ACS Publications. Most Trusted. Most Cited. Most Read
Parallel and Competitive Pathways for Substrate Desaturation, Hydroxylation, and Radical Rearrangement by the Non-heme Diiron Hydroxylase AlkB
My Activity

Figure 1Loading Img
    Article

    Parallel and Competitive Pathways for Substrate Desaturation, Hydroxylation, and Radical Rearrangement by the Non-heme Diiron Hydroxylase AlkB
    Click to copy article linkArticle link copied!

    View Author Information
    § Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
    Department of Biology, Brookhaven National Laboratory, Upton, New York 11973, United States
    Department of Chemistry, Bates College, Lewiston, Maine 04240, United States
    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2012, 134, 50, 20365–20375
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja3059149
    Published November 16, 2012
    Copyright © 2012 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    A purified and highly active form of the non-heme diiron hydroxylase AlkB was investigated using the diagnostic probe substrate norcarane. The reaction afforded C2 (26%) and C3 (43%) hydroxylation and desaturation products (31%). Initial C–H cleavage at C2 led to 7% C2 hydroxylation and 19% 3-hydroxymethylcyclohexene, a rearrangement product characteristic of a radical rearrangement pathway. A deuterated substrate analogue, 3,3,4,4-norcarane-d4, afforded drastically reduced amounts of C3 alcohol (8%) and desaturation products (5%), while the radical rearranged alcohol was now the major product (65%). This change in product ratios indicates a large kinetic hydrogen isotope effect of ∼20 for both the C–H hydroxylation at C3 and the desaturation pathway, with all of the desaturation originating via hydrogen abstraction at C3 and not C2. The data indicate that AlkB reacts with norcarane via initial C–H hydrogen abstraction from C2 or C3 and that the three pathways, C3 hydroxylation, C3 desaturation, and C2 hydroxylation/radical rearrangement, are parallel and competitive. Thus, the incipient radical at C3 either reacts with the iron-oxo center to form an alcohol or proceeds along the desaturation pathway via a second H-abstraction to afford both 2-norcarene and 3-norcarene. Subsequent reactions of these norcarenes lead to detectable amounts of hydroxylation products and toluene. By contrast, the 2-norcaranyl radical intermediate leads to C2 hydroxylation and the diagnostic radical rearrangement, but this radical apparently does not afford desaturation products. The results indicate that C–H hydroxylation and desaturation follow analogous stepwise reaction channels via carbon radicals that diverge at the product-forming step.

    Copyright © 2012 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Mass spectra of starting materials; total ion current plots and mass spectra of products; plot of NADPH consumption; potential energy plots for 2- and 3-norcaranyl radicals; comparisons of experimental and simulated product ratios. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 51 publications.

    1. Alicia M. Kirk, Jeanette E. Stok, Siew Hoon Wong, Tom Coleman, Victoria L. Challinor, Joel N. Herring, John B. Bruning, Paul V. Bernhardt, Stephen G. Bell, Elizabeth H. Krenske, James J. De Voss. An Asynchronous, Concerted Mechanism for Cytochrome P450-Catalyzed Dehydrogenation: A Combined Deuterium Labeling and QM/MM Study. ACS Catalysis 2025, 15 (2) , 1274-1286. https://doi.org/10.1021/acscatal.4c06278
    2. Meenakshi Sharma, Reece M. Fritz, Joseph O. Adebanjo, Zhou Lu, Thomas R. Cundari, Mohammad A. Omary, Amitava Choudhury, Pericles Stavropoulos. Nitrene-Transfer Chemistry to C–H and C═C Bonds Mediated by Triangular Coinage Metal Platforms Supported by Triply Bridging Pnictogen Elements Sb(III) and Bi(III). Organometallics 2024, 43 (6) , 634-652. https://doi.org/10.1021/acs.organomet.3c00493
    3. John T. Groves, Liang Feng, Rachel Narehood Austin. Structure and Function of Alkane Monooxygenase (AlkB). Accounts of Chemical Research 2023, 56 (24) , 3665-3675. https://doi.org/10.1021/acs.accounts.3c00590
    4. Tabish Iqbal, Subhashini Murugan, Kalpana Rajendran, Jagpreet Singh Sidhu, Debasis Das. Unraveling the Conversion of Fatty Acids into Terminal Alkenes by an Integral Membrane Enzyme, UndB. ACS Catalysis 2023, 13 (23) , 15516-15525. https://doi.org/10.1021/acscatal.3c04171
    5. Trevor W. Hayton, Hannah S. Shafaat. Periodic TableTalks: An Oasis of Science within a Conference Desert. Inorganic Chemistry 2022, 61 (16) , 5965-5971. https://doi.org/10.1021/acs.inorgchem.2c01108
    6. Hui Chen, Tianhua Tang, Christian A. Malapit, Yoo Seok Lee, Matthew B. Prater, N. Samali Weliwatte, Shelley D. Minteer. One-Pot Bioelectrocatalytic Conversion of Chemically Inert Hydrocarbons to Imines. Journal of the American Chemical Society 2022, 144 (9) , 4047-4056. https://doi.org/10.1021/jacs.1c13063
    7. Viktoria Steck, Joshua N. Kolev, Xinkun Ren, Rudi Fasan. Mechanism-Guided Design and Discovery of Efficient Cytochrome P450-Derived C–H Amination Biocatalysts. Journal of the American Chemical Society 2020, 142 (23) , 10343-10357. https://doi.org/10.1021/jacs.9b12859
    8. F. Peter Guengerich. Mechanisms of Cytochrome P450-Catalyzed Oxidations. ACS Catalysis 2018, 8 (12) , 10964-10976. https://doi.org/10.1021/acscatal.8b03401
    9. F. Peter Guengerich, Francis K. Yoshimoto. Formation and Cleavage of C–C Bonds by Enzymatic Oxidation–Reduction Reactions. Chemical Reviews 2018, 118 (14) , 6573-6655. https://doi.org/10.1021/acs.chemrev.8b00031
    10. Xiongyi Huang, John T. Groves. Oxygen Activation and Radical Transformations in Heme Proteins and Metalloporphyrins. Chemical Reviews 2018, 118 (5) , 2491-2553. https://doi.org/10.1021/acs.chemrev.7b00373
    11. Justin T. Barry, Daniel J. Berg, and David R. Tyler . Radical Cage Effects: The Prediction of Radical Cage Pair Recombination Efficiencies Using Microviscosity Across a Range of Solvent Types. Journal of the American Chemical Society 2017, 139 (41) , 14399-14405. https://doi.org/10.1021/jacs.7b04499
    12. Chun H. Hsieh, Xiongyi Huang, José A. Amaya, Cooper D. Rutland, Carson L. Keys, John T. Groves, Rachel N. Austin, and Thomas M. Makris . The Enigmatic P450 Decarboxylase OleT Is Capable of, but Evolved To Frustrate, Oxygen Rebound Chemistry. Biochemistry 2017, 56 (26) , 3347-3357. https://doi.org/10.1021/acs.biochem.7b00338
    13. Wei Liu, Mu-Jeng Cheng, Robert J. Nielsen, William A. Goddard, III, and John T. Groves . Probing the C–O Bond-Formation Step in Metalloporphyrin-Catalyzed C–H Oxygenation Reactions. ACS Catalysis 2017, 7 (6) , 4182-4188. https://doi.org/10.1021/acscatal.7b00655
    14. Hongxin Gao and John T. Groves . Fast Hydrogen Atom Abstraction by a Hydroxo Iron(III) Porphyrazine. Journal of the American Chemical Society 2017, 139 (11) , 3938-3941. https://doi.org/10.1021/jacs.6b13091
    15. Domenick F. Leto, Allyssa A. Massie, Derek B. Rice, and Timothy A. Jackson . Spectroscopic and Computational Investigations of a Mononuclear Manganese(IV)-Oxo Complex Reveal Electronic Structure Contributions to Reactivity. Journal of the American Chemical Society 2016, 138 (47) , 15413-15424. https://doi.org/10.1021/jacs.6b08661
    16. Justin T. Barry, Daniel J. Berg, and David R. Tyler . Radical Cage Effects: Comparison of Solvent Bulk Viscosity and Microviscosity in Predicting the Recombination Efficiencies of Radical Cage Pairs. Journal of the American Chemical Society 2016, 138 (30) , 9389-9392. https://doi.org/10.1021/jacs.6b05432
    17. Wei Liu and John T. Groves . Manganese Catalyzed C–H Halogenation. Accounts of Chemical Research 2015, 48 (6) , 1727-1735. https://doi.org/10.1021/acs.accounts.5b00062
    18. Jakub Chalupský, Tibor András Rokob, Yuki Kurashige, Takeshi Yanai, Edward I. Solomon, Lubomír Rulíšek, and Martin Srnec . Reactivity of the Binuclear Non-Heme Iron Active Site of Δ9 Desaturase Studied by Large-Scale Multireference Ab Initio Calculations. Journal of the American Chemical Society 2014, 136 (45) , 15977-15991. https://doi.org/10.1021/ja506934k
    19. Vivek Bagchi, Patrina Paraskevopoulou, Purak Das, Lingyu Chi, Qiuwen Wang, Amitava Choudhury, Jennifer S. Mathieson, Leroy Cronin, Daniel B. Pardue, Thomas R. Cundari, George Mitrikas, Yiannis Sanakis, and Pericles Stavropoulos . A Versatile Tripodal Cu(I) Reagent for C–N Bond Construction via Nitrene-Transfer Chemistry: Catalytic Perspectives and Mechanistic Insights on C–H Aminations/Amidinations and Olefin Aziridinations. Journal of the American Chemical Society 2014, 136 (32) , 11362-11381. https://doi.org/10.1021/ja503869j
    20. Alexander R. Moise, Salim Al-Babili, and Eleanore T. Wurtzel . Mechanistic Aspects of Carotenoid Biosynthesis. Chemical Reviews 2014, 114 (1) , 164-193. https://doi.org/10.1021/cr400106y
    21. Rui‐Ning Li, Shi‐Lu Chen. Recent Insights into the Reaction Mechanisms of Non‐Heme Diiron Enzymes Containing Oxoiron(IV) Complexes. ChemBioChem 2024, 60 https://doi.org/10.1002/cbic.202400788
    22. Bo M. Couture, Ru Cui, Jia-Min Chu, Zhuofan Shen, Sagar D. Khare, Yong Zhang, Rudi Fasan. Radical-mediated regiodivergent C(sp)–H functionalization of N-substituted indolines via enzymatic carbene transfer. Chem Catalysis 2024, 4 (11) , 101133. https://doi.org/10.1016/j.checat.2024.101133
    23. Xue Guo, Jianxiu Zhang, Lei Han, Juliet Lee, Shoshana C. Williams, Allison Forsberg, Yan Xu, Rachel Narehood Austin, Liang Feng. Structure and mechanism of the alkane-oxidizing enzyme AlkB. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-37869-z
    24. Jin Chai, Gongrui Guo, Sean M. McSweeney, John Shanklin, Qun Liu. Structural basis for enzymatic terminal C–H bond functionalization of alkanes. Nature Structural & Molecular Biology 2023, 30 (4) , 521-526. https://doi.org/10.1038/s41594-023-00958-0
    25. Tabish Iqbal, Suryadeep Chakraborty, Subhashini Murugan, Debasis Das. Metalloenzymes for Fatty Acid‐Derived Hydrocarbon Biosynthesis: Nature's Cryptic Catalysts. Chemistry – An Asian Journal 2022, 17 (10) https://doi.org/10.1002/asia.202200105
    26. Shoshana C. Williams, Dahlia Luongo, Marina Orman, Christina L. Vizcarra, Rachel N. Austin. An alkane monooxygenase (AlkB) family in which all electron transfer partners are covalently bound to the oxygen-activating hydroxylase. Journal of Inorganic Biochemistry 2022, 228 , 111707. https://doi.org/10.1016/j.jinorgbio.2021.111707
    27. Shoshana C. Williams, Rachel Narehood Austin. An Overview of the Electron-Transfer Proteins That Activate Alkane Monooxygenase (AlkB). Frontiers in Microbiology 2022, 13 https://doi.org/10.3389/fmicb.2022.845551
    28. Thasnim P Mohammed, Muniyandi Sankaralingam. Reactivities of high valent manganese-oxo porphyrins in aqueous medium. Tetrahedron 2022, 103 , 132483. https://doi.org/10.1016/j.tet.2021.132483
    29. Ning Liu, Xiahe Chen, Liyuan Jin, Yun-Fang Yang, Yuan-Bin She. A mechanistic study of the manganese porphyrin-catalyzed C–H isocyanation reaction. Organic Chemistry Frontiers 2021, 8 (8) , 1858-1866. https://doi.org/10.1039/D0QO01442G
    30. Alexander O. Brachmann, Silke I. Probst, Joel Rüthi, Darya Dudko, Helge B. Bode, Jörn Piel. A Desaturase‐Like Enzyme Catalyzes Oxazole Formation in Pseudomonas Indolyloxazole Alkaloids. Angewandte Chemie 2021, 133 (16) , 8863-8867. https://doi.org/10.1002/ange.202014491
    31. Alexander O. Brachmann, Silke I. Probst, Joel Rüthi, Darya Dudko, Helge B. Bode, Jörn Piel. A Desaturase‐Like Enzyme Catalyzes Oxazole Formation in Pseudomonas Indolyloxazole Alkaloids. Angewandte Chemie International Edition 2021, 60 (16) , 8781-8785. https://doi.org/10.1002/anie.202014491
    32. Zuzanna Wojdyla, Tomasz Borowski. Enzyme Multifunctionality by Control of Substrate Positioning Within the Catalytic Cycle—A QM/MM Study of Clavaminic Acid Synthase. Chemistry – A European Journal 2021, 27 (6) , 2196-2211. https://doi.org/10.1002/chem.202004426
    33. Olivia M. Manley, Thomas M. Makris. Cytochrome P450 Enzyme Mechanisms. 2021, 254-268. https://doi.org/10.1016/B978-0-08-102688-5.00054-4
    34. Brian G. Fox. Diiron Enzyme Structure and Catalysis. 2021, 455-499. https://doi.org/10.1016/B978-0-08-102688-5.00059-3
    35. Matthias Nachtschatt, Shoko Okada, Robert Speight. Integral Membrane Fatty Acid Desaturases: A Review of Biochemical, Structural, and Biotechnological Advances. European Journal of Lipid Science and Technology 2020, 122 (12) https://doi.org/10.1002/ejlt.202000181
    36. Mengwei Yuan, Sofiene Abdellaoui, Hui Chen, Matthew J. Kummer, Christian A. Malapit, Chun You, Shelley D. Minteer. Selective Electroenzymatic Oxyfunctionalization by Alkane Monooxygenase in a Biofuel Cell. Angewandte Chemie 2020, 132 (23) , 9054-9058. https://doi.org/10.1002/ange.202003032
    37. Mengwei Yuan, Sofiene Abdellaoui, Hui Chen, Matthew J. Kummer, Christian A. Malapit, Chun You, Shelley D. Minteer. Selective Electroenzymatic Oxyfunctionalization by Alkane Monooxygenase in a Biofuel Cell. Angewandte Chemie International Edition 2020, 59 (23) , 8969-8973. https://doi.org/10.1002/anie.202003032
    38. Zuzanna Wojdyla, Tomasz Borowski. On how the binding cavity of AsqJ dioxygenase controls the desaturation reaction regioselectivity: a QM/MM study. JBIC Journal of Biological Inorganic Chemistry 2018, 23 (5) , 795-808. https://doi.org/10.1007/s00775-018-1575-3
    39. Hsuan‐Jen Liao, Jikun Li, Jhih‐Liang Huang, Madison Davidson, Igor Kurnikov, Te‐Sheng Lin, Justin L. Lee, Maria Kurnikova, Yisong Guo, Nei‐Li Chan, Wei‐chen Chang. Insights into the Desaturation of Cyclopeptin and its C3 Epimer Catalyzed by a non‐Heme Iron Enzyme: Structural Characterization and Mechanism Elucidation. Angewandte Chemie 2018, 130 (7) , 1849-1853. https://doi.org/10.1002/ange.201710567
    40. Hsuan‐Jen Liao, Jikun Li, Jhih‐Liang Huang, Madison Davidson, Igor Kurnikov, Te‐Sheng Lin, Justin L. Lee, Maria Kurnikova, Yisong Guo, Nei‐Li Chan, Wei‐chen Chang. Insights into the Desaturation of Cyclopeptin and its C3 Epimer Catalyzed by a non‐Heme Iron Enzyme: Structural Characterization and Mechanism Elucidation. Angewandte Chemie International Edition 2018, 57 (7) , 1831-1835. https://doi.org/10.1002/anie.201710567
    41. Yi-Fang Tsai, Wen-I Luo, Jen-Lin Chang, Chun-Wei Chang, Huai-Chun Chuang, Ravirala Ramu, Guor-Tzo Wei, Jyh-Myng Zen, Steve S.-F. Yu. Electrochemical Hydroxylation of C3–C12 n-Alkanes by Recombinant Alkane Hydroxylase (AlkB) and Rubredoxin-2 (AlkG) from Pseudomonas putida GPo1. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/s41598-017-08610-w
    42. Kevin M. Johnson, Thanh T.N. Phan, Matthew E. Albertolle, F. Peter Guengerich. Human mitochondrial cytochrome P450 27C1 is localized in skin and preferentially desaturates trans-retinol to 3,4-dehydroretinol. Journal of Biological Chemistry 2017, 292 (33) , 13672-13687. https://doi.org/10.1074/jbc.M116.773937
    43. Xiongyi Huang, John T. Groves. Beyond ferryl-mediated hydroxylation: 40 years of the rebound mechanism and C–H activation. JBIC Journal of Biological Inorganic Chemistry 2017, 22 (2-3) , 185-207. https://doi.org/10.1007/s00775-016-1414-3
    44. Courtney E. Wise, Job L. Grant, Jose A. Amaya, Steven C. Ratigan, Chun H. Hsieh, Olivia M. Manley, Thomas M. Makris. Divergent mechanisms of iron-containing enzymes for hydrocarbon biosynthesis. JBIC Journal of Biological Inorganic Chemistry 2017, 22 (2-3) , 221-235. https://doi.org/10.1007/s00775-016-1425-0
    45. Alexandre Trehoux, Jean-Pierre Mahy, Frédéric Avenier. A growing family of O2 activating dinuclear iron enzymes with key catalytic diiron(III)-peroxo intermediates: Biological systems and chemical models. Coordination Chemistry Reviews 2016, 322 , 142-158. https://doi.org/10.1016/j.ccr.2016.05.014
    46. Benjamin Holmes, Xiuqi Fang, Annais Zarate, Michael Keidar, Lijie Grace Zhang. Enhanced human bone marrow mesenchymal stem cell chondrogenic differentiation in electrospun constructs with carbon nanomaterials. Carbon 2016, 97 , 1-13. https://doi.org/10.1016/j.carbon.2014.12.035
    47. Xiaoshi Wang, René Ullrich, Martin Hofrichter, John T. Groves. Heme-thiolate ferryl of aromatic peroxygenase is basic and reactive. Proceedings of the National Academy of Sciences 2015, 112 (12) , 3686-3691. https://doi.org/10.1073/pnas.1503340112
    48. Rachel Narehood Austin, David Born, Thomas J. Lawton, Grace E. Hamilton. Protocols for Purifying and Characterizing Integral Membrane AlkB Enzymes. 2015, 133-147. https://doi.org/10.1007/8623_2015_47
    49. Yao-Sheng Chen, Wen-I Luo, Chung-Ling Yang, Yi-Jung Tu, Chun-Wei Chang, Chih-Hsiang Chiang, Chi-Yao Chang, Sunney I. Chan, Steve S.-F. Yu. Controlled oxidation of aliphatic CH bonds in metallo-monooxygenases: Mechanistic insights derived from studies on deuterated and fluorinated hydrocarbons. Journal of Inorganic Biochemistry 2014, 134 , 118-133. https://doi.org/10.1016/j.jinorgbio.2014.02.005
    50. Ludwig Kirmair, Arne Skerra, . Biochemical Analysis of Recombinant AlkJ from Pseudomonas putida Reveals a Membrane-Associated, Flavin Adenine Dinucleotide-Dependent Dehydrogenase Suitable for the Biosynthetic Production of Aliphatic Aldehydes. Applied and Environmental Microbiology 2014, 80 (8) , 2468-2477. https://doi.org/10.1128/AEM.04297-13
    51. Donald M. Kurtz, Emily Boice, Jonathan D. Caranto, Rosanne E. Frederick, Cesar A. Masitas, Kyle D. Miner. Iron: Non‐Heme Proteins with Diiron‐Carboxylate Active Sites. 2004, 1-18. https://doi.org/10.1002/9781119951438.eibc0105.pub2

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2012, 134, 50, 20365–20375
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja3059149
    Published November 16, 2012
    Copyright © 2012 American Chemical Society

    Article Views

    2744

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.