Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Facile Mechanosynthesis of Amorphous Zeolitic Imidazolate Frameworks

View Author Information
Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB2 3QZ, U.K.
§ ISIS Facility, Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0QX, U.K.
# Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
Cite this: J. Am. Chem. Soc. 2011, 133, 37, 14546–14549
Publication Date (Web):August 17, 2011
https://doi.org/10.1021/ja206082s
Copyright © 2011 American Chemical Society

    Article Views

    6098

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    A fast and efficient mechanosynthesis (ball-milling) method of preparing amorphous zeolitic imidazolate frameworks (ZIFs) from different starting materials is discussed. Using X-ray total scattering, N2 sorption analysis, and gas pycnometry, these frameworks are indistinguishable from one another and from temperature-amorphized ZIFs. Gas sorption analysis also confirms that they are nonporous once formed, in contrast to activated ZIF-4, which displays interesting gate-opening behavior. Nanoparticles of a prototypical nanoporous substituted ZIF, ZIF-8, were also prepared and shown to undergo amorphization.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Synthesis details, materials characterization, and supplementary data. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 183 publications.

    1. Deshuang Lu, Nikom Klomkliang, Francis Verpoort, Somboon Chaemchuen. Tuning Coordination in ZIF-67 Through the Solid-State Thermal Synthesis for Balancing Structural Stability and Catalytic Reactivity. ACS Applied Materials & Interfaces 2024, Article ASAP.
    2. Jianghua Yang, Wenguang Huang, Wentao Zhang, Kunrui Wei, Bingcai Pan, Shujuan Zhang. Using Defect Control To Break the Stability–Activity Trade-Off in Enzyme Immobilization via Competitive Coordination. Langmuir 2023, 39 (6) , 2312-2321. https://doi.org/10.1021/acs.langmuir.2c02977
    3. Xiao Chen, Lanlan Cheng, Yiguo Yang, Xiufang Chen, Fengtao Chen, Wangyang Lu. Construction of High-Density Fe Clusters Embedded in a Porous Carbon Nitride Catalyst with Effectively Selective Transformation of Benzene. ACS Sustainable Chemistry & Engineering 2023, 11 (4) , 1518-1526. https://doi.org/10.1021/acssuschemeng.2c06224
    4. Yuqiang Xiang, Huaduo Yan, Fei Peng, Weikang Ke, Aroosha Faheem, Mingshun Li, Yonggang Hu. Microorganisms@aMIL-125 (Ti): An Amorphous Metal–Organic Framework Induced by Microorganisms and Their Applications. ACS Omega 2023, 8 (2) , 2164-2172. https://doi.org/10.1021/acsomega.2c06329
    5. Irene Bechis, Adam F. Sapnik, Andrew Tarzia, Emma H. Wolpert, Matthew A. Addicoat, David A. Keen, Thomas D. Bennett, Kim E. Jelfs. Modeling the Effect of Defects and Disorder in Amorphous Metal–Organic Frameworks. Chemistry of Materials 2022, 34 (20) , 9042-9054. https://doi.org/10.1021/acs.chemmater.2c01528
    6. Will A. Lucas, Feier Hou. Out with Acetonitrile: Water-Assisted Accelerated-Aging Synthesis of CuI-Pyrazine Hybrid Materials. Crystal Growth & Design 2022, 22 (5) , 3128-3137. https://doi.org/10.1021/acs.cgd.2c00021
    7. Nattapol Ma, Satoshi Horike. Metal–Organic Network-Forming Glasses. Chemical Reviews 2022, 122 (3) , 4163-4203. https://doi.org/10.1021/acs.chemrev.1c00826
    8. Jun Yee Tse, Kazunori Kadota, Toshiki Nakajima, Hiromasa Uchiyama, Shunsuke Tanaka, Yuichi Tozuka. Crystalline Rearranged CD-MOF Particles Obtained via Spray-Drying Synthesis Applied to Inhalable Formulations with High Drug Loading. Crystal Growth & Design 2022, 22 (2) , 1143-1154. https://doi.org/10.1021/acs.cgd.1c01091
    9. Maxwell W. Terban, Simon J. L. Billinge. Structural Analysis of Molecular Materials Using the Pair Distribution Function. Chemical Reviews 2022, 122 (1) , 1208-1272. https://doi.org/10.1021/acs.chemrev.1c00237
    10. Paul Iacomi, Guillaume Maurin. ResponZIF Structures: Zeolitic Imidazolate Frameworks as Stimuli-Responsive Materials. ACS Applied Materials & Interfaces 2021, 13 (43) , 50602-50642. https://doi.org/10.1021/acsami.1c12403
    11. Arun Gopalan, Randall Q. Snurr. Molecular Siting of C1–C6 n-Alkanes in ZIF-4: A Hybrid Monte Carlo Study. The Journal of Physical Chemistry C 2021, 125 (29) , 16256-16267. https://doi.org/10.1021/acs.jpcc.1c03897
    12. Jesus Gandara-Loe, Rocio Bueno-Perez, Alexander Missyul, David Fairen-Jimenez, Joaquin Silvestre-Albero. Molecular Sieving Properties of Nanoporous Mixed-Linker ZIF-62: Associated Structural Changes upon Gas Adsorption Application. ACS Applied Nano Materials 2021, 4 (4) , 3519-3528. https://doi.org/10.1021/acsanm.1c00010
    13. Saad Aldin Mohamed, Jihan Kim. Gas Adsorption Enhancement in Partially Amorphized Metal–Organic Frameworks. The Journal of Physical Chemistry C 2021, 125 (8) , 4509-4518. https://doi.org/10.1021/acs.jpcc.0c10106
    14. Xinyao Liu, Kent O. Kirlikovali, Zhijie Chen, Kaikai Ma, Karam B. Idrees, Ran Cao, Xuan Zhang, Timur Islamoglu, Yunling Liu, Omar K. Farha. Small Molecules, Big Effects: Tuning Adsorption and Catalytic Properties of Metal–Organic Frameworks. Chemistry of Materials 2021, 33 (4) , 1444-1454. https://doi.org/10.1021/acs.chemmater.0c04675
    15. Harrison D. Lawson, S. Patrick Walton, Christina Chan. Metal–Organic Frameworks for Drug Delivery: A Design Perspective. ACS Applied Materials & Interfaces 2021, 13 (6) , 7004-7020. https://doi.org/10.1021/acsami.1c01089
    16. Marcel Maslyk, Sven Bach, Wenyu Li, Sergii I. Shylin, Martin Panthöfer, Bastian Barton, Vadim Ksenofontov, Ke Xu, Björn Meermann, Ute Kolb, Jörn Schmedt auf der Günne, Wolfgang Tremel. Understanding the Stability and Recrystallization Behavior of Amorphous Zinc Phosphate. The Journal of Physical Chemistry C 2021, 125 (4) , 2636-2647. https://doi.org/10.1021/acs.jpcc.0c09044
    17. Valentina Martinez, Bahar Karadeniz, Nikola Biliškov, Ivor Lončarić, Senada Muratović, Dijana Žilić, Stanislav M. Avdoshenko, Maria Roslova, Alexey A. Popov, Krunoslav Užarević. Tunable Fulleretic Sodalite MOFs: Highly Efficient and Controllable Entrapment of C60 Fullerene via Mechanochemistry. Chemistry of Materials 2020, 32 (24) , 10628-10640. https://doi.org/10.1021/acs.chemmater.0c03796
    18. Mahdiar Taheri, Iolanda Di Bernardo, Adrian Lowe, David R. Nisbet, Takuya Tsuzuki. Green Full Conversion of ZnO Nanopowders to Well-Dispersed Zeolitic Imidazolate Framework-8 (ZIF-8) Nanopowders via a Stoichiometric Mechanochemical Reaction for Fast Dye Adsorption. Crystal Growth & Design 2020, 20 (4) , 2761-2773. https://doi.org/10.1021/acs.cgd.0c00129
    19. Marta García-Palacín, José Ignacio Martínez, Lorena Paseta, Adam Deacon, Timothy Johnson, Magdalena Malankowska, Carlos Téllez, Joaquín Coronas. Sized-Controlled ZIF-8 Nanoparticle Synthesis from Recycled Mother Liquors: Environmental Impact Assessment. ACS Sustainable Chemistry & Engineering 2020, 8 (7) , 2973-2980. https://doi.org/10.1021/acssuschemeng.9b07593
    20. Chongxiong Duan, Yi Yu, Pengfei Yang, Xuelian Zhang, Feier Li, Libo Li, Hongxia Xi. Engineering New Defects in MIL-100(Fe) via a Mixed-Ligand Approach To Effect Enhanced Volatile Organic Compound Adsorption Capacity. Industrial & Engineering Chemistry Research 2020, 59 (2) , 774-782. https://doi.org/10.1021/acs.iecr.9b05751
    21. Shuzhen Lv, Kangyao Zhang, Ling Zhu, Dianping Tang. ZIF-8-Assisted NaYF4:Yb,Tm@ZnO Converter with Exonuclease III-Powered DNA Walker for Near-Infrared Light Responsive Biosensor. Analytical Chemistry 2020, 92 (1) , 1470-1476. https://doi.org/10.1021/acs.analchem.9b04710
    22. Hao Wang, Lauren R. Grabstanowicz, Heather M. Barkholtz, Dominic Rebollar, Zachary B. Kaiser, Dan Zhao, Biao-Hua Chen, Di-Jia Liu. Impacts of Imidazolate Ligand on Performance of Zeolitic-Imidazolate Framework-Derived Oxygen Reduction Catalysts. ACS Energy Letters 2019, 4 (10) , 2500-2507. https://doi.org/10.1021/acsenergylett.9b01740
    23. Benjamin Le Ouay, Hikaru Takaya, Takashi Uemura. Controlling the Packing of Metal–Organic Layers by Inclusion of Polymer Guests. Journal of the American Chemical Society 2019, 141 (37) , 14549-14553. https://doi.org/10.1021/jacs.9b07563
    24. Shichun Li, René Limbach, Louis Longley, Amir A. Shirzadi, John C. Walmsley, Duncan N. Johnstone, Paul A. Midgley, Lothar Wondraczek, Thomas D. Bennett. Mechanical Properties and Processing Techniques of Bulk Metal–Organic Framework Glasses. Journal of the American Chemical Society 2019, 141 (2) , 1027-1034. https://doi.org/10.1021/jacs.8b11357
    25. Sufeng An, Guanghui Zhang, Tingwen Wang, Wenna Zhang, Keyan Li, Chunshan Song, Jeffrey T. Miller, Shu Miao, Junhu Wang, Xinwen Guo. High-Density Ultra-small Clusters and Single-Atom Fe Sites Embedded in Graphitic Carbon Nitride (g-C3N4) for Highly Efficient Catalytic Advanced Oxidation Processes. ACS Nano 2018, 12 (9) , 9441-9450. https://doi.org/10.1021/acsnano.8b04693
    26. Guowu Zhan and Hua Chun Zeng . A Synthetic Protocol for Preparation of Binary Multi-shelled Hollow Spheres and Their Enhanced Oxidation Application. Chemistry of Materials 2017, 29 (23) , 10104-10112. https://doi.org/10.1021/acs.chemmater.7b03875
    27. Vanessa Armel, Sheena Hindocha, Fabrice Salles, Stephen Bennett, Deborah Jones, and Frédéric Jaouen . Structural Descriptors of Zeolitic–Imidazolate Frameworks Are Keys to the Activity of Fe–N–C Catalysts. Journal of the American Chemical Society 2017, 139 (1) , 453-464. https://doi.org/10.1021/jacs.6b11248
    28. Joseph R. Ramirez, Haiyang Yang, Christopher M. Kane, Amanda N. Ley, and K. Travis Holman . Reproducible Synthesis and High Porosity of mer-Zn(Im)2 (ZIF-10): Exploitation of an Apparent Double-Eight Ring Template. Journal of the American Chemical Society 2016, 138 (37) , 12017-12020. https://doi.org/10.1021/jacs.6b06375
    29. Puja Adhikari, Mo Xiong, Neng Li, Xiujian Zhao, Paul Rulis, and Wai-Yim Ching . Structure and Electronic Properties of a Continuous Random Network Model of an Amorphous Zeolitic Imidazolate Framework (a-ZIF). The Journal of Physical Chemistry C 2016, 120 (28) , 15362-15368. https://doi.org/10.1021/acs.jpcc.6b06337
    30. Martin Hartmann, Ulrike Böhme, Maximilian Hovestadt, and Carolin Paula . Adsorptive Separation of Olefin/Paraffin Mixtures with ZIF-4. Langmuir 2015, 31 (45) , 12382-12389. https://doi.org/10.1021/acs.langmuir.5b02907
    31. Hong-liang Liu, Yi-Fei Xie, Zhi-gang Pan, Antonino Famulari, Fang Guo, Zhongfu Zhou, and Javier Martí-Rujas . Cyclic Interconversion among Molecular Salts via Neat Grinding and Related Photoluminescence Properties. Crystal Growth & Design 2014, 14 (12) , 6528-6536. https://doi.org/10.1021/cg5014329
    32. Stijn Van der Perre, Tom Van Assche, Belgin Bozbiyik, Jeroen Lannoeye, Dirk. E. De Vos, Gino V. Baron, and Joeri F. M. Denayer . Adsorptive Characterization of the ZIF-68 Metal-Organic Framework: A Complex Structure with Amphiphilic Properties. Langmuir 2014, 30 (28) , 8416-8424. https://doi.org/10.1021/la501594t
    33. Thomas D. Bennett and Anthony K. Cheetham . Amorphous Metal–Organic Frameworks. Accounts of Chemical Research 2014, 47 (5) , 1555-1562. https://doi.org/10.1021/ar5000314
    34. Mohammad Yaser Masoomi, Kyriakos C. Stylianou, Ali Morsali, Pascal Retailleau, and Daniel Maspoch . Selective CO2 Capture in Metal–Organic Frameworks with Azine-Functionalized Pores Generated by Mechanosynthesis. Crystal Growth & Design 2014, 14 (5) , 2092-2096. https://doi.org/10.1021/cg500033b
    35. Pu Zhao, Giulio I. Lampronti, Gareth O. Lloyd, Michael T. Wharmby, Sébastien Facq, Anthony K. Cheetham, and Simon A. T. Redfern . Phase Transitions in Zeolitic Imidazolate Framework 7: The Importance of Framework Flexibility and Guest-Induced Instability. Chemistry of Materials 2014, 26 (5) , 1767-1769. https://doi.org/10.1021/cm500407f
    36. Gayatri Kumari, Kolleboyina Jayaramulu, Tapas Kumar Maji, and Chandrabhas Narayana . Temperature Induced Structural Transformations and Gas Adsorption in the Zeolitic Imidazolate Framework ZIF-8: A Raman Study. The Journal of Physical Chemistry A 2013, 117 (43) , 11006-11012. https://doi.org/10.1021/jp407792a
    37. Saul H. Lapidus, Gregory J. Halder, Peter J. Chupas, and Karena W. Chapman . Exploiting High Pressures to Generate Porosity, Polymorphism, And Lattice Expansion in the Nonporous Molecular Framework Zn(CN)2. Journal of the American Chemical Society 2013, 135 (20) , 7621-7628. https://doi.org/10.1021/ja4012707
    38. James T. Hughes, Thomas D. Bennett, Anthony K. Cheetham, and Alexandra Navrotsky . Thermochemistry of Zeolitic Imidazolate Frameworks of Varying Porosity. Journal of the American Chemical Society 2013, 135 (2) , 598-601. https://doi.org/10.1021/ja311237m
    39. Jingqi Zhao, Yaowen Zhang, Yankun Luo, Wenzhuo Zheng, Xiangrui Xu, Feng Luo. Amorphous metal–organic frameworks: Pioneering frontiers in cancer diagnostics and therapeutics. Chemical Engineering Journal 2024, 492 , 152295. https://doi.org/10.1016/j.cej.2024.152295
    40. Zhiliang Guo, Helin Wang, Changgan Lai, Shuai Ji, Jian Sun, Donghuai Zhang, Liu Nie, Lixu Lei. Less solvent solid state reaction method synthesis of zeolitic imidazolate frameworks and the adsorption properties of their derived carbon materials. Inorganica Chimica Acta 2024, 566 , 122002. https://doi.org/10.1016/j.ica.2024.122002
    41. Azar Zochedh, Kaliraj Chandran, Karthick Arumugam, Mohana Priya, Murugan Anbazhagan, Asath Bahadur Sultan, Sureba Sukumaran, Cibe Chakaravarthy, Karthikeyan Palaniyandi, Thandavarayan Kathiresan. Encapsulating 2-Aminopyridine With Zeolite Imidazole Framework Nanoparticles for Induction of Cell Death via pH-Responsive Delivery in Hepatocellular Carcinoma (HepG2) Cells. Polycyclic Aromatic Compounds 2024, 12 , 1-19. https://doi.org/10.1080/10406638.2024.2344764
    42. Shengshou Ma, Ka-Ming Leung, Changzhong Liao, Chung-Kai Chang, Ying Zhou, Shangsi Chen, Xiaolong Zhao, Qi Zhao, Kaimin Shih. Green conversion of waste alkaline battery material to zeolitic imidazolate framework-8 and its iodine capture mechanism. Journal of Hazardous Materials 2024, 469 , 133612. https://doi.org/10.1016/j.jhazmat.2024.133612
    43. Thirumoorthy Kulandaivel, Akshaya Subhramaniyan Rasappan, Kirankumar Venkatesan Savunthari, Melvin S. Samuel, Mohanraj Kumar, Hans-Uwe Dahms, Aswin Kumar Anbalagan, Gopalakrishnan Mohan, Soorathep Kheawhom, Sivarasan Ganesan. Facile fabrication of amorphous Al/Fe based metal–organic framework as effective heterogeneous fenton catalyst for environmental remediation. Environmental Geochemistry and Health 2024, 46 (5) https://doi.org/10.1007/s10653-024-01940-5
    44. Jieting Ding, Hao-Fan Wang, Kui Shen, Xiaoming Wei, Liyu Chen, Yingwei Li. Amorphization of MOFs with rich active sites and high electronic conductivity for hydrazine oxidation. Chinese Journal of Catalysis 2024, 60 , 351-359. https://doi.org/10.1016/S1872-2067(24)60035-5
    45. Ieuan Cornu, Thomas D. Bennett, Charlotte Corcos, Lauren N. McHugh, Pierre Florian. Evidence of Organic Polymeric Behavior in the Glass Transition of Metal–Organic Frameworks. Small 2024, 20 (15) https://doi.org/10.1002/smll.202307034
    46. Emilio Méndez, Rocio Semino. Microscopic mechanism of thermal amorphization of ZIF-4 and melting of ZIF-zni revealed via molecular dynamics and machine learning techniques. Journal of Materials Chemistry A 2024, 12 (8) , 4572-4582. https://doi.org/10.1039/D3TA07361K
    47. Farhat Vakil, M. Shahid. Preparation and applications of water-based zeolitic imidazolate frameworks. 2024, 179-198. https://doi.org/10.1016/B978-0-323-95939-1.00003-4
    48. Manchi Nagaraju, Bhimanaboina Ramulu, Edugulla Girija Shankar, Jae Su Yu. Rational design of hierarchical zeolitic imidazolate framework-67@Cu2CoO3 core–shell architectures for hybrid supercapacitor applications. Applied Surface Science 2023, 640 , 158339. https://doi.org/10.1016/j.apsusc.2023.158339
    49. Haijian Liu, Miao Wang, Guofu Huang. A fluorescent sensor based on sulfur nanodots encapsulated into zeolitic imidazolate framework-8 for ultrasensitive detection of tartrazine. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2023, 303 , 123187. https://doi.org/10.1016/j.saa.2023.123187
    50. Zijun Ding, Xiaoying Gao, Yanmei Yang, Hua Wei, Shenghong Yang, Jian Liu. Amorphous copper(II)-cyanoimidazole frameworks as peroxidase mimics for hydrogen sulfide assay. Journal of Colloid and Interface Science 2023, 652 , 1889-1896. https://doi.org/10.1016/j.jcis.2023.09.014
    51. Ning Cao, Xiaobin Zhang, Qingcan Li, Xuhui Liu, Xingdong Ma, Guoshun Liu, Xiaoqi Tang, Chao Li, Xiaobei Zang, Qingguo Shao. The role of nitrogen-doping on the electrochemical behavior of MOF-derived carbons in ionic liquid electrolytes. Diamond and Related Materials 2023, 139 , 110412. https://doi.org/10.1016/j.diamond.2023.110412
    52. Wupeng Wang, Milton Chai, Rijia Lin, Fangfang Yuan, Lianzhou Wang, Vicki Chen, Jingwei Hou. Amorphous MOFs for next generation supercapacitors and batteries. Energy Advances 2023, 2 (10) , 1591-1603. https://doi.org/10.1039/D3YA00306J
    53. Wupeng Wang, Milton Chai, Muhammad Yazid Bin Zulkifli, Kaijie Xu, Yuelei Chen, Lianzhou Wang, Vicki Chen, Jingwei Hou. Metal–organic framework composites from a mechanochemical process. Molecular Systems Design & Engineering 2023, 8 (5) , 560-579. https://doi.org/10.1039/D2ME00211F
    54. Fengxia Yang, Fuyi Cui, Yi Di Yuan, Xin Yu, Dan Zhao. Mechanistic insights into the role of nanoparticles towards the enhanced performance of thin-film nanocomposite membranes. Journal of Membrane Science Letters 2023, 3 (1) , 100046. https://doi.org/10.1016/j.memlet.2023.100046
    55. Zuhao Shi, Sri Hartati, Arramel Arramel, Neng Li. Unraveling the bond structure, porosity, and mechanical properties amorphous ZIF-4 and its topological equivalents: Large scale ab initio calculations. APL Materials 2023, 11 (2) https://doi.org/10.1063/5.0139208
    56. Valentina Martinez, Tomislav Stolar, Bahar Karadeniz, Ivana Brekalo, Krunoslav Užarević. Advancing mechanochemical synthesis by combining milling with different energy sources. Nature Reviews Chemistry 2023, 7 (1) , 51-65. https://doi.org/10.1038/s41570-022-00442-1
    57. Thomas Douglas Bennett. Amorphization of hybrid framework materials. 2023, 290-306. https://doi.org/10.1016/B978-0-12-823144-9.00071-6
    58. S. R. G. Balestra, R. Semino. Computer simulation of the early stages of self-assembly and thermal decomposition of ZIF-8. The Journal of Chemical Physics 2022, 157 (18) https://doi.org/10.1063/5.0128656
    59. Vinodhini Subramaniyam, Daniel T. Thangadurai, Pavithra V. Ravi, Moorthi Pichumani. Do the acid/base modifiers in solvothermal synthetic conditions influence the formation of Zr-Tyr MOFs to be amorphous?. Journal of Molecular Structure 2022, 1267 , 133611. https://doi.org/10.1016/j.molstruc.2022.133611
    60. Michael F. Thorne, Celia Castillo-Blas, Lauren N. McHugh, Alice M. Bumstead, Georgina Robertson, Adam F. Sapnik, Chloe S. Coates, Farheen N. Sayed, Clare P. Grey, David A. Keen, Martin Etter, Ivan da Silva, Krunoslav Užarević, Thomas D. Bennett. Formation of new crystalline qtz-[Zn(mIm)2] polymorph from amorphous ZIF-8. Chemical Communications 2022, 58 (85) , 11949-11952. https://doi.org/10.1039/D2CC04241J
    61. Qizhao Xiong, Yang Chen, Dongxiao Yang, Kaihua Wang, Yi Wang, Jiangfeng Yang, Libo Li, Jinping Li. Constructing strategies for hierarchically porous MOFs with different pore sizes and applications in adsorption and catalysis. Materials Chemistry Frontiers 2022, 6 (20) , 2944-2967. https://doi.org/10.1039/D2QM00557C
    62. Daniele Sassone, Sergio Bocchini, Marco Fontana, Clara Salvini, Giancarlo Cicero, Michele Re Fiorentin, Francesca Risplendi, Giulio Latini, M. Amin Farkhondehfal, Fabrizio Pirri, Juqin Zeng. Imidazole-imidazolate pair as organo-electrocatalyst for CO2 reduction on ZIF-8 material. Applied Energy 2022, 324 , 119743. https://doi.org/10.1016/j.apenergy.2022.119743
    63. Zhichong Yu, Liang Tang, Nattapol Ma, Satoshi Horike, Wenqian Chen. Recent progress of amorphous and glassy coordination polymers. Coordination Chemistry Reviews 2022, 469 , 214646. https://doi.org/10.1016/j.ccr.2022.214646
    64. Alice M. Bumstead, Michael F. Thorne, Adam F. Sapnik, Celia Castillo-Blas, Giulio I. Lampronti, Thomas D. Bennett. Investigating the chemical sensitivity of melting in zeolitic imidazolate frameworks. Dalton Transactions 2022, 51 (36) , 13636-13645. https://doi.org/10.1039/D2DT02142K
    65. Bo Huang, Yanqiong Li, Wen Zeng. Application status of zeolitic imidazolate framework in gas sensors. Nano Futures 2022, 6 (3) , 032003. https://doi.org/10.1088/2399-1984/ac84b5
    66. Weijun Xu, Taibing Wang, Junmin Qian, Jinlei Wang, Guanghui Hou, Yaping Wang, Xinke Cui, Aili Suo, Daocheng Wu. Fe(II)-hydrazide coordinated all-active metal organic framework for photothermally enhanced tumor penetration and ferroptosis-apoptosis synergistic therapy. Chemical Engineering Journal 2022, 437 , 135311. https://doi.org/10.1016/j.cej.2022.135311
    67. Norbert Német, Gábor Holló, Gábor Schuszter, Dezső Horváth, Ágota Tóth, Federico Rossi, István Lagzi. Application of a chemical clock in material design: chemically programmed synthesis of zeolitic imidazole framework-8. Chemical Communications 2022, 58 (38) , 5777-5780. https://doi.org/10.1039/D2CC01139E
    68. Tania Bajaj, Charan Singh, Ghanshyam Das Gupta. Novel metal organic frameworks improves solubility and oral absorption of mebendazole: Physicochemical characterization and in vitro-in vivo evaluation. Journal of Drug Delivery Science and Technology 2022, 70 , 103264. https://doi.org/10.1016/j.jddst.2022.103264
    69. Wenfei Dong, Guo Chen, Lin Zhang, Haiyan Cao, Wenbing Shi, Hongmei Lan, Hao Zhou. Biomimetic iron-imidazole sites into metal organic framework nanoflowers as high-affinity peroxidase mimic for colorimetric biosensing. Microchemical Journal 2022, 175 , 107064. https://doi.org/10.1016/j.microc.2021.107064
    70. Chengwei Gao, Zhenjing Jiang, Shibin Qi, Peixing Wang, Lars Rosgaard Jensen, Morten Johansen, Christian Kolle Christensen, Yanfei Zhang, Dorthe Bomholdt Ravnsbæk, Yuanzheng Yue. Metal‐Organic Framework Glass Anode with an Exceptional Cycling‐Induced Capacity Enhancement for Lithium‐Ion Batteries. Advanced Materials 2022, 34 (10) https://doi.org/10.1002/adma.202110048
    71. Sunghwan Park, Hae-Kwon Jeong. Effective aperture tuning of a zeolitic-imidazole framework CdIF-1 by controlled thermal amorphization. Journal of Materials Chemistry A 2022, 10 (9) , 4992-4998. https://doi.org/10.1039/D1TA10706B
    72. Vahid Nozari, Courtney Calahoo, Joshua M. Tuffnell, David A. Keen, Thomas D. Bennett, Lothar Wondraczek. Ionic liquid facilitated melting of the metal-organic framework ZIF-8. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-25970-0
    73. Huayu Wang, Qingqing He, Shunfei Liang, Yang Li, Xun Zhao, Lei Mao, Feiyang Zhan, Lingyun Chen. Advances and perspectives of ZIFs-based materials for electrochemical energy storage: Design of synthesis and crystal structure, evolution of mechanisms and electrochemical performance. Energy Storage Materials 2021, 43 , 531-578. https://doi.org/10.1016/j.ensm.2021.09.023
    74. Yuko Mitsuka, Naoki Ogiwara, Megumi Mukoyoshi, Hiroshi Kitagawa, Tomokazu Yamamoto, Takaaki Toriyama, Syo Matsumura, Masaaki Haneda, Shogo Kawaguchi, Yoshiki Kubota, Hirokazu Kobayashi. Fabrication of Integrated Copper‐Based Nanoparticles/Amorphous Metal–Organic Framework by a Facile Spray‐Drying Method: Highly Enhanced CO 2 Hydrogenation Activity for Methanol Synthesis. Angewandte Chemie 2021, 133 (41) , 22457-22462. https://doi.org/10.1002/ange.202110585
    75. Yuko Mitsuka, Naoki Ogiwara, Megumi Mukoyoshi, Hiroshi Kitagawa, Tomokazu Yamamoto, Takaaki Toriyama, Syo Matsumura, Masaaki Haneda, Shogo Kawaguchi, Yoshiki Kubota, Hirokazu Kobayashi. Fabrication of Integrated Copper‐Based Nanoparticles/Amorphous Metal–Organic Framework by a Facile Spray‐Drying Method: Highly Enhanced CO 2 Hydrogenation Activity for Methanol Synthesis. Angewandte Chemie International Edition 2021, 60 (41) , 22283-22288. https://doi.org/10.1002/anie.202110585
    76. Michael F. Thorne, Adam F. Sapnik, Lauren N. McHugh, Alice M. Bumstead, Celia Castillo-Blas, Dean S. Keeble, Maria Diaz Lopez, Phillip A. Chater, David A. Keen, Thomas D. Bennett. Glassy behaviour of mechanically amorphised ZIF-62 isomorphs. Chemical Communications 2021, 57 (73) , 9272-9275. https://doi.org/10.1039/D1CC03469C
    77. Siyu He, Li Wu, Xue Li, Hongyu Sun, Ting Xiong, Jie Liu, Chengxi Huang, Huipeng Xu, Huimin Sun, Weidong Chen, Ruxandra Gref, Jiwen Zhang. Metal-organic frameworks for advanced drug delivery. Acta Pharmaceutica Sinica B 2021, 11 (8) , 2362-2395. https://doi.org/10.1016/j.apsb.2021.03.019
    78. Javier Fonseca, Tenghua Gong, Li Jiao, Hai-Long Jiang. Metal–organic frameworks (MOFs) beyond crystallinity: amorphous MOFs, MOF liquids and MOF glasses. Journal of Materials Chemistry A 2021, 9 (17) , 10562-10611. https://doi.org/10.1039/D1TA01043C
    79. Adam F. Sapnik, Duncan N. Johnstone, Sean M. Collins, Giorgio Divitini, Alice M. Bumstead, Christopher W. Ashling, Philip A. Chater, Dean S. Keeble, Timothy Johnson, David A. Keen, Thomas D. Bennett. Stepwise collapse of a giant pore metal–organic framework. Dalton Transactions 2021, 50 (14) , 5011-5022. https://doi.org/10.1039/D1DT00881A
    80. Vishnu Unnikrishnan, Omid Zabihi, Mojtaba Ahmadi, Quanxiang Li, Patrick Blanchard, Alper Kiziltas, Minoo Naebe. Metal–organic framework structure–property relationships for high-performance multifunctional polymer nanocomposite applications. Journal of Materials Chemistry A 2021, 9 (8) , 4348-4378. https://doi.org/10.1039/D0TA11255K
    81. Meijia Liu, Xiangling Ren, Xianwei Meng, Hongbo Li. Metal‐Organic Frameworks‐Based Fluorescent Nanocomposites for Bioimaging in Living Cells and in vivo †. Chinese Journal of Chemistry 2021, 39 (2) , 473-487. https://doi.org/10.1002/cjoc.202000410
    82. Cesar Maximo Oliva González, Eder Moisés Cedeño Morales, Ana de Monserrat Navarro Tellez, Thelma Elizabeth Serrano Quezada, Oxana V. Kharissova, Miguel Angel Méndez-Rojas. CO2 capture by MOFs. 2021, 407-448. https://doi.org/10.1016/B978-0-12-822446-5.00018-6
    83. Javier Fonseca, Sunho Choi. Synthesis of a novel amorphous metal organic framework with hierarchical porosity for adsorptive gas separation. Microporous and Mesoporous Materials 2021, 310 , 110600. https://doi.org/10.1016/j.micromeso.2020.110600
    84. Weijun Xu, Taibing Wang, Junmin Qian, Jinlei Wang, Guanghui Hou, Yaping Wang, Xinke Cui, Aili Suo, Daocheng Wu. Fe(II)-Hydrazide Coordinated Minimalist All-Active Metal Organic Framework for Photothermally Enhanced Tumor Penetration and Ferroptosis-Apoptosis Synergistic Therapy. SSRN Electronic Journal 2021, 141 https://doi.org/10.2139/ssrn.3983698
    85. Tania Bajaj, Ghanshyam Das Gupta, Charan Singh. Novel Metal Organic Frameworks Improves Solubility and Oral Absorption of Mebendazole: Physicochemical Characterization and in Vitro-In Vivo Evaluation. SSRN Electronic Journal 2021, 58 https://doi.org/10.2139/ssrn.3994475
    86. Qiang Ma, Hua Jin, Yanshuo Li. Tuning the Adsorption Selectivity of ZIF‐8 by Amorphization. Chemistry – A European Journal 2020, 26 (58) , 13137-13141. https://doi.org/10.1002/chem.202001249
    87. Ahmet Şenocak. Fast, Simple and Sensitive Determination of Coumaric Acid in Fruit Juice Samples by Magnetite Nanoparticles‐zeolitic Imidazolate Framework Material. Electroanalysis 2020, 32 (10) , 2330-2339. https://doi.org/10.1002/elan.202060237
    88. Hao Guo, Xiaoqiong Wang, Ning Wu, Mengni Xu, Mingyue Wang, Longwen Zhang, Wu Yang. One-pot synthesis of a carbon dots@zeolitic imidazolate framework-8 composite for enhanced Cu 2+ sensing. Analytical Methods 2020, 12 (32) , 4058-4063. https://doi.org/10.1039/D0AY01121E
    89. Tomislav Stolar, Krunoslav Užarević. Mechanochemistry: an efficient and versatile toolbox for synthesis, transformation, and functionalization of porous metal–organic frameworks. CrystEngComm 2020, 22 (27) , 4511-4525. https://doi.org/10.1039/D0CE00091D
    90. Sarah L. Griffin, Neil R. Champness. A periodic table of metal-organic frameworks. Coordination Chemistry Reviews 2020, 414 , 213295. https://doi.org/10.1016/j.ccr.2020.213295
    91. Xiao Xiao, Lianli Zou, Huan Pang, Qiang Xu. Synthesis of micro/nanoscaled metal–organic frameworks and their direct electrochemical applications. Chemical Society Reviews 2020, 49 (1) , 301-331. https://doi.org/10.1039/C7CS00614D
    92. Giulia Schukraft, Camille Petit. Green Synthesis and Engineering Applications of Metal–Organic Frameworks. 2020, 139-162. https://doi.org/10.1016/B978-0-12-814681-1.00006-0
    93. Shunsuke Tanaka. Mechanochemical synthesis of MOFs. 2020, 197-222. https://doi.org/10.1016/B978-0-12-816984-1.00012-3
    94. Yuchen Xiao, Anh N. Hong, Dandan Hu, Yanxiang Wang, Xianhui Bu, Pingyun Feng. Solvent‐Free Synthesis of Zeolitic Imidazolate Frameworks and the Catalytic Properties of Their Carbon Materials. Chemistry – A European Journal 2019, 25 (71) , 16358-16365. https://doi.org/10.1002/chem.201903888
    95. Xiaoling Wu, Hua Yue, Yuanyu Zhang, Xiaoyong Gao, Xiaoyang Li, Licheng Wang, Yufei Cao, Miao Hou, Haixia An, Lin Zhang, Sai Li, Jingyuan Ma, He Lin, Yanan Fu, Hongkai Gu, Wenyong Lou, Wei Wei, Richard N. Zare, Jun Ge. Packaging and delivering enzymes by amorphous metal-organic frameworks. Nature Communications 2019, 10 (1) https://doi.org/10.1038/s41467-019-13153-x
    96. Siwar Chibani, François-Xavier Coudert. Systematic exploration of the mechanical properties of 13 621 inorganic compounds. Chemical Science 2019, 10 (37) , 8589-8599. https://doi.org/10.1039/C9SC01682A
    97. Hailong Wang, Neng Li, Zhongbo Hu, Thomas D. Bennett, Xiujian Zhao, Wai‐Yim Ching. Structural, electronic, and dielectric properties of a large random network model of amorphous zeolitic imidazolate frameworks and its analogues. Journal of the American Ceramic Society 2019, 102 (8) , 4602-4611. https://doi.org/10.1111/jace.16308
    98. Bogdan Kuchta, Filip Formalik, Justyna Rogacka, Alexander V. Neimark, Lucyna Firlej. Phonons in deformable microporous crystalline solids. Zeitschrift für Kristallographie - Crystalline Materials 2019, 234 (7-8) , 513-527. https://doi.org/10.1515/zkri-2018-2152
    99. Joshua M. Tuffnell, Christopher W. Ashling, Jingwei Hou, Shichun Li, Louis Longley, María Laura Ríos Gómez, Thomas D. Bennett. Novel metal–organic framework materials: blends, liquids, glasses and crystal–glass composites. Chemical Communications 2019, 55 (60) , 8705-8715. https://doi.org/10.1039/C9CC01468C
    100. Jesus Gandara-Loe, Alexander Missyul, François Fauth, Luke L. Daemen, Yongqiang Q. Cheng, Anibal J. Ramirez-Cuesta, Peter I. Ravikovitch, Joaquin Silvestre-Albero. New insights into the breathing phenomenon in ZIF-4. Journal of Materials Chemistry A 2019, 7 (24) , 14552-14558. https://doi.org/10.1039/C8TA09713E
    Load all citations