinformatics 2012, 80 (3) , 677-682. https://doi.org/10.1002/prot.23248
    67. Martin Tillmann Stiebritz, Markus Reiher. Hydrogenases and oxygen. Chemical Science 2012, 3 (6) , 1739. https://doi.org/10.1039/c2sc01112c
    68. Po-hung Wang, Robert B. Best, Jochen Blumberger. A microscopic model for gas diffusion dynamics in a [NiFe]-hydrogenase. Physical Chemistry Chemical Physics 2011, 13 (17) , 7708. https://doi.org/10.1039/c0cp02098b

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2011, 133, 10, 3548–3556
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja109712q
    Published February 22, 2011
    Copyright © 2011 American Chemical Society

    Article Views

    1432

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.