ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Graphene Transistors via in Situ Voltage-Induced Reduction of Graphene-Oxide under Ambient Conditions

View Author Information
Nanochemistry Laboratory, ISIS−CNRS 7006, Université de Strasbourg, 8 allée Gaspard Monge, 67000 Strasbourg, France
ISOF-Istituto per la Sintesi Organica e la Fotoreattività−Consiglio Nazionale delle Ricerche via Gobetti 101, 40129 Bologna, Italy
Cite this: J. Am. Chem. Soc. 2011, 133, 36, 14320–14326
Publication Date (Web):August 9, 2011
https://doi.org/10.1021/ja202371h
Copyright © 2011 American Chemical Society

    Article Views

    2813

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (4 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    Here, we describe a simple approach to fabricate graphene-based field-effect-transistors (FETs), starting from aqueous solutions of graphene-oxide (GO), processed entirely under ambient conditions. The process relies on the site-selective reduction of GO sheets deposited in between or on the surface of micro/nanoelectrodes. The same electrodes are first used for voltage-induced electrochemical GO reduction, and then as the source and drain contacts of FETs, allowing for the straightforward production and characterization of ambipolar graphene devices. With the use of nanoelectrodes, we could reduce different selected areas belonging to one single sheet as well.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Further details about the experimental methods, process of GO reduction, and potential mapping. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 52 publications.

    1. Haojie Lang, Mengci Yu, Yitian Peng, Xiuhua Zhao, Kun Zou. Dynamic Nanofriction of Graphene Oxide Induced by a Positively Biased Conductive AFM Tip. The Journal of Physical Chemistry C 2021, 125 (33) , 18334-18340. https://doi.org/10.1021/acs.jpcc.1c05307
    2. Zhenyuan Xia, Giulio Maccaferri, Chiara Zanardi, Meganne Christian, Luca Ortolani, Vittorio Morandi, Vittorio Bellani, Alessandro Kovtun, Simone Dell’Elce, Andrea Candini, Andrea Liscio, Vincenzo Palermo. Dispersion Stability and Surface Morphology Study of Electrochemically Exfoliated Bilayer Graphene Oxide. The Journal of Physical Chemistry C 2019, 123 (24) , 15122-15130. https://doi.org/10.1021/acs.jpcc.9b03395
    3. Peng Huang, Dan Guo, Guoxin Xie, and Jian Li . Softened Mechanical Properties of Graphene Induced by Electric Field. Nano Letters 2017, 17 (10) , 6280-6286. https://doi.org/10.1021/acs.nanolett.7b02965
    4. J. C. Dong and H. Li . Monoatomic Layer Electronics Constructed by Graphene and Boron Nitride Nanoribbons. The Journal of Physical Chemistry C 2012, 116 (32) , 17259-17267. https://doi.org/10.1021/jp304189w
    5. Haojie Lang, Yitian Peng, Kun Zou, Ruling Chen, Yao Huang. Friction of graphene oxide with water nanodroplets under high relative humidity. Tribology International 2023, 188 , 108837. https://doi.org/10.1016/j.triboint.2023.108837
    6. Sandra Vasilijević, Rassen Boukraa, Nicolas Battaglini, Benoît Piro. Graphene-based materials and their applications in electrolyte-gated transistors for sensing. Synthetic Metals 2023, 295 , 117355. https://doi.org/10.1016/j.synthmet.2023.117355
    7. Mehran Vali. Analog and Digital Performance of Graphene-Germanene-Graphene Heterojunction Based Field Effect Transistor. ECS Journal of Solid State Science and Technology 2022, 11 (9) , 091005. https://doi.org/10.1149/2162-8777/ac8ed2
    8. Mostafizur Rahaman, Rajesh Theravalappil, Subhendu Bhandari, Lalatendu Nayak, Purabi Bhagabati. Electrical conductivity of polymer-graphene composites. 2022, 107-139. https://doi.org/10.1016/B978-0-12-821639-2.00025-2
    9. Jaime S. Sanchez, Johanna Xu, Zhenyuan Xia, Jinhua Sun, Leif E. Asp, Vincenzo Palermo. Electrophoretic coating of LiFePO4/Graphene oxide on carbon fibers as cathode electrodes for structural lithium ion batteries. Composites Science and Technology 2021, 208 , 108768. https://doi.org/10.1016/j.compscitech.2021.108768
    10. Sandra Vasilijević, Giorgio Mattana, Guillaume Anquetin, Nicolas Battaglini, Benoît Piro. Electrochemical tuning of reduced graphene oxide in printed electrolyte-gated transistors. Impact on charge transport properties. Electrochimica Acta 2021, 371 , 137819. https://doi.org/10.1016/j.electacta.2021.137819
    11. Zhenyuan Xia, Viktoriia Mishukova, Szymon Sollami Delekta, Jinhua Sun, Jaime S. Sanchez, Jiantong Li, Vincenzo Palermo. Selective deposition of metal oxide nanoflakes on graphene electrodes to obtain high-performance asymmetric micro-supercapacitors. Nanoscale 2021, 13 (5) , 3285-3294. https://doi.org/10.1039/D0NR07076A
    12. Nikhil Patil, Aparna Gupta, Manu Jaiswal, Soumya Dutta. Chemical-free transfer of patterned reduced graphene oxide thin films for large area flexible electronics and nanoelectromechanical systems. Nanotechnology 2020, 31 (49) , 495301. https://doi.org/10.1088/1361-6528/abb26b
    13. Tossapong Phuangburee, Dmytro Solonenko, Nukorn Plainpan, Patchanita Thamyongkit, Dietrich R. T. Zahn, Sakulsuk Unarunotai, Thawatchai Tuntulani, Pannee Leeladee. Surface modification of graphene oxide via noncovalent functionalization with porphyrins for selective photocatalytic oxidation of alcohols. New Journal of Chemistry 2020, 44 (20) , 8264-8272. https://doi.org/10.1039/D0NJ01141J
    14. Yi Zhou, Yifan Li, Jichen Dong, Hui Li. Spin magnetism of graphene nanoribbon modulated by triangular boron nitride flake. Journal of Magnetism and Magnetic Materials 2020, 499 , 166275. https://doi.org/10.1016/j.jmmm.2019.166275
    15. Rafael Furlan de Oliveira, Pietro Antonio Livio, Verónica Montes‐García, Stefano Ippolito, Matilde Eredia, Pablo Fanjul‐Bolado, María Begoña González García, Stefano Casalini, Paolo Samorì. Liquid‐Gated Transistors Based on Reduced Graphene Oxide for Flexible and Wearable Electronics. Advanced Functional Materials 2019, 29 (46) https://doi.org/10.1002/adfm.201905375
    16. Arun Singh, Neeraj Sharma, Mohd. Arif, Ram S. Katiyar. Electrically reduced graphene oxide for photovoltaic application. Journal of Materials Research 2019, 34 (4) , 652-660. https://doi.org/10.1557/jmr.2019.32
    17. Kevin W. Silverstein, Christian E. Halbig, Jeremy S. Mehta, Anju Sharma, Siegfried Eigler, Jeffrey M. Mativetsky. Voltage-reduced low-defect graphene oxide: a high conductivity, near-zero temperature coefficient of resistance material. Nanoscale 2019, 11 (7) , 3112-3116. https://doi.org/10.1039/C8NR08285E
    18. Servin Rathi, Inyeal Lee, Moonshik Kang, Dongsuk Lim, Yoontae Lee, Serhan Yamacli, Han-Ik Joh, Seongsu Kim, Sang-Woo Kim, Sun Jin Yun, Sukwon Choi, Gil-Ho Kim. Observation of negative differential resistance in mesoscopic graphene oxide devices. Scientific Reports 2018, 8 (1) https://doi.org/10.1038/s41598-018-22355-0
    19. Maria C. Morant-Miñana, Jonas Heidler, Gunnar Glasser, Hao Lu, Rüdiger Berger, Nerea Gil-Gonzalez, Klaus Müllen, Dago M. de Leeuw, Kamal Asadi. Spatially resolved solid-state reduction of graphene oxide thin films. Materials Horizons 2018, 5 (6) , 1176-1184. https://doi.org/10.1039/C8MH00895G
    20. A J Marsden, D G Papageorgiou, C Vallés, A Liscio, V Palermo, M A Bissett, R J Young, I A Kinloch. Electrical percolation in graphene–polymer composites. 2D Materials 2018, 5 (3) , 032003. https://doi.org/10.1088/2053-1583/aac055
    21. Hossein Fatholah nejad, Daryoosh Dideban, Abbas Ketabi, Mehran Vali, Amir Hossein Bayani, Hadi Heidari. Tuning the analog and digital performance of Germanene nanoribbon field effect transistors with engineering the width and geometry of source, channel and drain region in the ballistic regime. Materials Science in Semiconductor Processing 2018, 80 , 18-23. https://doi.org/10.1016/j.mssp.2018.02.007
    22. Ahmed Ghanem, Mona Abdel Rehim. Assisted Tip Sonication Approach for Graphene Synthesis in Aqueous Dispersion. Biomedicines 2018, 6 (2) , 63. https://doi.org/10.3390/biomedicines6020063
    23. K. Sinthiptharakoon, C. Sapcharoenkun, N. Nuntawong, B. Duong, T. Wutikhun, A. Treetong, B. Meemuk, P. Kasamechonchung, A. Klamchuen. Conductive scanning probe microscopy of the semicontinuous gold film and its SERS enhancement toward two-step photo-induced charge transfer and effect of the supportive layer. Applied Surface Science 2018, 441 , 364-371. https://doi.org/10.1016/j.apsusc.2018.01.269
    24. A. Scidà, S. Haque, E. Treossi, A. Robinson, S. Smerzi, S. Ravesi, S. Borini, V. Palermo. Application of graphene-based flexible antennas in consumer electronic devices. Materials Today 2018, 21 (3) , 223-230. https://doi.org/10.1016/j.mattod.2018.01.007
    25. Chiara Musumeci. Advanced Scanning Probe Microscopy of Graphene and Other 2D Materials. Crystals 2017, 7 (7) , 216. https://doi.org/10.3390/cryst7070216
    26. Xiaoyan Zhang, Paolo Samorì. Graphene/Polymer Nanocomposites for Supercapacitors. ChemNanoMat 2017, 3 (6) , 362-372. https://doi.org/10.1002/cnma.201700055
    27. Amin Jodat, Amir Hossein Bayani. Simulation Investigation of Siligene Nanoribbon as a Novel Gas Sensor with Strain Engineering: Sensitivity and Selectivity of Current-Voltage Characteristic. ECS Journal of Solid State Science and Technology 2017, 6 (7) , M83-M87. https://doi.org/10.1149/2.0221707jss
    28. Austin C. Faucett, Jaymes N. Flournoy, Jeremy S. Mehta, Jeffrey M. Mativetsky. Evolution, structure, and electrical performance of voltage-reduced graphene oxide. FlatChem 2017, 1 , 42-51. https://doi.org/10.1016/j.flatc.2016.10.003
    29. Seungwoo Lee, Kyung Eun Lee, Won Jun Lee, Byung Cheol Park, Byungsoo Kang, Euyheon Hwang, Sang Ouk Kim. Two-Terminal Graphene Oxide Devices for Electrical Modulation of Broadband Terahertz Waves. Advanced Optical Materials 2016, 4 (4) , 548-554. https://doi.org/10.1002/adom.201500577
    30. Amir Hossein Bayani, Daryoosh Dideban, Mehran Vali, Negin Moezi. Germanene nanoribbon tunneling field effect transistor (GeNR-TFET) with a 10 nm channel length: analog performance, doping and temperature effects. Semiconductor Science and Technology 2016, 31 (4) , 045009. https://doi.org/10.1088/0268-1242/31/4/045009
    31. Xiaohong Hu, Pin Chen, Xin Wang. Graphene: Polymer-Assisted Water Soluble. 2016, 3665-3671. https://doi.org/10.1081/E-EBPP-120050013
    32. Austin C. Faucett, Jeffrey M. Mativetsky. Nanoscale reduction of graphene oxide under ambient conditions. Carbon 2015, 95 , 1069-1075. https://doi.org/10.1016/j.carbon.2015.09.025
    33. A. Vianelli, A. Candini, E. Treossi, V. Palermo, M. Affronte. Observation of different charge transport regimes and large magnetoresistance in graphene oxide layers. Carbon 2015, 89 , 188-196. https://doi.org/10.1016/j.carbon.2015.03.019
    34. Francesco Bausi, Andrea Schlierf, Emanuele Treossi, Matthias Georg Schwab, Vincenzo Palermo, Franco Cacialli. Thermal treatment and chemical doping of semi-transparent graphene films. Organic Electronics 2015, 18 , 53-60. https://doi.org/10.1016/j.orgel.2014.12.018
    35. Andrea C. Ferrari, Francesco Bonaccorso, Vladimir Fal'ko, Konstantin S. Novoselov, Stephan Roche, Peter Bøggild, Stefano Borini, Frank H. L. Koppens, Vincenzo Palermo, Nicola Pugno, José A. Garrido, Roman Sordan, Alberto Bianco, Laura Ballerini, Maurizio Prato, Elefterios Lidorikis, Jani Kivioja, Claudio Marinelli, Tapani Ryhänen, Alberto Morpurgo, Jonathan N. Coleman, Valeria Nicolosi, Luigi Colombo, Albert Fert, Mar Garcia-Hernandez, Adrian Bachtold, Grégory F. Schneider, Francisco Guinea, Cees Dekker, Matteo Barbone, Zhipei Sun, Costas Galiotis, Alexander N. Grigorenko, Gerasimos Konstantatos, Andras Kis, Mikhail Katsnelson, Lieven Vandersypen, Annick Loiseau, Vittorio Morandi, Daniel Neumaier, Emanuele Treossi, Vittorio Pellegrini, Marco Polini, Alessandro Tredicucci, Gareth M. Williams, Byung Hee Hong, Jong-Hyun Ahn, Jong Min Kim, Herbert Zirath, Bart J. van Wees, Herre van der Zant, Luigi Occhipinti, Andrea Di Matteo, Ian A. Kinloch, Thomas Seyller, Etienne Quesnel, Xinliang Feng, Ken Teo, Nalin Rupesinghe, Pertti Hakonen, Simon R. T. Neil, Quentin Tannock, Tomas Löfwander, Jari Kinaret. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 2015, 7 (11) , 4598-4810. https://doi.org/10.1039/C4NR01600A
    36. Yi Zhou, Jichen Dong, Hui Li. Electronic transport properties of in-plane heterostructures constructed by MoS 2 and WS 2 nanoribbons. RSC Advances 2015, 5 (82) , 66852-66860. https://doi.org/10.1039/C5RA14507D
    37. Chiara Musumeci, Andrea Liscio, Vincenzo Palermo, Paolo Samorì. Electronic characterization of supramolecular materials at the nanoscale by Conductive Atomic Force and Kelvin Probe Force microscopies. Materials Today 2014, 17 (10) , 504-517. https://doi.org/10.1016/j.mattod.2014.05.010
    38. Artur Ciesielski, Sébastien Haar, Mirella El Gemayel, Huafeng Yang, Joseph Clough, Georgian Melinte, Marco Gobbi, Emanuele Orgiu, Marco V. Nardi, Giovanni Ligorio, Vincenzo Palermo, Norbert Koch, Ovidiu Ersen, Cinzia Casiraghi, Paolo Samorì. Harnessing the Liquid-Phase Exfoliation of Graphene Using Aliphatic Compounds: A Supramolecular Approach. Angewandte Chemie 2014, 126 (39) , 10523-10529. https://doi.org/10.1002/ange.201402696
    39. Artur Ciesielski, Sébastien Haar, Mirella El Gemayel, Huafeng Yang, Joseph Clough, Georgian Melinte, Marco Gobbi, Emanuele Orgiu, Marco V. Nardi, Giovanni Ligorio, Vincenzo Palermo, Norbert Koch, Ovidiu Ersen, Cinzia Casiraghi, Paolo Samorì. Harnessing the Liquid-Phase Exfoliation of Graphene Using Aliphatic Compounds: A Supramolecular Approach. Angewandte Chemie International Edition 2014, 53 (39) , 10355-10361. https://doi.org/10.1002/anie.201402696
    40. Jiao-Jing Shao, Wei Lv, Quan-Hong Yang. Self-Assembly of Graphene Oxide at Interfaces. Advanced Materials 2014, 26 (32) , 5586-5612. https://doi.org/10.1002/adma.201400267
    41. Artur Ciesielski, Paolo Samorì. Grapheneviasonication assisted liquid-phase exfoliation. Chem. Soc. Rev. 2014, 43 (1) , 381-398. https://doi.org/10.1039/C3CS60217F
    42. Jeffrey M. Mativetsky, Yueh-Lin Loo, Paolo Samorì. Elucidating the nanoscale origins of organic electronic function by conductive atomic force microscopy. J. Mater. Chem. C 2014, 2 (17) , 3118-3128. https://doi.org/10.1039/C3TC32050B
    43. Yu Liu, Yunxue Xia, Hongyu Yang, Yunsong Zhang, Maojun Zhao, Guangtang Pan. Facile preparation of high-quality Pt/reduced graphene oxide nanoscrolls for methanol oxidation. Nanotechnology 2013, 24 (23) , 235401. https://doi.org/10.1088/0957-4484/24/23/235401
    44. Zhen Yuan Xia, Sergio Pezzini, Emanuele Treossi, Giuliano Giambastiani, Franco Corticelli, Vittorio Morandi, Alberto Zanelli, Vittorio Bellani, Vincenzo Palermo. The Exfoliation of Graphene in Liquids by Electrochemical, Chemical, and Sonication-Assisted Techniques: A Nanoscale Study. Advanced Functional Materials 2013, 69 , n/a-n/a. https://doi.org/10.1002/adfm.201203686
    45. Andrea Liscio. Scanning Probe Microscopy beyond Imaging: A General Tool for Quantitative Analysis. ChemPhysChem 2013, 14 (6) , 1283-1292. https://doi.org/10.1002/cphc.201200880
    46. Wenyue Li, Jianguo Liu, Chuanwei Yan. Reduced graphene oxide with tunable C/O ratio and its activity towards vanadium redox pairs for an all vanadium redox flow battery. Carbon 2013, 55 , 313-320. https://doi.org/10.1016/j.carbon.2012.12.069
    47. Vincenzo Palermo. Not a molecule, not a polymer, not a substrate… the many faces of graphene as a chemical platform. Chemical Communications 2013, 49 (28) , 2848. https://doi.org/10.1039/c3cc37474b
    48. Laila Jaber-Ansari, Mark C. Hersam. Solution-processed graphene materials and composites. MRS Bulletin 2012, 37 (12) , 1167-1175. https://doi.org/10.1557/mrs.2012.182
    49. Ming Yang, Ying Hou, Nicholas A. Kotov. Graphene-based multilayers: Critical evaluation of materials assembly techniques. Nano Today 2012, 7 (5) , 430-447. https://doi.org/10.1016/j.nantod.2012.08.006
    50. H. Q. Wei, P. Zhou, Q. Q. Sun, L. H. Wang, Y. Geng, D. W. Zhang, X. B. Wang. The nano-scale resistive memory effect of graphene oxide. 2012, 54-57. https://doi.org/10.1109/NMDC.2012.6527574
    51. Weili Wei, Xiaogang Qu. Extraordinary Physical Properties of Functionalized Graphene. Small 2012, 8 (14) , 2138-2151. https://doi.org/10.1002/smll.201200104
    52. Shuping Pang, Shubin Yang, Xinliang Feng, Klaus Müllen. Coplanar Asymmetrical Reduced Graphene Oxide-Titanium Electrodes for Polymer Photodetectors. Advanced Materials 2012, 24 (12) , 1566-1570. https://doi.org/10.1002/adma.201104211

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect