ACS Publications. Most Trusted. Most Cited. Most Read
Crystallographic Recognition Controls Peptide Binding for Bio-Based Nanomaterials
My Activity

Figure 1Loading Img
    Communication

    Crystallographic Recognition Controls Peptide Binding for Bio-Based Nanomaterials
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry, University of Miami, Coral Gables, Florida 33124, United States
    Nanostructured and Biological Materials Branch, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433-7702, United States
    § Department of Physics, Yeshiva University, New York, New York 10016, United States
    Department of Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2011, 133, 32, 12346–12349
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja203726n
    Published July 21, 2011
    Copyright © 2011 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The ability to control the size, shape, composition, and activity of nanomaterials presents a formidable challenge. Peptide approaches represent new avenues to achieve such control at the synthetic level; however, the critical interactions at the bio/nano interface that direct such precision remain poorly understood. Here we present evidence to suggest that materials-directing peptides bind at specific time points during Pd nanoparticle (NP) growth, dictated by material crystallinity. As such surfaces are presented, rapid peptide binding occurs, resulting in the stabilization and size control of single-crystal NPs. Such specificity suggests that peptides could be engineered to direct the structure of nanomaterials at the atomic level, thus enhancing their activity.

    Copyright © 2011 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Synthetic and simulation procedures, particle size histograms, control analysis, ζ-potential analysis, CD spectra, and full EXAFS analysis. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 93 publications.

    1. Bijil Subhash, Raymond R. Unocic, William Hadinata Lie, Leighanne C. Gallington, Joshua Wright, Soshan Cheong, Richard D. Tilley, Nicholas M. Bedford. Resolving Atomic-Scale Structure and Chemical Coordination in High-Entropy Alloy Electrocatalysts for Structure–Function Relationship Elucidation. ACS Nano 2023, 17 (22) , 22299-22312. https://doi.org/10.1021/acsnano.3c03884
    2. Annabelle Mattern, Sebastian Habermann, Markus Zegke, Mathias Siegfried Wickleder, Roger Alberto. High-Yield 99mTc Labeling of Gold Nanoparticles Carrying Atropine and Adrenaline. Bioconjugate Chemistry 2022, 33 (9) , 1741-1749. https://doi.org/10.1021/acs.bioconjchem.2c00351
    3. Jose Isagani B. Janairo. A Machine Learning Classification Model for Gold-Binding Peptides. ACS Omega 2022, 7 (16) , 14069-14073. https://doi.org/10.1021/acsomega.2c00640
    4. John Tyler Wagner, Analeece K. Long, Michael B. Sumner, III, Ivan Cockman, Marvin Smith, Beverly Briggs Penland. Peptide Controlled Assembly of Palladium Nanoparticles on High-Aspect-Ratio Gold Nanorods. The Journal of Physical Chemistry C 2020, 124 (50) , 27743-27753. https://doi.org/10.1021/acs.jpcc.0c07653
    5. Shanmugasundaram Kamalakannan, Muthuramalingam Prakash, Muneerah Mogren Al-Mogren, Gilberte Chambaud, Majdi Hochlaf. Alkyl Methyl Imidazolium-Based Ionic Liquids at the Au(111) Surface: Anions and Alkyl Chain Cations Induced Interfacial Effects. The Journal of Physical Chemistry C 2019, 123 (24) , 15087-15098. https://doi.org/10.1021/acs.jpcc.9b03242
    6. Atul D. Parab, Joseph M. Slocik, Rajesh R. Naik, Marc R. Knecht. Peptide-Driven Fabrication of Catalytically Reactive Rhodium Nanoplates. ACS Applied Nano Materials 2018, 1 (12) , 7149-7158. https://doi.org/10.1021/acsanm.8b02139
    7. Michelle A. Nguyen, Zak E. Hughes, Yang Liu, Yue Li, Mark T. Swihart, Marc R. Knecht, Tiffany R. Walsh. Peptide-Mediated Growth and Dispersion of Au Nanoparticles in Water via Sequence Engineering. The Journal of Physical Chemistry C 2018, 122 (21) , 11532-11542. https://doi.org/10.1021/acs.jpcc.8b02392
    8. Jia-Jung Ho, Ayanjeet Ghosh, Tianqi O. Zhang, and Martin T. Zanni . Heterogeneous Amyloid β-Sheet Polymorphs Identified on Hydrogen Bond Promoting Surfaces Using 2D SFG Spectroscopy. The Journal of Physical Chemistry A 2018, 122 (5) , 1270-1282. https://doi.org/10.1021/acs.jpca.7b11934
    9. James A. Ross-Naylor, Milan Mijajlovic, Hu Zhang, and Mark J. Biggs . Characterizing the Switching Transitions of an Adsorbed Peptide by Mapping the Potential Energy Surface. The Journal of Physical Chemistry B 2017, 121 (51) , 11455-11464. https://doi.org/10.1021/acs.jpcb.7b10319
    10. Tiffany R. Walsh and Marc R. Knecht . Biointerface Structural Effects on the Properties and Applications of Bioinspired Peptide-Based Nanomaterials. Chemical Reviews 2017, 117 (20) , 12641-12704. https://doi.org/10.1021/acs.chemrev.7b00139
    11. Horacio Poblete, Anirudh Agarwal, Suma S. Thomas, Cornelia Bohne, Ranjithkumar Ravichandran, Jaywant Phopase, Jeffrey Comer, and Emilio I. Alarcon . New Insights into Peptide–Silver Nanoparticle Interaction: Deciphering the Role of Cysteine and Lysine in the Peptide Sequence. Langmuir 2016, 32 (1) , 265-273. https://doi.org/10.1021/acs.langmuir.5b03601
    12. Jeffrey Comer, Ran Chen, Horacio Poblete, Ariela Vergara-Jaque, and Jim E. Riviere . Predicting Adsorption Affinities of Small Molecules on Carbon Nanotubes Using Molecular Dynamics Simulation. ACS Nano 2015, 9 (12) , 11761-11774. https://doi.org/10.1021/acsnano.5b03592
    13. Andrea D. Merg, Joseph Slocik, Martin G. Blaber, George C. Schatz, Rajesh Naik, and Nathaniel L. Rosi . Adjusting the Metrics of 1-D Helical Gold Nanoparticle Superstructures Using Multivalent Peptide Conjugates. Langmuir 2015, 31 (34) , 9492-9501. https://doi.org/10.1021/acs.langmuir.5b02208
    14. Nicholas M. Bedford, Hadi Ramezani-Dakhel, Joseph M. Slocik, Beverly D. Briggs, Yang Ren, Anatoly I. Frenkel, Valeri Petkov, Hendrik Heinz, Rajesh R. Naik, and Marc R. Knecht . Elucidation of Peptide-Directed Palladium Surface Structure for Biologically Tunable Nanocatalysts. ACS Nano 2015, 9 (5) , 5082-5092. https://doi.org/10.1021/acsnano.5b00168
    15. Beverly D. Briggs, Yue Li, Mark T. Swihart, and Marc R. Knecht . Reductant and Sequence Effects on the Morphology and Catalytic Activity of Peptide-Capped Au Nanoparticles. ACS Applied Materials & Interfaces 2015, 7 (16) , 8843-8851. https://doi.org/10.1021/acsami.5b01461
    16. Beverly D. Briggs, Ryan T. Pekarek, and Marc R. Knecht . Examination of Transmetalation Pathways and Effects in Aqueous Suzuki Coupling Using Biomimetic Pd Nanocatalysts. The Journal of Physical Chemistry C 2014, 118 (32) , 18543-18553. https://doi.org/10.1021/jp504371q
    17. Louise B. Wright, Nicholas A. Merrill, Marc R. Knecht, and Tiffany R. Walsh . Structure of Arginine Overlayers at the Aqueous Gold Interface: Implications for Nanoparticle Assembly. ACS Applied Materials & Interfaces 2014, 6 (13) , 10524-10533. https://doi.org/10.1021/am502119g
    18. Jong-Won Park and Jennifer S. Shumaker-Parry . Structural Study of Citrate Layers on Gold Nanoparticles: Role of Intermolecular Interactions in Stabilizing Nanoparticles. Journal of the American Chemical Society 2014, 136 (5) , 1907-1921. https://doi.org/10.1021/ja4097384
    19. Kshitij C. Jha, Hua Liu, Michael R. Bockstaller, and Hendrik Heinz . Facet Recognition and Molecular Ordering of Ionic Liquids on Metal Surfaces. The Journal of Physical Chemistry C 2013, 117 (49) , 25969-25981. https://doi.org/10.1021/jp4032404
    20. Jinli Zhang, Xian Wang, Yan Fu, You Han, Jingyao Cheng, Yanqing Zhang, and Wei Li . Highly Active Subnano Palladium Clusters Embedded in i-Motif DNA. Langmuir 2013, 29 (47) , 14345-14350. https://doi.org/10.1021/la402153b
    21. Louise B. Wright, P. Mark Rodger, Tiffany R. Walsh, and Stefano Corni . First-Principles-Based Force Field for the Interaction of Proteins with Au(100)(5 × 1): An Extension of GolP-CHARMM. The Journal of Physical Chemistry C 2013, 117 (46) , 24292-24306. https://doi.org/10.1021/jp4061329
    22. Stefano Corni, Marketa Hnilova, Candan Tamerler, and Mehmet Sarikaya . Conformational Behavior of Genetically-Engineered Dodecapeptides as a Determinant of Binding Affinity for Gold.. The Journal of Physical Chemistry C 2013, 117 (33) , 16990-17003. https://doi.org/10.1021/jp404057h
    23. Ryan Coppage, Joseph M. Slocik, Hadi Ramezani-Dakhel, Nicholas M. Bedford, Hendrik Heinz, Rajesh R. Naik, and Marc R. Knecht . Exploiting Localized Surface Binding Effects to Enhance the Catalytic Reactivity of Peptide-Capped Nanoparticles. Journal of the American Chemical Society 2013, 135 (30) , 11048-11054. https://doi.org/10.1021/ja402215t
    24. Yi Wang, Dehui Wan, Shuifen Xie, Xiaohu Xia, Cheng Zhi Huang, and Younan Xia . Synthesis of Silver Octahedra with Controlled Sizes and Optical Properties via Seed-Mediated Growth. ACS Nano 2013, 7 (5) , 4586-4594. https://doi.org/10.1021/nn401363e
    25. Louise B. Wright, P. Mark Rodger, Stefano Corni, and Tiffany R. Walsh . GolP-CHARMM: First-Principles Based Force Fields for the Interaction of Proteins with Au(111) and Au(100). Journal of Chemical Theory and Computation 2013, 9 (3) , 1616-1630. https://doi.org/10.1021/ct301018m
    26. Hendrik Heinz, Tzu-Jen Lin, Ratan Kishore Mishra, and Fateme S. Emami . Thermodynamically Consistent Force Fields for the Assembly of Inorganic, Organic, and Biological Nanostructures: The INTERFACE Force Field. Langmuir 2013, 29 (6) , 1754-1765. https://doi.org/10.1021/la3038846
    27. Valeri Petkov, Youngmin Lee, Shouheng Sun, and Yang Ren . Noncrystallographic Atomic Arrangement Driven Enhancement of the Catalytic Activity of Au Nanoparticles. The Journal of Physical Chemistry C 2012, 116 (50) , 26668-26673. https://doi.org/10.1021/jp310291t
    28. Giorgia Brancolini, Daria B. Kokh, Luigi Calzolai, Rebecca C. Wade, and Stefano Corni . Docking of Ubiquitin to Gold Nanoparticles. ACS Nano 2012, 6 (11) , 9863-9878. https://doi.org/10.1021/nn303444b
    29. Ryan Coppage, Joseph M. Slocik, Beverly D. Briggs, Anatoly I. Frenkel, Rajesh R. Naik, and Marc R. Knecht . Determining Peptide Sequence Effects That Control the Size, Structure, and Function of Nanoparticles. ACS Nano 2012, 6 (2) , 1625-1636. https://doi.org/10.1021/nn204600d
    30. Louise B. Wright and Tiffany R. Walsh . Facet Selectivity of Binding on Quartz Surfaces: Free Energy Calculations of Amino-Acid Analogue Adsorption. The Journal of Physical Chemistry C 2012, 116 (4) , 2933-2945. https://doi.org/10.1021/jp209554g
    31. Beverly D. Briggs and Marc R. Knecht . Nanotechnology Meets Biology: Peptide-based Methods for the Fabrication of Functional Materials. The Journal of Physical Chemistry Letters 2012, 3 (3) , 405-418. https://doi.org/10.1021/jz2016473
    32. Jeffrey T. Petty, Sandra P. Story, Selina Juarez, Samuel S. Votto, Austin G. Herbst, Natalya N. Degtyareva, and Bidisha Sengupta . Optical Sensing by Transforming Chromophoric Silver Clusters in DNA Nanoreactors. Analytical Chemistry 2012, 84 (1) , 356-364. https://doi.org/10.1021/ac202697d
    33. Joshua Zylstra Rabeka Alam Hyunjoo Han Robert P. Doyle Mathew M. Maye . Tailoring Quantum Dot Interfaces for Improved Biofunctionality and Energy Transfer. 2012, 59-79. https://doi.org/10.1021/bk-2012-1112.ch003
    34. Hyunjoo Han, Joshua Zylstra, and Mathew M. Maye . Direct Attachment of Oligonucleotides to Quantum Dot Interfaces. Chemistry of Materials 2011, 23 (22) , 4975-4981. https://doi.org/10.1021/cm2021593
    35. Andre Leopold S Nidoy, Jose Isagani B Janairo. Probing polymorph binding preference of CaCO3 biomineralization peptides through machine learning. Chemistry Letters 2024, 53 (4) https://doi.org/10.1093/chemle/upae054
    36. Jose Isagani B. Janairo. Sequence rules for gold-binding peptides. RSC Advances 2023, 13 (31) , 21146-21152. https://doi.org/10.1039/D3RA04269C
    37. Charles J. Corulli, Emily A. Groover, John D. Attelah, Carley B. Miller, Beverly B. Penland. Rational design of peptides for biomimetic palladium nanoparticle catalysis with Suzuki and Heck coupling in ethanol. Colloid and Interface Science Communications 2023, 54 , 100708. https://doi.org/10.1016/j.colcom.2023.100708
    38. Shanmugasundaram Kamalakannan, Kandhan Palanisamy, Muthuramalingam Prakash, Majdi Hochlaf. Electrocatalytic Activation and Conversion of CO2 at Solid–Liquid Model Interfaces: Computational Perspectives. 2023, 329-359. https://doi.org/10.1007/978-3-031-27707-8_14
    39. Ruitao Jin, Nermina Brljak, Robert Sangrigoli, Tiffany R. Walsh, Marc R. Knecht. Achieving regioselective materials binding using multidomain peptides. Nanoscale 2022, 14 (38) , 14113-14121. https://doi.org/10.1039/D2NR03169H
    40. Kieran P. Somers, David L. Cheung. The Amyloidogenic Peptide Amyloid Beta(16–22) Displays Facet Dependent Conformation on Metal Surfaces. Biophysica 2022, 2 (2) , 135-153. https://doi.org/10.3390/biophysica2020015
    41. Yunan Huang, Imann Mosleh, Alireza Abbaspourrad. Impact of protein/peptide templates on metallic nanoparticle synthesis and applications. Nano-Structures & Nano-Objects 2022, 30 , 100864. https://doi.org/10.1016/j.nanoso.2022.100864
    42. Guangchao Zheng, Erjun Liang, Shenli Wang. Proteins Engineer the Size and Morphology of Noble Metal Nanoparticles. 2021, 333-354. https://doi.org/10.1039/9781839163623-00333
    43. Randy L. Lawrence, Mary O. Olagunju, Yang Liu, Krishnamurthy Mahalingam, Joseph M. Slocik, Rajesh R. Naik, Anatoly I. Frenkel, Marc R. Knecht. Remote controlled optical manipulation of bimetallic nanoparticle catalysts using peptides. Catalysis Science & Technology 2021, 11 (7) , 2386-2395. https://doi.org/10.1039/D1CY00189B
    44. Jose Isagani B. Janairo, Kathleen B. Aviso, Michael Angelo B. Promentilla, Raymond R. Tan. Enhanced Hyperbox Classifier Model for Nanomaterial Discovery. AI 2020, 1 (2) , 299-311. https://doi.org/10.3390/ai1020020
    45. Rita Tejada‐Vaprio, Imann Mosleh, Rudra Palash Mukherjee, Hazim Aljewari, McKinzie Fruchtl, Ahmed Elmasheiti, Nicholas Bedford, Lauren Greenlee, M. Hassan Beyzavi, Robert Beitle. Recombinant peptide fusion construction for protein‐templated catalytic palladium nanoparticles. Biotechnology Progress 2020, 36 (3) https://doi.org/10.1002/btpr.2956
    46. Meng Zong, Zhaoqing Ding, Wei He, Jing Luo, Zhenghua Tang. Peptide Based Noble Metal Nanomaterials for Oxygen Reduction Reaction: A Review. International Journal of Electrochemical Science 2020, 15 (3) , 2634-2647. https://doi.org/10.20964/2020.03.50
    47. Shao-Bin He, Feng-Qing Chen, Ling-Fang Xiu, Hua-Ping Peng, Hao-Hua Deng, Ai-Lin Liu, Wei Chen, Guo-Lin Hong. Highly sensitive colorimetric sensor for detection of iodine ions using carboxylated chitosan–coated palladium nanozyme. Analytical and Bioanalytical Chemistry 2020, 412 (2) , 499-506. https://doi.org/10.1007/s00216-019-02270-7
    48. Hodaka Mori, Nobuyuki Matubayasi. Local viscoelasticity at resin-metal interface analyzed with spatial-decomposition formula for relaxation modulus. The Journal of Chemical Physics 2019, 151 (11) https://doi.org/10.1063/1.5109599
    49. Jose Isagani B. Janairo. Predictive Analytics for Biomineralization Peptide Binding Affinity. BioNanoScience 2019, 9 (1) , 74-78. https://doi.org/10.1007/s12668-018-0578-4
    50. Ariela Vergara-Jaque, Matías Zúñiga, Horacio Poblete. Computational Methodologies for Exploring Nano-engineered Materials. 2019, 57-79. https://doi.org/10.1007/978-3-030-31261-9_4
    51. S.R. Ede, S. Anantharaj, K. Sakthikumar, K. Karthick, Subrata Kundu. Investigation of various synthetic protocols for self-assembled nanomaterials and their role in catalysis: progress and perspectives. Materials Today Chemistry 2018, 10 , 31-78. https://doi.org/10.1016/j.mtchem.2018.07.003
    52. Hodaka Mori, Nobuyuki Matubayasi. Resin filling into nano-sized pore on metal surface analyzed by all-atom molecular dynamics simulation over a variety of resin and pore sizes. Polymer 2018, 150 , 360-370. https://doi.org/10.1016/j.polymer.2018.06.052
    53. Jia-Jung Ho, Ayanjeet Ghosh, Tianqi O. Zhang, Martin T. Zanni. Heterogeneous Amyloid β-Sheet Polymorphs Identified on Hydrogen Bond Promoting Surfaces Using 2D SFG Spectroscopy. The Journal of Physical Chemistry C 2018, 105 https://doi.org/10.1021/acs.jpcc.7b11934
    54. Hodaka Mori, Nobuyuki Matubayasi. MD simulation analysis of resin filling into nano-sized pore formed on metal surface. Applied Surface Science 2018, 427 , 1084-1091. https://doi.org/10.1016/j.apsusc.2017.08.123
    55. Chamila C. Dharmawardhana, Krishan Kanhaiya, Tzu-Jen Lin, Amanda Garley, Marc R. Knecht, Jihan Zhou, Jianwei Miao, Hendrik Heinz. Reliable computational design of biological-inorganic materials to the large nanometer scale using Interface-FF. Molecular Simulation 2017, 43 (13-16) , 1394-1405. https://doi.org/10.1080/08927022.2017.1332414
    56. Hongyu Yang, Chengwei Wen, Zhenghua Tang, Likai Wang, Qiannan Wang, Wei Yan, Wen Wu, Shaowei Chen. Shape and structural effects of R5-templated Pd nanomaterials as potent catalyst for oxygen electroreduction in alkaline media. Journal of Materials Science 2017, 52 (13) , 8016-8026. https://doi.org/10.1007/s10853-017-1004-y
    57. Hongyu Yang, Zhenghua Tang, Wei Yan, Likai Wang, Qiannan Wang, Yongqing Zhang, Zhen Liu, Shaowei Chen. Peptide capped Pd nanoparticles for oxygen electroreduction: Strong surface effects. Journal of Alloys and Compounds 2017, 702 , 146-152. https://doi.org/10.1016/j.jallcom.2017.01.199
    58. Hendrik Heinz, Chandrani Pramanik, Ozge Heinz, Yifu Ding, Ratan K. Mishra, Delphine Marchon, Robert J. Flatt, Irina Estrela-Lopis, Jordi Llop, Sergio Moya, Ronald F. Ziolo. Nanoparticle decoration with surfactants: Molecular interactions, assembly, and applications. Surface Science Reports 2017, 72 (1) , 1-58. https://doi.org/10.1016/j.surfrep.2017.02.001
    59. Sathish Kumar Ramakrishnan, Jie Zhu, Csilla Gergely. Organic–inorganic interface simulation for new material discoveries. WIREs Computational Molecular Science 2017, 7 (1) https://doi.org/10.1002/wcms.1277
    60. Hadi Ramezani-Dakhel, Nicholas M. Bedford, Taylor J. Woehl, Marc R. Knecht, Rajesh R. Naik, Hendrik Heinz. Nature of peptide wrapping onto metal nanoparticle catalysts and driving forces for size control. Nanoscale 2017, 9 (24) , 8401-8409. https://doi.org/10.1039/C7NR02813J
    61. Wei Wang, Caleb F. Anderson, Zongyuan Wang, Wei Wu, Honggang Cui, Chang-Jun Liu. Peptide-templated noble metal catalysts: syntheses and applications. Chem. Sci. 2017, 8 (5) , 3310-3324. https://doi.org/10.1039/C7SC00069C
    62. Verena Baumann, Madathumpady Abubaker Habeeb Muhammed, Adam J. Blanch, Priyanka Dey, Jessica Rodríguez‐Fernández. Biomolecules in Metal and Semiconductor Nanoparticle Growth. Israel Journal of Chemistry 2016, 56 (4) , 195-213. https://doi.org/10.1002/ijch.201500031
    63. Jose Isagani B. Janairo. Enhanced Nanomaterials Through Simple Tweaks in the Microenvironment. 2016, 53-64. https://doi.org/10.1007/978-981-10-0858-0_4
    64. N.M. Bedford, C.J. Munro, M.R. Knecht. Peptide Binding for Bio-Based Nanomaterials. 2016, 581-598. https://doi.org/10.1016/bs.mie.2016.05.010
    65. Musa Ozboyaci, Daria B. Kokh, Stefano Corni, Rebecca C. Wade. Modeling and simulation of protein–surface interactions: achievements and challenges. Quarterly Reviews of Biophysics 2016, 49 https://doi.org/10.1017/S0033583515000256
    66. Hendrik Heinz, Hadi Ramezani-Dakhel. Simulations of inorganic–bioorganic interfaces to discover new materials: insights, comparisons to experiment, challenges, and opportunities. Chemical Society Reviews 2016, 45 (2) , 412-448. https://doi.org/10.1039/C5CS00890E
    67. Yoshiaki Maeda, Zengyan Wei, Yasuhiro Ikezoe, Hiroshi Matsui. Enzyme‐Mimicking Peptides to Catalytically Grow ZnO Nanocrystals in Non‐Aqueous Environments. ChemNanoMat 2015, 1 (5) , 319-323. https://doi.org/10.1002/cnma.201500041
    68. Árpád Molnár. Novelty in Complexity: Relationship between Small Peptides, Pd Nanoparticles, and Catalyst Characteristics. ChemCatChem 2015, 7 (14) , 2025-2027. https://doi.org/10.1002/cctc.201500108
    69. Jose Isagani B. Janairo, Frumencio Co, Jose Santos Carandang, Divina M. Amalin. Sequence-dependent cluster analysis of biomineralization peptides. Zeitschrift für Naturforschung C 2015, 70 (7-8) , 191-195. https://doi.org/10.1515/znc-2014-4202
    70. Stefano Corni. Affinity and Selectivity of Peptides for Inorganic Materials: A Thermodynamic Discussion of the Role of Conformational Flexibility. JOM 2015, 67 (4) , 781-787. https://doi.org/10.1007/s11837-015-1334-7
    71. Hadi Ramezani‐Dakhel, Lingyan Ruan, Yu Huang, Hendrik Heinz. Molecular Mechanism of Specific Recognition of Cubic Pt Nanocrystals by Peptides and of the Concentration‐Dependent Formation from Seed Crystals. Advanced Functional Materials 2015, 25 (9) , 1374-1384. https://doi.org/10.1002/adfm.201404136
    72. Yan Fu, Haixiang Zhang, Shengdong Dai, Xing Zhi, Jinli Zhang, Wei Li. Glutathione-stabilized palladium nanozyme for colorimetric assay of silver( i ) ions. The Analyst 2015, 140 (19) , 6676-6683. https://doi.org/10.1039/C5AN01103E
    73. A. Kyrychenko. NANOGOLD decorated by pHLIP peptide: comparative force field study. Physical Chemistry Chemical Physics 2015, 17 (19) , 12648-12660. https://doi.org/10.1039/C5CP01136A
    74. Beverly D. Briggs, Nicholas M. Bedford, Soenke Seifert, Hilmar Koerner, Hadi Ramezani-Dakhel, Hendrik Heinz, Rajesh R. Naik, Anatoly I. Frenkel, Marc R. Knecht. Atomic-scale identification of Pd leaching in nanoparticle catalyzed C–C coupling: effects of particle surface disorder. Chemical Science 2015, 6 (11) , 6413-6419. https://doi.org/10.1039/C5SC01424G
    75. Stefanie Papst, Margaret A. Brimble, Richard D. Tilley, David E. Williams. One‐Pot Synthesis of Functionalized Noble Metal Nanoparticles Using a Rationally Designed Phosphopeptide. Particle & Particle Systems Characterization 2014, 31 (9) , 971-975. https://doi.org/10.1002/ppsc.201300381
    76. Jose Isagani B Janairo, Kazuyasu Sakaguchi. Effects of Buffer on the Structure and Catalytic Activity of Palladium Nanomaterials Formed by Biomineralization. Chemistry Letters 2014, 43 (8) , 1315-1317. https://doi.org/10.1246/cl.140405
    77. Joseph M. Slocik, Rajesh R. Naik. Peptide-Nanoparticle Strategies, Interactions, and Challenges. 2014, 1-16. https://doi.org/10.1007/978-1-4614-9446-1_1
    78. Peter A. Mirau. Interfacial Structure Determination. 2014, 95-125. https://doi.org/10.1007/978-1-4614-9446-1_4
    79. Ryan Coppage, Marc R. Knecht. Bio-Inspired Nanocatalysis. 2014, 173-219. https://doi.org/10.1007/978-1-4614-9446-1_7
    80. Jose Isagani B. Janairo, Tatsuya Sakaguchi, Kenji Hara, Atsushi Fukuoka, Kazuyasu Sakaguchi. Effects of biomineralization peptide topology on the structure and catalytic activity of Pd nanomaterials. Chem. Commun. 2014, 50 (66) , 9259-9262. https://doi.org/10.1039/C4CC04350B
    81. Wei Li, Yingming Fu, Yan Fu, Xian Wang, Jinli Zhang. G-/C-rich Oligonucleotides Stabilized Pd Nanocatalysts for the Suzuki Coupling Reaction Under Mild Conditions. Catalysis Letters 2013, 143 (6) , 578-586. https://doi.org/10.1007/s10562-013-0989-3
    82. Matthew R Hartings, Noah Benjamin, Floriene Briere, Maria Briscione, Omar Choudary, Tamra L Fisher, Laura Flynn, Elizabeth Ghias, Michaela Harper, Nader Khamis, Catherine Koenigsknecht, Klare Lazor, Steven Moss, Elaine Robbins, Susan Schultz, Samiye Yaman, Luke M Haverhals, Paul C Trulove, Hugh C De Long, Abigail E Miller, Douglas M Fox. Concurrent zero-dimensional and one-dimensional biomineralization of gold from a solution of Au 3+ and bovine serum albumin. Science and Technology of Advanced Materials 2013, 14 (6) , 065004. https://doi.org/10.1088/1468-6996/14/6/065004
    83. Dennis B. Pacardo, Marc R. Knecht. Exploring the mechanism of Stille C–C coupling viapeptide-capped Pd nanoparticles results in low temperature reagent selectivity. Catal. Sci. Technol. 2013, 3 (3) , 745-753. https://doi.org/10.1039/C2CY20636F
    84. Stefanie Papst, Soshan Cheong, Moritz J. Banholzer, Margaret A. Brimble, David E. Williams, Richard D. Tilley. One-pot synthesis of water soluble iron nanoparticles using rationally-designed peptides and ligand release. Chemical Communications 2013, 49 (40) , 4540. https://doi.org/10.1039/c3cc41751d
    85. Hadi Ramezani-Dakhel, Peter A. Mirau, Rajesh R. Naik, Marc R. Knecht, Hendrik Heinz. Stability, surface features, and atom leaching of palladium nanoparticles: toward prediction of catalytic functionality. Physical Chemistry Chemical Physics 2013, 15 (15) , 5488. https://doi.org/10.1039/c3cp00135k
    86. Louise B. Wright, Tiffany R. Walsh. Efficient conformational sampling of peptides adsorbed onto inorganic surfaces: insights from a quartz binding peptide. Physical Chemistry Chemical Physics 2013, 15 (13) , 4715. https://doi.org/10.1039/c3cp42921k
    87. Nunzianda Frascione, Antonio Codina-Barrios, Alan R. Bassindale, Peter G. Taylor. Enhancing in vitro selection techniques to assist the discovery, understanding and use of inorganic binding peptides. Dalton Transactions 2013, 42 (28) , 10337. https://doi.org/10.1039/c3dt50541c
    88. Huimei Chen, Daohua Sun, Xinde Jiang, Xiaolian Jing, Fenfen Lu, Tareque Odoom-Wubah, Yanmei Zheng, Jiale Huang, Qingbiao Li. Fabrication of Au/Pd alloy nanoparticle/Pichia pastoris composites: a microorganism-mediated approach. RSC Advances 2013, 3 (35) , 15389. https://doi.org/10.1039/c3ra41215f
    89. Louise B. Wright, P. Mark Rodger, Tiffany R. Walsh. Aqueous citrate: a first-principles and force-field molecular dynamics study. RSC Advances 2013, 3 (37) , 16399. https://doi.org/10.1039/c3ra42437e
    90. Chen-I Wang, Chih-Ching Huang, Yang-Wei Lin, Wen-Tsen Chen, Huan-Tsung Chang. Catalytic gold nanoparticles for fluorescent detection of mercury(II) and lead(II) ions. Analytica Chimica Acta 2012, 745 , 124-130. https://doi.org/10.1016/j.aca.2012.07.041
    91. Jie Feng, Joseph M. Slocik, Mehmet Sarikaya, Rajesh R. Naik, Barry L. Farmer, Hendrik Heinz. Influence of the Shape of Nanostructured Metal Surfaces on Adsorption of Single Peptide Molecules in Aqueous Solution. Small 2012, 8 (7) , 1049-1059. https://doi.org/10.1002/smll.201102066
    92. Rohit Bhandari, Ryan Coppage, Marc R. Knecht. Mimicking nature's strategies for the design of nanocatalysts. Catal. Sci. Technol. 2012, 2 (2) , 256-266. https://doi.org/10.1039/C1CY00350J
    93. Raoul Peltier, Wai Ruu Siah, Grant V. M. Williams, Margaret A. Brimble, Richard D. Tilley, David E. Williams. Novel Phosphopeptides as Surface-Active Agents in Iron Nanoparticle Synthesis. Australian Journal of Chemistry 2012, 65 (6) , 680. https://doi.org/10.1071/CH12168

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2011, 133, 32, 12346–12349
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja203726n
    Published July 21, 2011
    Copyright © 2011 American Chemical Society

    Article Views

    2900

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.