ACS Publications. Most Trusted. Most Cited. Most Read
Cobalt Electrolyte/Dye Interactions in Dye-Sensitized Solar Cells: A Combined Computational and Experimental Study
My Activity

Figure 1Loading Img
    Article

    Cobalt Electrolyte/Dye Interactions in Dye-Sensitized Solar Cells: A Combined Computational and Experimental Study
    Click to copy article linkArticle link copied!

    View Author Information
    Computational Laboratory for Hybrid and Organic Photovoltaics, Istituto CNR di Scienze e Tecnologie Molecolari, via Elce di Sotto 8, 06123 Perugia, Italy
    Laboratory for Photonics and Interfaces, Institution of Chemical Sciences and Engineering, School of Basic Sciences, Swiss Federal Institute of Technology, CH-1015 Lausanne, Switzerland
    § Instituto de Ciencia Molecular Parque Científico, Universidad de Valencia, C/José Beltrán, 2 46980 Paterna (Valencia), Spain
    Dipartimento di Chimica, Università degli Studi di Perugia, via Elce di Sotto 8, 06123 Perugia, Italy
    Other Access OptionsSupporting Information (2)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2012, 134, 47, 19438–19453
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja3079016
    Published October 31, 2012
    Copyright © 2012 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    We report a combined experimental and computational investigation to understand the nature of the interactions between cobalt redox mediators and TiO2 surfaces sensitized by ruthenium and organic dyes, and their impact on the performance of the corresponding dye-sensitized solar cells (DSSCs). We focus on different ruthenium dyes and fully organic dyes, to understand the dramatic loss of efficiency observed for the prototype Ru(II) N719 dye in conjunction with cobalt electrolytes. Both N719- and Z907-based DSSCs showed an increased lifetime in iodine-based electrolyte compared to the cobalt-based redox shuttle, while the organic D21L6 and D25L6 dyes, endowed with long alkoxy chains, show no significant change in the electron lifetime regardless of employed electrolyte and deliver a high photovoltaic efficiency of 6.5% with a cobalt electrolyte. Ab initio molecular dynamics simulations show the formation of a complex between the cobalt electrolyte and the surface-adsorbed ruthenium dye, which brings the [Co(bpy)3]3+ species into contact with the TiO2 surface. This translates into a high probability of intercepting TiO2-injected electrons by the oxidized [Co(bpy)3]3+ species, lying close to the N719-sensitized TiO2 surface. Investigation of the dye regeneration mechanism by the cobalt electrolyte in the Marcus theory framework led to substantially different reorganization energies for the high-spin (HS) and low-spin (LS) reaction pathways. Our calculated reorganization energies for the LS pathways are in excellent agreement with recent data for a series of cobalt complexes, lending support to the proposed regeneration pathway. Finally, we systematically investigate a series of Co(II)/Co(III) complexes to gauge the impact of ligand substitution and of metal coordination (tris-bidentate vs bis-tridentate) on the HS/LS energy difference and reorganization energies. Our results allow us to trace structure/property relations required for further development of cobalt electrolytes for DSSCs.

    Copyright © 2012 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Molecular orbitals, dye reorganization energies, optimized geometries, and NMR spectra. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 206 publications.

    1. Eric Firestone, Richard Staples, Thomas W. Hamann. Open-Cage Copper Complexes Modulate Coordination and Charge Transfer. Inorganic Chemistry 2024, 63 (26) , 12081-12088. https://doi.org/10.1021/acs.inorgchem.4c01046
    2. Yonatan Hamo, Alena Neudert, Tatyana Bendikov, Michal Lahav, Milko E. van der Boom. Compositionally Controlled Electron Transfer in Metallo-Organics. Journal of the American Chemical Society 2023, 145 (32) , 18075-18083. https://doi.org/10.1021/jacs.3c05874
    3. Masud, Hwan Kyu Kim. Redox Shuttle-Based Electrolytes for Dye-Sensitized Solar Cells: Comprehensive Guidance, Recent Progress, and Future Perspective. ACS Omega 2023, 8 (7) , 6139-6163. https://doi.org/10.1021/acsomega.2c06843
    4. Lanlan He, Yu Guo, Lars Kloo. Insights into the Explicit Mechanism and Dynamic Rate of Regeneration of Sensitizing Organic Dyes by Transition-Metal Redox Mediators in Solar Cells Using Ab Initio Molecular Dynamics. ACS Applied Energy Materials 2022, 5 (12) , 14638-14645. https://doi.org/10.1021/acsaem.2c02431
    5. Qi Jie Yeow, Can Cuhadar, Wee Kwan Tay, Ee Ling Janelle Tan, Kathiravan Johnson, Shih Ee Whang, Hoi Nok Tsao. Converting Solar Cells to Photocapacitors without the Incorporation of Additional Capacitive Components. ACS Applied Energy Materials 2022, 5 (6) , 6746-6753. https://doi.org/10.1021/acsaem.2c00351
    6. Tomohiro Higashino, Hiroshi Imahori. Emergence of Copper(I/II) Complexes as Third-Generation Redox Shuttles for Dye-Sensitized Solar Cells. ACS Energy Letters 2022, 7 (6) , 1926-1938. https://doi.org/10.1021/acsenergylett.2c00716
    7. Anthony Devdass, Jonathon Watson, Eric Firestone, Thomas W. Hamann, Jared H. Delcamp, Jonah W. Jurss. An Efficient Copper-Based Redox Shuttle Bearing a Hexadentate Polypyridyl Ligand for DSCs under Low-Light Conditions. ACS Applied Energy Materials 2022, 5 (5) , 5964-5973. https://doi.org/10.1021/acsaem.2c00344
    8. Kaiyuan Yang, Xichuan Yang, Zijian Deng, Li Zhang, Jincheng An. Copper Piperazine Complex with a High Diffusion Coefficient for Dye-Sensitized Solar Cells. ACS Applied Energy Materials 2021, 4 (12) , 14004-14013. https://doi.org/10.1021/acsaem.1c02804
    9. Leigh Anna Hunt, Roberta R. Rodrigues, Kayla Foell, Dinesh Nugegoda, Hammad Cheema, Nathan I. Hammer, Jared H. Delcamp. Preferential Direction of Electron Transfers at a Dye–Metal Oxide Interface with an Insulating Fluorinated Self-Assembled Monolayer and MgO. The Journal of Physical Chemistry C 2021, 125 (46) , 25410-25421. https://doi.org/10.1021/acs.jpcc.1c07981
    10. Waad Naim, Vittoria Novelli, Ilias Nikolinakos, Nadia Barbero, Iva Dzeba, Fionnuala Grifoni, Yameng Ren, Thomas Alnasser, Amalia Velardo, Raffaele Borrelli, Stefan Haacke, Shaik M. Zakeeruddin, Michael Graetzel, Claudia Barolo, Frédéric Sauvage. Transparent and Colorless Dye-Sensitized Solar Cells Exceeding 75% Average Visible Transmittance. JACS Au 2021, 1 (4) , 409-426. https://doi.org/10.1021/jacsau.1c00045
    11. Inseong Cho, Pawel Wagner, Peter C. Innis, Shogo Mori, Attila J. Mozer. Substrate-Dependent Electron-Transfer Rate of Mixed-Ligand Electrolytes: Tuning Electron-Transfer Rate without Changing Driving Force. Journal of the American Chemical Society 2021, 143 (1) , 488-495. https://doi.org/10.1021/jacs.0c12050
    12. Isabelle M. Dixon, Sylvain Rat, Alix Sournia-Saquet, Gábor Molnár, Lionel Salmon, Azzedine Bousseksou. On the Spin-State Dependence of Redox Potentials of Spin Crossover Complexes. Inorganic Chemistry 2020, 59 (24) , 18402-18406. https://doi.org/10.1021/acs.inorgchem.0c03043
    13. B. Mohamad Ali, K. Ashok Kumar, I. Bargathulla, S. Sathiyaraj, A. Sultan Nasar. Elimination of 50% Iodine and Excellent Performance of Dye-Sensitized Solar Cell Enabled by TEMPO Radical Dendrimer–Iodide Dual Redox Systems. ACS Applied Energy Materials 2020, 3 (11) , 10506-10514. https://doi.org/10.1021/acsaem.0c01542
    14. Munavvar Fairoos Mele Kavungathodi, Inseong Cho, Pawel Wagner, Attila J. Mozer. Synergistic Effect of Alkyl Chain Barriers on Heteroleptic Ruthenium Dyes and Co3+/2+ Complex Mediators for Reduced Charge Recombination in Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C 2020, 124 (42) , 23013-23026. https://doi.org/10.1021/acs.jpcc.0c06881
    15. Jiajia Gao, Govind Kumar Prajapati, Yan Hao, Lars Kloo. Exploring Lewis-Base Effects to Improve the Efficiency of [Co(bpy)3]2+/3+-Mediated Dye-Sensitized Solar Cells. ACS Applied Energy Materials 2020, 3 (6) , 5705-5711. https://doi.org/10.1021/acsaem.0c00665
    16. Merlys Borges-Martı́nez, Nicolás Montenegro-Pohlhammer, Yoh Yamamoto, Tunna Baruah, Gloria Cárdenas-Jirón. Zn(II)-Porphyrin–Squaraine Dyads as Potential Components for Dye-Sensitized Solar Cells: A Quantum Chemical Study of Optical and Charge Transport Properties. The Journal of Physical Chemistry C 2020, 124 (24) , 12968-12981. https://doi.org/10.1021/acs.jpcc.0c02865
    17. Inseong Cho, Long Zhao, Joseph I. Mapley, Sayedmohsen Shahshahan, Pawel Wagner, Keith C. Gordon, Peter C. Innis, Mutsumi Kimura, Shogo Mori, Attila J. Mozer. Significant Effect of Electronic Coupling on Electron Transfer between Surface-Bound Porphyrins and Co2+/3+ Complex Electrolytes. The Journal of Physical Chemistry C 2020, 124 (17) , 9178-9190. https://doi.org/10.1021/acs.jpcc.0c01338
    18. Kei Ikeda, Muhammad Haris Mahyuddin, Yoshihito Shiota, Aleksandar Staykov, Takahiro Matsumoto, Seiji Ogo, Kazunari Yoshizawa. Computational Study on the Light-Induced Oxidation of Iridium–Aqua Complex to Iridium–Oxo Complex over WO3(001) Surface. Inorganic Chemistry 2020, 59 (1) , 415-422. https://doi.org/10.1021/acs.inorgchem.9b02704
    19. Raffael Ruess, Jonas Horn, Andreas Ringleb, Derck Schlettwein. Efficient Electron Collection by Electrodeposited ZnO in Dye-Sensitized Solar Cells with TEMPO+/0 as the Redox Mediator. The Journal of Physical Chemistry C 2019, 123 (36) , 22074-22082. https://doi.org/10.1021/acs.jpcc.9b06796
    20. Anusha Pradhan, Maryala Sai Kiran, Gaurav Kapil, Shuzi Hayase, Shyam S. Pandey. Synthesis and Photophysical Characterization of Unsymmetrical Squaraine Dyes for Dye-Sensitized Solar Cells Utilizing Cobalt Electrolytes. ACS Applied Energy Materials 2018, 1 (9) , 4545-4553. https://doi.org/10.1021/acsaem.8b00653
    21. Yasemin Saygili, Marko Stojanovic, Hannes Michaels, Jan Tiepelt, Joel Teuscher, Arianna Massaro, Michele Pavone, Fabrizio Giordano, Shaik M. Zakeeruddin, Gerrit Boschloo, Jacques-E. Moser, Michael Grätzel, Ana B. Muñoz-García, Anders Hagfeldt, Marina Freitag. Effect of Coordination Sphere Geometry of Copper Redox Mediators on Regeneration and Recombination Behavior in Dye-Sensitized Solar Cell Applications. ACS Applied Energy Materials 2018, 1 (9) , 4950-4962. https://doi.org/10.1021/acsaem.8b00957
    22. Sadig Aghazada, Yameng Ren, Peng Wang, and Mohammad Khaja Nazeeruddin . Effect of Donor Groups on the Performance of Cyclometalated Ruthenium Sensitizers in Dye-Sensitized Solar Cells. Inorganic Chemistry 2017, 56 (21) , 13437-13445. https://doi.org/10.1021/acs.inorgchem.7b02164
    23. Sean P. Hill and Kenneth Hanson . Harnessing Molecular Photon Upconversion in a Solar Cell at Sub-solar Irradiance: Role of the Redox Mediator. Journal of the American Chemical Society 2017, 139 (32) , 10988-10991. https://doi.org/10.1021/jacs.7b05462
    24. David Schleicher, Hendrik Leopold, Horst Borrmann, and Thomas Strassner . Ruthenium(II) Bipyridyl Complexes with Cyclometalated NHC Ligands. Inorganic Chemistry 2017, 56 (12) , 7217-7229. https://doi.org/10.1021/acs.inorgchem.7b00831
    25. Mateusz Gierszewski, Adam Glinka, Iwona Grądzka, Mariusz Jancelewicz, and Marcin Ziółek . Effects of Post-Assembly Molecular and Atomic Passivation of Sensitized Titania Surface: Dynamics of Electron Transfer Measured from Femtoseconds to Seconds. ACS Applied Materials & Interfaces 2017, 9 (20) , 17102-17114. https://doi.org/10.1021/acsami.7b03288
    26. Yasemin Saygili, Magnus Söderberg, Norman Pellet, Fabrizio Giordano, Yiming Cao, Ana Belen Muñoz-García, Shaik M. Zakeeruddin, Nick Vlachopoulos, Michele Pavone, Gerrit Boschloo, Ladislav Kavan, Jacques-E. Moser, Michael Grätzel, Anders Hagfeldt, and Marina Freitag . Copper Bipyridyl Redox Mediators for Dye-Sensitized Solar Cells with High Photovoltage. Journal of the American Chemical Society 2016, 138 (45) , 15087-15096. https://doi.org/10.1021/jacs.6b10721
    27. Yue Hu, Antonio Abate, Yiming Cao, Aruna Ivaturi, Shaik Mohammed Zakeeruddin, Michael Grätzel, and Neil Robertson . High Absorption Coefficient Cyclopentadithiophene Donor-Free Dyes for Liquid and Solid-State Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C 2016, 120 (28) , 15027-15034. https://doi.org/10.1021/acs.jpcc.6b03610
    28. Takahiro Kono, Naruhiko Masaki, Masahiro Nishikawa, Rei Tamura, Hiroyuki Matsuzaki, Mutsumi Kimura, and Shogo Mori . Interfacial Charge Transfer in Dye-Sensitized Solar Cells Using SCN-Free Terpyridine-Coordinated Ru Complex Dye and Co Complex Redox Couples. ACS Applied Materials & Interfaces 2016, 8 (26) , 16677-16683. https://doi.org/10.1021/acsami.6b03712
    29. Sadig Aghazada, Peng Gao, Aswani Yella, Gabriele Marotta, Thomas Moehl, Joël Teuscher, Jacques-E. Moser, Filippo De Angelis, Michael Grätzel, and Mohammad Khaja Nazeeruddin . Ligand Engineering for the Efficient Dye-Sensitized Solar Cells with Ruthenium Sensitizers and Cobalt Electrolytes. Inorganic Chemistry 2016, 55 (13) , 6653-6659. https://doi.org/10.1021/acs.inorgchem.6b00842
    30. Muhammad A. Abbas, Tea-Yon Kim, Sang Uck Lee, Yong Soo Kang, and Jin Ho Bang . Exploring Interfacial Events in Gold-Nanocluster-Sensitized Solar Cells: Insights into the Effects of the Cluster Size and Electrolyte on Solar Cell Performance. Journal of the American Chemical Society 2016, 138 (1) , 390-401. https://doi.org/10.1021/jacs.5b11174
    31. Joel T. Kirner and C. Michael Elliott . Are High-Potential Cobalt Tris(bipyridyl) Complexes Sufficiently Stable to Be Efficient Mediators in Dye-Sensitized Solar Cells? Synthesis, Characterization, and Stability Tests. The Journal of Physical Chemistry C 2015, 119 (31) , 17502-17514. https://doi.org/10.1021/acs.jpcc.5b02513
    32. Michael J. Katz, Michael J. DeVries Vermeer, Omar K. Farha, Michael J. Pellin, and Joseph T. Hupp . Dynamics of Back Electron Transfer in Dye-Sensitized Solar Cells Featuring 4-tert-Butyl-Pyridine and Atomic-Layer-Deposited Alumina as Surface Modifiers. The Journal of Physical Chemistry B 2015, 119 (24) , 7162-7169. https://doi.org/10.1021/jp506083a
    33. Korina Kuhar, Lisa A. Fredin, and Petter Persson . Exploring Photoinduced Excited State Evolution in Heterobimetallic Ru(II)–Co(III) Complexes. The Journal of Physical Chemistry B 2015, 119 (24) , 7378-7392. https://doi.org/10.1021/jp510950u
    34. Zhe Sun, Mao Liang, and Jun Chen . Kinetics of Iodine-Free Redox Shuttles in Dye-Sensitized Solar Cells: Interfacial Recombination and Dye Regeneration. Accounts of Chemical Research 2015, 48 (6) , 1541-1550. https://doi.org/10.1021/ar500337g
    35. Kristian B. Ørnsø, Elvar Ö. Jónsson, Karsten W. Jacobsen, and Kristian S. Thygesen . Importance of the Reorganization Energy Barrier in Computational Design of Porphyrin-Based Solar Cells with Cobalt-Based Redox Mediators. The Journal of Physical Chemistry C 2015, 119 (23) , 12792-12800. https://doi.org/10.1021/jp512627e
    36. Yan Fang Liu, Jing Guan, Deping Hu, Likai Du, Hao Sun, Jun Gao, Jin Zhao, and Zhenggang Lan . Computational Investigation of Acene-Modified Zinc-Porphyrin Based Sensitizers for Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C 2015, 119 (16) , 8417-8430. https://doi.org/10.1021/jp507746p
    37. Giuseppe Mattioli, Aldo Amore Bonapasta, Daniele Bovi, and Paolo Giannozzi . Photocatalytic and Photovoltaic Properties of TiO2 Nanoparticles Investigated by Ab Initio Simulations. The Journal of Physical Chemistry C 2014, 118 (51) , 29928-29942. https://doi.org/10.1021/jp509830w
    38. Filippo De Angelis . Modeling Materials and Processes in Hybrid/Organic Photovoltaics: From Dye-Sensitized to Perovskite Solar Cells. Accounts of Chemical Research 2014, 47 (11) , 3349-3360. https://doi.org/10.1021/ar500089n
    39. Heesuk Jung, Bonkee Koo, Jae-Yup Kim, Taehee Kim, Hae Jung Son, BongSoo Kim, Jin Young Kim, Doh-Kwon Lee, Honggon Kim, Jinhan Cho, and Min Jae Ko . Enhanced Photovoltaic Properties and Long-Term Stability in Plasmonic Dye-Sensitized Solar Cells via Noncorrosive Redox Mediator. ACS Applied Materials & Interfaces 2014, 6 (21) , 19191-19200. https://doi.org/10.1021/am5051982
    40. Lance N. Ashbrook and C. Michael Elliott . Sulfide Modification of Dye-Sensitized Solar Cell Gold Cathodes for Use with Cobalt Polypyridyl Mediators. The Journal of Physical Chemistry C 2014, 118 (30) , 16643-16650. https://doi.org/10.1021/jp412578a
    41. Enrico Ronca, Gabriele Marotta, Mariachiara Pastore, and Filippo De Angelis . Effect of Sensitizer Structure and TiO2 Protonation on Charge Generation in Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C 2014, 118 (30) , 16927-16940. https://doi.org/10.1021/jp5004853
    42. Feng Li, James Robert Jennings, Xingzhu Wang, Li Fan, Zhen Yu Koh, Hao Yu, Lei Yan, and Qing Wang . Influence of Ionic Liquid on Recombination and Regeneration Kinetics in Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C 2014, 118 (30) , 17153-17159. https://doi.org/10.1021/jp502341a
    43. Yin-Yin Wu, Xiao-Wen Lu, Miao Qi, Hu-Chao Su, Xiao-Wei Zhao, Qin-Yu Zhu, and Jie Dai . Titanium–Oxo Cluster with 9-Anthracenecarboxylate Antennae: A Fluorescent and Photocurrent Transfer Material. Inorganic Chemistry 2014, 53 (14) , 7233-7240. https://doi.org/10.1021/ic500390j
    44. Xavier A. Jeanbourquin, Xiaoe Li, ChunHung Law, Piers R.F. Barnes, Robin Humphry-Baker, Peter Lund, Muhammad I. Asghar, and Brian C. O’Regan . Rediscovering a Key Interface in Dye-Sensitized Solar Cells: Guanidinium and Iodine Competition for Binding Sites at the Dye/Electrolyte Surface. Journal of the American Chemical Society 2014, 136 (20) , 7286-7294. https://doi.org/10.1021/ja411560s
    45. Fengxian Xie, Sheng-Jye Cherng, Shunmian Lu, Ya-Huei Chang, Wei E. I. Sha, Shien-Ping Feng, Chih-Ming Chen, and Wallace C. H. Choy . Functions of Self-Assembled Ultrafine TiO2 Nanocrystals for High Efficient Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces 2014, 6 (8) , 5367-5373. https://doi.org/10.1021/am5006628
    46. Takurou N. Murakami, Nagatoshi Koumura, Mutsumi Kimura, and Shogo Mori . Structural Effect of Donor in Organic Dye on Recombination in Dye-Sensitized Solar Cells with Cobalt Complex Electrolyte. Langmuir 2014, 30 (8) , 2274-2279. https://doi.org/10.1021/la4047808
    47. Saptarshi Biswas, Carlos J. Gómez-García, Juan M. Clemente-Juan, Samia Benmansour, and Ashutosh Ghosh . Supramolecular 2D/3D Isomerism in a Compound Containing Heterometallic CuII2CoII Nodes and Dicyanamide Bridges. Inorganic Chemistry 2014, 53 (5) , 2441-2449. https://doi.org/10.1021/ic4023536
    48. Gabriele Marotta, Marri Anil Reddy, Surya Prakash Singh, Ashraful Islam, Liyuan Han, Filippo De Angelis, Mariachiara Pastore, and Malapaka Chandrasekharam . Novel Carbazole-Phenothiazine Dyads for Dye-Sensitized Solar Cells: A Combined Experimental and Theoretical Study. ACS Applied Materials & Interfaces 2013, 5 (19) , 9635-9647. https://doi.org/10.1021/am402675q
    49. Eva M. Barea and Juan Bisquert . Properties of Chromophores Determining Recombination at the TiO2–Dye–Electrolyte Interface. Langmuir 2013, 29 (28) , 8773-8781. https://doi.org/10.1021/la401419n
    50. Jiandong Fan, Yan Hao, Andreu Cabot, Erik M. J. Johansson, Gerrit Boschloo, and Anders Hagfeldt . Cobalt(II/III) Redox Electrolyte in ZnO Nanowire-Based Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces 2013, 5 (6) , 1902-1906. https://doi.org/10.1021/am400042s
    51. Mariachiara Pastore and Filippo De Angelis . Intermolecular Interactions in Dye-Sensitized Solar Cells: A Computational Modeling Perspective. The Journal of Physical Chemistry Letters 2013, 4 (6) , 956-974. https://doi.org/10.1021/jz302147v
    52. Yeru Liu, James R. Jennings, Shaik M. Zakeeruddin, Michael Grätzel, and Qing Wang . Heterogeneous Electron Transfer from Dye-Sensitized Nanocrystalline TiO2 to [Co(bpy)3]3+: Insights Gained from Impedance Spectroscopy. Journal of the American Chemical Society 2013, 135 (10) , 3939-3952. https://doi.org/10.1021/ja311743m
    53. Lance N. Ashbrook and C. Michael Elliott . Dye-Sensitized Solar Cell Studies of a Donor-Appended Bis(2,9-dimethyl-1,10-phenanthroline) Cu(I) Dye Paired with a Cobalt-Based Mediator. The Journal of Physical Chemistry C 2013, 117 (8) , 3853-3864. https://doi.org/10.1021/jp3123693
    54. Paolo Salvatori, Gabriele Marotta, Antonio Cinti, Chiara Anselmi, Edoardo Mosconi, and Filippo De Angelis . Supramolecular Interactions of Chenodeoxycholic Acid Increase the Efficiency of Dye-Sensitized Solar Cells Based on a Cobalt Electrolyte. The Journal of Physical Chemistry C 2013, 117 (8) , 3874-3887. https://doi.org/10.1021/jp4003577
    55. Chung-Hung Hsieh, Scott M. Brothers, Joseph H. Reibenspies, Michael B. Hall, Codrina V. Popescu, and Marcetta Y. Darensbourg . Ambidentate Thiocyanate and Cyanate Ligands in Dinitrosyl Iron Complexes. Inorganic Chemistry 2013, 52 (4) , 2119-2124. https://doi.org/10.1021/ic3025149
    56. Yuling Xie and Thomas W. Hamann . Fast Low-Spin Cobalt Complex Redox Shuttles for Dye-Sensitized Solar Cells. The Journal of Physical Chemistry Letters 2013, 4 (2) , 328-332. https://doi.org/10.1021/jz301934e
    57. Paweł Gnida, Ewa Schab-Balcerzak. Effect of Structural and Material Modifications of Dye-Sensitized Solar Cells on Photovoltaic Performance. Coatings 2024, 14 (7) , 837. https://doi.org/10.3390/coatings14070837
    58. Nayereh MalekMohammadi, Salar Mehdipournaiem, Fatemeh Hosseini Alast, Nasser Safari, , , . The synergistic effect of zinc porphyrin additive on the improvement of performance and stability of carbon-based planar perovskite solar cells. 2024, 27. https://doi.org/10.1117/12.3016146
    59. Vinh Son Nguyen, Kala Kannankutty, Yu-Hsuan Chen, Ding-Cheng Wang, Chen-Yu Yeh, Tzu-Chien Wei. Investigation on the coordination between methylpyridine additives and the [Cu(dmp) 2 ] 2+/+ redox couple and its improvement towards the stability of the dye-sensitized solar cells. Sustainable Energy & Fuels 2024, 8 (10) , 2256-2264. https://doi.org/10.1039/D3SE00983A
    60. Nayereh Malek Mohammadi, Salar Mehdipour Naiem, Fatemeh Hosseini Alast, Ezeddin Mohajerani, Nasser Safari. Brominated zinc porphyrin assisted grain boundary defects passivation in carbon-based planar perovskite solar cells. Materials Today Sustainability 2024, 25 , 100685. https://doi.org/10.1016/j.mtsust.2024.100685
    61. Jayadev V, Sourava C. Pradhan, P.R. Nitha, Jubi John, K.N. Narayanan Unni, Suraj Soman. Investigating mass transport and recombination as a function of structural variation in dye-sensitized solar cells employing indole fused heterocyclic organic sensitizers and cobalt electrolytes. Journal of Photochemistry and Photobiology 2024, 19 , 100223. https://doi.org/10.1016/j.jpap.2023.100223
    62. Waseem Arif, Saandra Sharma, A.U. Kaleem, Ravi Kumar. Porphyrin Based Dye-Sensitized Solar Cells. 2024, 443-478. https://doi.org/10.1016/B978-0-323-93940-9.00251-6
    63. Safalmani Pradhan, Yuki Kurokawa, Suraya Shaban, Shyam S. Pandey. Squaric Acid Core Substituted Unsymmetrical Squaraine Dyes for Dye-Sensitized Solar Cells: Effect of Electron Acceptors on Their Photovoltaic Performance. Colorants 2023, 2 (4) , 654-673. https://doi.org/10.3390/colorants2040034
    64. Suraya Shaban, Safalmani Pradhan, Shyam S. Pandey. Fabrication and Characterization of Bifacial Dye‐Sensitized Solar Cells Utilizing Indoline Dye with Iodine‐ and Cobalt‐Based Redox Electrolytes. physica status solidi (a) 2023, 220 (24) https://doi.org/10.1002/pssa.202300241
    65. Masud, Haoran Zhou, Hwan Kyu Kim. Effective redox shuttles for polymer gel electrolytes-based quasi-solid-state dye-sensitized solar cells in outdoor and indoor applications: Comprehensive comparison and guidelines. Materials Today Energy 2023, 34 , 101299. https://doi.org/10.1016/j.mtener.2023.101299
    66. Anik Sen, Miftahussurur Hamidi Putra, Abul Kalam Biswas, Anil Kumar Behera, Axel Groβ. Insight on the choice of sensitizers/dyes for dye sensitized solar cells: A review. Dyes and Pigments 2023, 213 , 111087. https://doi.org/10.1016/j.dyepig.2023.111087
    67. Weiying Pang, Shuaiyu Jiang, Yanli Sun, YuLin Zhong, Pan Zhang, Jiyu Zhou, Dong Fu, Kun Zhao, Huijun Zhao. Emerging Ru-Co homogeneous-heterogeneous photocatalytic CO2 reduction systems. Materials Research Bulletin 2023, 161 , 112145. https://doi.org/10.1016/j.materresbull.2023.112145
    68. Ambarish Kumar Singh, Vediappan Sudhakar, Bharathkumar H. Javaregowda, Rajesh Bisht, Kothandam Krishnamoorthy, Jayaraj Nithyanandhan. Modular TiO 2 ‐Squaraine Dyes/Electrolyte Interface for Dye‐Sensitized Solar Cells with Cobalt Electrolyte. ChemPhotoChem 2023, 7 (4) https://doi.org/10.1002/cptc.202200171
    69. Jian-Ming Liao, Yu-Kai Chin, Yu-Ting Wu, Hsien-Hsin Chou. Effect of regio-specific arylamine substitution on novel π-extended zinc salophen complexes: density functional and time-dependent density functional study on DSSC applications. RSC Advances 2023, 13 (4) , 2501-2513. https://doi.org/10.1039/D2RA07571G
    70. Vinh Son Nguyen, Tzu-Sen Su, Ching-Chin Chen, Chen-Yu Yeh, Tzu-Chien Wei. Efficient counter electrode for copper (I)(II)-mediated dye-sensitized solar cells based on polyvinyl alcohol capped platinum nanoclusters. Journal of the Taiwan Institute of Chemical Engineers 2023, 142 , 104626. https://doi.org/10.1016/j.jtice.2022.104626
    71. Anissa Hannachi, Carlos J Gómez García, Arto Valkonen, Wajda Smirani. Synthesis and characterization of a novel coordination compound based on 2, 6-dimethylpiperazine. Journal of Molecular Structure 2022, 1267 , 133569. https://doi.org/10.1016/j.molstruc.2022.133569
    72. Partha Sarathi Guin, Sanjay Roy. Recently Reported Ru-Metal Organic Coordination Complexes and Their Application (A Review). Russian Journal of General Chemistry 2022, 92 (8) , 1546-1561. https://doi.org/10.1134/S1070363222080242
    73. Inseong Cho, Attila J. Mozer. Effect of Molecular Structure on Interfacial Electron Transfer Kinetics in the Framework of Classical Marcus Theory. Israel Journal of Chemistry 2022, 62 (5-6) https://doi.org/10.1002/ijch.202100084
    74. Alexandra H. Teodor, Stephanie Monge, Dariana Aguilar, Alexandra Tames, Roger Nunez, Elaine Gonzalez, Juan J. Montero Rodríguez, Jesse J. Bergkamp, Ricardo Starbird, Venkatesan Renugopalakrishnan, Barry D. Bruce, Claudia Villarreal. PEDOT-Carbon Nanotube Counter Electrodes and Bipyridine Cobalt (II/III) Mediators as Universally Compatible Components in Bio-Sensitized Solar Cells Using Photosystem I and Bacteriorhodopsin. International Journal of Molecular Sciences 2022, 23 (7) , 3865. https://doi.org/10.3390/ijms23073865
    75. Ashley Arcidiacono, Alex J. Robb, Rafael A. Masitas, Sahan R. Salpage, Grace M. McLeod, Jiaqi Chen, Omotola O. Ogunsolu, Michael G. Roper, Kenneth Hanson. Inhibited interlayer electron transfer in metal ion linked multilayers on mesoporous metal oxide films. Journal of Photochemistry and Photobiology 2022, 9 , 100088. https://doi.org/10.1016/j.jpap.2021.100088
    76. Catherine E. Housecroft, Edwin C. Constable. Solar energy conversion using first row d-block metal coordination compound sensitizers and redox mediators. Chemical Science 2022, 13 (5) , 1225-1262. https://doi.org/10.1039/D1SC06828H
    77. Yan Zhou, Kenneth Hanson. Electronically Coupled TTA-UC Solar Cells. 2022, 209-237. https://doi.org/10.1007/978-3-030-70358-5_11
    78. Ana Belén Muñoz-García, Iacopo Benesperi, Gerrit Boschloo, Javier J. Concepcion, Jared H. Delcamp, Elizabeth A. Gibson, Gerald J. Meyer, Michele Pavone, Henrik Pettersson, Anders Hagfeldt, Marina Freitag. Dye-sensitized solar cells strike back. Chemical Society Reviews 2021, 50 (22) , 12450-12550. https://doi.org/10.1039/D0CS01336F
    79. Fionnuala Grifoni, Matteo Bonomo, Waad Naim, Nadia Barbero, Thomas Alnasser, Iva Dzeba, Marco Giordano, Arshak Tsaturyan, Maxence Urbani, Tomas Torres, Claudia Barolo, Frédéric Sauvage. Toward Sustainable, Colorless, and Transparent Photovoltaics: State of the Art and Perspectives for the Development of Selective Near‐Infrared Dye‐Sensitized Solar Cells. Advanced Energy Materials 2021, 11 (43) https://doi.org/10.1002/aenm.202101598
    80. Mao Yan, Qun-Hui Wang, Yi-Zhou Zhu, Ming-Liang Han, Yi-Qiao Yan, Jian-Yu Zheng. Effect of triptycene unit on the performance of porphyrin-based dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry 2021, 416 , 113325. https://doi.org/10.1016/j.jphotochem.2021.113325
    81. Inseong Cho, Pawel Wagner, Peter C. Innis, Attila J. Mozer. The impact of insufficient time resolution on dye regeneration lifetime determined using transient absorption spectroscopy. Physical Chemistry Chemical Physics 2021, 23 (23) , 13001-13010. https://doi.org/10.1039/D1CP01217G
    82. Penghui Ren, Anmin Liu, Maozhong An. Rational design of π bridge to forecast photoelectric performance of dye. Modelling and Simulation in Materials Science and Engineering 2021, 29 (4) , 045007. https://doi.org/10.1088/1361-651X/abe927
    83. Edoardo Marchini, Stefano Caramori, Carlo Alberto Bignozzi, Stefano Carli. On the Use of PEDOT as a Catalytic Counter Electrode Material in Dye-Sensitized Solar Cells. Applied Sciences 2021, 11 (9) , 3795. https://doi.org/10.3390/app11093795
    84. Hannes Michaels, Iacopo Benesperi, Marina Freitag. Challenges and prospects of ambient hybrid solar cell applications. Chemical Science 2021, 12 (14) , 5002-5015. https://doi.org/10.1039/D0SC06477G
    85. Marko Stojanović, Natalie Flores‐Diaz, Yameng Ren, Nikolaos Vlachopoulos, Lukas Pfeifer, Zhongjin Shen, Yuhang Liu, Shaik M. Zakeeruddin, Jovana V. Milić, Anders Hagfeldt. The Rise of Dye‐Sensitized Solar Cells: From Molecular Photovoltaics to Emerging Solid‐State Photovoltaic Technologies. Helvetica Chimica Acta 2021, 104 (4) https://doi.org/10.1002/hlca.202000230
    86. Wanlin Cai, Kai Ren, Ancong Zhao, Xiulan Wu, Rongxing He, Ming Li, Wei Shen. The study of intramolecular decay and intermolecular energy transfer for phosphorescent organic light-emitting devices. Physical Chemistry Chemical Physics 2021, 23 (12) , 7495-7503. https://doi.org/10.1039/D1CP00109D
    87. Alexandra H. Teodor, Eu-Jee Ooi, Jackeline Medina, Miguel Alarcon, Michael D. Vaughn, Barry D. Bruce, Jesse J. Bergkamp. Aqueous-soluble bipyridine cobalt( ii / iii ) complexes act as direct redox mediators in photosystem I-based biophotovoltaic devices. RSC Advances 2021, 11 (18) , 10434-10450. https://doi.org/10.1039/D0RA10221K
    88. Gülenay Tunç, Michael Zambrano-Angulo, Barış Seçkin Arslan, Emre Güzel, Mehmet Nebioğlu, Vefa Ahsen, İlkay Şişman, Gloria Cárdenas-Jirón, Ayşe Gül Gürek. Insight into the effects of the anchoring groups on the photovoltaic performance of unsymmetrical phthalocyanine based dye-sensitized solar cells. Dalton Transactions 2021, 50 (8) , 2981-2996. https://doi.org/10.1039/D0DT03696J
    89. Kaiyuan Yang, Xichuan Yang, Li Zhang, Jincheng An, Haoxin Wang, Zijian Deng. Copper redox mediators with alkoxy groups suppressing recombination for dye-sensitized solar cells. Electrochimica Acta 2021, 368 , 137564. https://doi.org/10.1016/j.electacta.2020.137564
    90. Lei Sun, Lei Jiang, Xue Liu, Wei-Qiao Deng. In Silico Prediction and Design of Dye-Sensitized Solar Cells. 2021, 645-677. https://doi.org/10.1007/978-3-030-18778-1_28
    91. Yohannes Mulugeta Hailu, Minh Tho Nguyen, Jyh-Chiang Jiang. Theoretical study on the interaction of iodide electrolyte/organic dye with the TiO 2 surface in dye-sensitized solar cells. Physical Chemistry Chemical Physics 2020, 22 (45) , 26410-26418. https://doi.org/10.1039/D0CP02532A
    92. M. C. Kessinger, C. Brillhart, V. Vaissier Welborn, A. J. Morris. The effect of inner-sphere reorganization on charge separated state lifetimes at sensitized TiO2 interfaces. The Journal of Chemical Physics 2020, 153 (12) https://doi.org/10.1063/5.0023591
    93. Md. Zaman Molla, Ajay Kumar Baranwal, Gaurav Kapil, Shuzi Hayase, Shyam S. Pandey. Parametric optimization of back-contact T-C-O-free dye-sensitized solar cells employing indoline and porphyrin sensitizer based on cobalt redox electrolyte. Solar Energy 2020, 208 , 411-418. https://doi.org/10.1016/j.solener.2020.08.011
    94. Norberto Manfredi, Cristina Decavoli, Chiara L. Boldrini, Carmine Coluccini, Alessandro Abbotto. Ferrocene Derivatives Functionalized with Donor/Acceptor (Hetero)Aromatic Substituents: Tuning of Redox Properties. Energies 2020, 13 (15) , 3937. https://doi.org/10.3390/en13153937
    95. Sasipim Putthikorn, Thien Tran-Duc, Ngamta Thamwattana, James M. Hill, Duangkamon Baowan. Interacting Ru(bpy) 3 2 + Dye Molecules and TiO2 Semiconductor in Dye-Sensitized Solar Cells. Mathematics 2020, 8 (5) , 841. https://doi.org/10.3390/math8050841
    96. Sumit Pahan, Arijit Sengupta, A. K. Yadav, S. N. Jha, D. Bhattacharyya, Sk. Musharaf Ali, P. N. Khan, A. K. Debnath, D. Banerjee, T. Vincent, S. Manohar, C. P. Kaushik. Exploring functionalized titania for task specific application of efficient separation of trivalent f-block elements. New Journal of Chemistry 2020, 44 (16) , 6151-6162. https://doi.org/10.1039/D0NJ01014F
    97. Audun F. Buene, David M. Almenningen, Anders Hagfeldt, Odd R. Gautun, Bård H. Hoff. First Report of Chenodeoxycholic Acid–Substituted Dyes Improving the Dye Monolayer Quality in Dye‐Sensitized Solar Cells. Solar RRL 2020, 4 (4) https://doi.org/10.1002/solr.201900569
    98. M. A. AlDamen, M. O. Sinnokrot, S. B. Atta, R. A. Al Qawasmeh, C. J. Gómez-García. Crystal Structure and Magnetic Properties of a New Wells-Dawson [β-P2CoW17O62]10− Polyoxoanion. Journal of Structural Chemistry 2020, 61 (4) , 559-565. https://doi.org/10.1134/S0022476620040083
    99. Sara Pescetelli, Antonio Agresti, Angelo Lembo, Aldo Di Carlo. Dye‐Sensitized Solar Cell. 2020, 287-333. https://doi.org/10.1002/9783527822492.ch66
    100. Hitoshi Kusama. Interaction of tris(4-anisyl)amine mediator in dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry 2020, 387 , 112150. https://doi.org/10.1016/j.jphotochem.2019.112150
    Load more citations

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2012, 134, 47, 19438–19453
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja3079016
    Published October 31, 2012
    Copyright © 2012 American Chemical Society

    Article Views

    6543

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.