In Vivo Encapsulation of Nucleic Acids Using an Engineered Nonviral Protein CapsidClick to copy article linkArticle link copied!
Abstract
In Nature, protein capsids function as molecular containers for a wide variety of molecular cargoes. Such containers have great potential for applications in nanotechnology, which often require encapsulation of non-native guest molecules. Charge complementarity represents a potentially powerful strategy for engineering novel encapsulation systems. In an effort to explore the generality of this approach, we engineered a nonviral, 60-subunit capsid, lumazine synthase from Aquifex aeolicus (AaLS), to act as a container for nucleic acid. Four mutations were introduced per subunit to increase the positive charge at the inner surface of the capsid. Characterization of the mutant (AaLS-pos) revealed that the positive charges lead to the uptake of cellular RNA during production and assembly of the capsid in vivo. Surprisingly, AaLS-pos capsids were found to be enriched with RNA molecules approximately 200–350 bases in length, suggesting that this simple charge complementarity approach to RNA encapsulation leads to both high affinity and a degree of selectivity. The ability to control loading of RNA by tuning the charge at the inner surface of a protein capsid could illuminate aspects of genome recognition by viruses and pave the way for the development of improved RNA delivery systems.
Cited By
This article is cited by 39 publications.
- Eric J. Lee, Nika Gladkov, Justin E. Miller, Todd O. Yeates. Design of Ligand-Operable Protein-Cages That Open Upon Specific Protein Binding. ACS Synthetic Biology 2024, 13
(1)
, 157-167. https://doi.org/10.1021/acssynbio.3c00383
- Thomas G. W. Edwardson, Mikail D. Levasseur, Stephan Tetter, Angela Steinauer, Mao Hori, Donald Hilvert. Protein Cages: From Fundamentals to Advanced Applications. Chemical Reviews 2022, 122
(9)
, 9145-9197. https://doi.org/10.1021/acs.chemrev.1c00877
- Kentarou Sakamoto, Hiroto Furukawa, Jan Vincent V. Arafiles, Miki Imanishi, Kazunori Matsuura, Shiroh Futaki. Artificial Nanocage Formed via Self-Assembly of β-Annulus Peptide for Delivering Biofunctional Proteins into Cell Interiors. Bioconjugate Chemistry 2022, 33
(2)
, 311-320. https://doi.org/10.1021/acs.bioconjchem.1c00534
- Mikail D. Levasseur, Shiksha Mantri, Takahiro Hayashi, Maria Reichenbach, Svenja Hehn, Ying Waeckerle-Men, Pål Johansen, Donald Hilvert. Cell-Specific Delivery Using an Engineered Protein Nanocage. ACS Chemical Biology 2021, 16
(5)
, 838-843. https://doi.org/10.1021/acschembio.1c00007
- Jiannan Fu, Kenneth J. Woycechowsky. Guest Sequence Can Influence RNA Encapsulation by an Engineered Cationic Protein Capsid. Biochemistry 2020, 59
(15)
, 1517-1526. https://doi.org/10.1021/acs.biochem.0c00077
- Thomas
G. W. Edwardson, Donald Hilvert. Virus-Inspired Function in Engineered Protein Cages. Journal of the American Chemical Society 2019, 141
(24)
, 9432-9443. https://doi.org/10.1021/jacs.9b03705
- Thomas
G. W. Edwardson, Takahiro Mori, Donald Hilvert. Rational Engineering of a Designed Protein Cage for siRNA Delivery. Journal of the American Chemical Society 2018, 140
(33)
, 10439-10442. https://doi.org/10.1021/jacs.8b06442
- Shuxin Wang, Aneesa T. Al-Soodani, Geoffrey C. Thomas, Bethany A. Buck-Koehntop, Kenneth J. Woycechowsky. A Protein-Capsid-Based System for Cell Delivery of Selenocysteine. Bioconjugate Chemistry 2018, 29
(7)
, 2332-2342. https://doi.org/10.1021/acs.bioconjchem.8b00302
- Yusuke Azuma, Michael Herger, and Donald Hilvert . Diversification of Protein Cage Structure Using Circularly Permuted Subunits. Journal of the American Chemical Society 2018, 140
(2)
, 558-561. https://doi.org/10.1021/jacs.7b10513
- Yusuke Azuma, Thomas G. W. Edwardson, Naohiro Terasaka, and Donald Hilvert . Modular Protein Cages for Size-Selective RNA Packaging in Vivo. Journal of the American Chemical Society 2018, 140
(2)
, 566-569. https://doi.org/10.1021/jacs.7b10798
- Xue Han and Kenneth J. Woycechowsky . Encapsulation and Controlled Release of Protein Guests by the Bacillus subtilis Lumazine Synthase Capsid. Biochemistry 2017, 56
(47)
, 6211-6220. https://doi.org/10.1021/acs.biochem.7b00669
- Itsares Muikham, Orawan Thongsum, Somkid Jaranathummakul, Atthaboon Wathammawut, Charoonroj Chotwiwatthanakun, Pitchanee Jariyapong, Wattana Weerachatyanukul. Interior modification of Macrobrachium rosenbergii nodavirus-like particle enhances encapsulation of VP37-dsRNA against shrimp white spot syndrome infection. BMC Veterinary Research 2024, 20
(1)
https://doi.org/10.1186/s12917-024-03936-w
- Mao Hori, Angela Steinauer, Stephan Tetter, Jamiro Hälg, Eva-Maria Manz, Donald Hilvert. Stimulus-responsive assembly of nonviral nucleocapsids. Nature Communications 2024, 15
(1)
https://doi.org/10.1038/s41467-024-47808-1
- Karla‐Luise Herpoldt, Ciana L. López, Isaac Sappington, Minh N. Pham, Selvi Srinivasan, Jason Netland, Katherine S. Montgomery, Debashish Roy, Alexander N. Prossnitz, Daniel Ellis, Adam J. Wargacki, Marion Pepper, Anthony J. Convertine, Patrick S. Stayton, Neil P. King. Macromolecular Cargo Encapsulation via In Vitro Assembly of Two‐Component Protein Nanoparticles. Advanced Healthcare Materials 2024, 13
(11)
https://doi.org/10.1002/adhm.202303910
- Seong Guk Park, Hyo Jeong Kim, Hyun Bin Lee, Soomin Eom, Heejin Jun, Yeongim Jang, Sung Ho Park, Sebyung Kang. Protein cage nanoparticle-based NK cell-engaging nanodrones (NKeNDs) effectively recruit NK cells to target tumor sites and suppress tumor growth. Nano Today 2024, 54 , 102075. https://doi.org/10.1016/j.nantod.2023.102075
- David Silverio Moreno-Gutierrez, Ximena del Toro Rios, Armando Hernandez-Garcia. Creating Artificial Viruses Using Self-assembled Proteins and Polypeptides. 2023, 95-118. https://doi.org/10.1007/978-3-031-36815-8_5
- Jan Otoničar, Maja Hostnik, Maja Grundner, Rok Kostanjšek, Tajda Gredar, Maja Garvas, Zoran Arsov, Zdravko Podlesek, Cene Gostinčar, Jernej Jakše, Stephen J W Busby, Matej Butala. A method for targeting a specified segment of DNA to a bacterial microorganelle. Nucleic Acids Research 2022, 50
(19)
, e113-e113. https://doi.org/10.1093/nar/gkac714
- Alysia Cox, Siyoung A. Lim, Eun Ji Chung. Strategies to deliver RNA by nanoparticles for therapeutic potential. Molecular Aspects of Medicine 2022, 83 , 100991. https://doi.org/10.1016/j.mam.2021.100991
- Lukasz Koziej, Agnieszka Gawin, Yusuke Azuma. Lumazine Synthase Nanocompartments. 2022, 335-355. https://doi.org/10.1007/978-3-031-06600-9_13
- Ana V. Almeida, Ana J. Carvalho, Alice S. Pereira. Encapsulin nanocages: Protein encapsulation and iron sequestration. Coordination Chemistry Reviews 2021, 448 , 214188. https://doi.org/10.1016/j.ccr.2021.214188
- Qing Liu, Ahmed Shaukat, Daniella Kyllönen, Mauri A. Kostiainen. Polyelectrolyte Encapsulation and Confinement within Protein Cage-Inspired Nanocompartments. Pharmaceutics 2021, 13
(10)
, 1551. https://doi.org/10.3390/pharmaceutics13101551
- Stephan Tetter, Naohiro Terasaka, Angela Steinauer, Richard J. Bingham, Sam Clark, Andrew J. P. Scott, Nikesh Patel, Marc Leibundgut, Emma Wroblewski, Nenad Ban, Peter G. Stockley, Reidun Twarock, Donald Hilvert. Evolution of a virus-like architecture and packaging mechanism in a repurposed bacterial protein. Science 2021, 372
(6547)
, 1220-1224. https://doi.org/10.1126/science.abg2822
- Rudolf Ladenstein, Ekaterina Morgunova. Second career of a biosynthetic enzyme: Lumazine synthase as a virus-like nanoparticle in vaccine development. Biotechnology Reports 2020, 27 , e00494. https://doi.org/10.1016/j.btre.2020.e00494
- Seiichi Sonotaki, Keiichi Noguchi, Masafumi Yohda, Yoshihiko Murakami. A zeolite as a tool for successful refolding of PEGylated proteins and their reassembly with tertiary structures. Biotechnology Progress 2019, 35
(5)
https://doi.org/10.1002/btpr.2853
- M. Rezaa Mohammadi, Claudia Corbo, Roberto Molinaro, Jonathan R. T. Lakey. Biohybrid Nanoparticles to Negotiate with Biological Barriers. Small 2019, 15
(34)
https://doi.org/10.1002/smll.201902333
- Yangjie Wei, Prashant Kumar, Newton Wahome, Nicholas J. Mantis, C. Russell Middaugh. Biomedical Applications of Lumazine Synthase. Journal of Pharmaceutical Sciences 2018, 107
(9)
, 2283-2296. https://doi.org/10.1016/j.xphs.2018.05.002
- Tien K Nguyen, Takafumi Ueno. Engineering of protein assemblies within cells. Current Opinion in Structural Biology 2018, 51 , 1-8. https://doi.org/10.1016/j.sbi.2017.12.005
- Naohiro Terasaka, Yusuke Azuma, Donald Hilvert. Laboratory evolution of virus-like nucleocapsids from nonviral protein cages. Proceedings of the National Academy of Sciences 2018, 115
(21)
, 5432-5437. https://doi.org/10.1073/pnas.1800527115
- Yusuke Azuma, Thomas G. W. Edwardson, Donald Hilvert. Tailoring lumazine synthase assemblies for bionanotechnology. Chemical Society Reviews 2018, 47
(10)
, 3543-3557. https://doi.org/10.1039/C8CS00154E
- Gabriel L. Butterfield, Marc J. Lajoie, Heather H. Gustafson, Drew L. Sellers, Una Nattermann, Daniel Ellis, Jacob B. Bale, Sharon Ke, Garreck H. Lenz, Angelica Yehdego, Rashmi Ravichandran, Suzie H. Pun, Neil P. King, David Baker. Evolution of a designed protein assembly encapsulating its own RNA genome. Nature 2017, 552
(7685)
, 415-420. https://doi.org/10.1038/nature25157
- Yusuke Azuma, Reinhard Zschoche, Donald Hilvert. The C-terminal peptide of Aquifex aeolicus riboflavin synthase directs encapsulation of native and foreign guests by a cage-forming lumazine synthase. Journal of Biological Chemistry 2017, 292
(25)
, 10321-10327. https://doi.org/10.1074/jbc.C117.790311
- Q. Guo, G. C. Thomas, K. J. Woycechowsky. Reversible loading of thiol-modified curcumin in an engineered protein capsid. RSC Advances 2017, 7
(55)
, 34676-34686. https://doi.org/10.1039/C7RA05890J
- Maureen B. Quin, Sarah A. Perdue, Szu-Yi Hsu, Claudia Schmidt-Dannert. Encapsulation of multiple cargo proteins within recombinant Eut nanocompartments. Applied Microbiology and Biotechnology 2016, 100
(21)
, 9187-9200. https://doi.org/10.1007/s00253-016-7737-8
- Martin Rother, Martin G. Nussbaumer, Kasper Renggli, Nico Bruns. Protein cages and synthetic polymers: a fruitful symbiosis for drug delivery applications, bionanotechnology and materials science. Chemical Society Reviews 2016, 45
(22)
, 6213-6249. https://doi.org/10.1039/C6CS00177G
- Toshimi Shimizu, Hiroyuki Minamikawa, Masaki Kogiso, Masaru Aoyagi, Naohiro Kameta, Wuxiao Ding, Mitsutoshi Masuda. Self-organized nanotube materials and their application in bioengineering. Polymer Journal 2014, 46
(12)
, 831-858. https://doi.org/10.1038/pj.2014.72
- Kazunori Matsuurua. Rational design of self-assembled proteins and peptides for nano- and micro-sized architectures. RSC Adv. 2014, 4
(6)
, 2942-2953. https://doi.org/10.1039/C3RA45944F
- N. Shaemningwar Moyon, Pynsakhiat Miki Gashnga, Smritakshi Phukan, Sivaprasad Mitra. Specific solvent effect on lumazine photophysics: A combined fluorescence and intrinsic reaction coordinate analysis. Chemical Physics 2013, 421 , 22-31. https://doi.org/10.1016/j.chemphys.2013.05.012
- Kazunori Matsuura, Kenta Watanabe, Yoshihiro Matsushita, Nobuo Kimizuka. Guest-binding behavior of peptide nanocapsules self-assembled from viral peptide fragments. Polymer Journal 2013, 45
(5)
, 529-534. https://doi.org/10.1038/pj.2012.235
- N. Shaemningwar Moyon, Mullah Muhaiminul Islam, Smritakshi Phukan, Sivaprasad Mitra. Fluorescence modulation and associative behavior of lumazine in hydrophobic domain of micelles and bovine serum albumin. Journal of Photochemistry and Photobiology B: Biology 2013, 121 , 37-45. https://doi.org/10.1016/j.jphotobiol.2013.02.008
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.