ACS Publications. Most Trusted. Most Cited. Most Read
A New View of Electrochemistry at Highly Oriented Pyrolytic Graphite
My Activity

Figure 1Loading Img
    Article

    A New View of Electrochemistry at Highly Oriented Pyrolytic Graphite
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry and MOAC Doctoral Training Centre, University of Warwick, Coventry CV4 7AL, U.K.
    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2012, 134, 49, 20117–20130
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja308615h
    Published November 12, 2012
    Copyright © 2012 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Major new insights on electrochemical processes at graphite electrodes are reported, following extensive investigations of two of the most studied redox couples, Fe(CN)64–/3– and Ru(NH3)63+/2+. Experiments have been carried out on five different grades of highly oriented pyrolytic graphite (HOPG) that vary in step-edge height and surface coverage. Significantly, the same electrochemical characteristic is observed on all surfaces, independent of surface quality: initial cyclic voltammetry (CV) is close to reversible on freshly cleaved surfaces (>400 measurements for Fe(CN)64–/3– and >100 for Ru(NH3)63+/2+), in marked contrast to previous studies that have found very slow electron transfer (ET) kinetics, with an interpretation that ET only occurs at step edges. Significantly, high spatial resolution electrochemical imaging with scanning electrochemical cell microscopy, on the highest quality mechanically cleaved HOPG, demonstrates definitively that the pristine basal surface supports fast ET, and that ET is not confined to step edges. However, the history of the HOPG surface strongly influences the electrochemical behavior. Thus, Fe(CN)64–/3– shows markedly diminished ET kinetics with either extended exposure of the HOPG surface to the ambient environment or repeated CV measurements. In situ atomic force microscopy (AFM) reveals that the deterioration in apparent ET kinetics is coupled with the deposition of material on the HOPG electrode, while conducting-AFM highlights that, after cleaving, the local surface conductivity of HOPG deteriorates significantly with time. These observations and new insights are not only important for graphite, but have significant implications for electrochemistry at related carbon materials such as graphene and carbon nanotubes.

    Copyright © 2012 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Additional details on capacitance measurements, experimental procedures, step-edge analysis using AFM, and FE-SEM and C-AFM experiments. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 234 publications.

    1. Yingying Jin, Xichen Yin, Guanghua Yu, Qiming Sun, Jiong Wang. To Investigate Electron Transfer Properties on Silicalite-1 Zeolite for Potential Electrocatalytic Applications. Journal of the American Chemical Society 2024, Article ASAP.
    2. Amy S. Metlay, Brandon Chyi, Colton J. Sheehan, Jeffrey R. Shallenberger, Thomas E. Mallouk. Fast Outer-Sphere Electron Transfer and High Specific Capacitance at Covalently Modified Carbon Electrodes. Journal of the American Chemical Society 2024, 146 (29) , 20086-20091. https://doi.org/10.1021/jacs.4c04088
    3. Binu Varghese, Hareesh Suresh, Sarith P. Sathian. Are Surface Nanobubbles Stabilized by Hydrophobic Attraction? Insights from Molecular Dynamics and Potential of Mean Force Simulations. The Journal of Physical Chemistry C 2024, 128 (8) , 3473-3484. https://doi.org/10.1021/acs.jpcc.3c06558
    4. Minkyung Kang, Cameron L. Bentley, J. Tyler Mefford, William C. Chueh, Patrick R. Unwin. Multiscale Analysis of Electrocatalytic Particle Activities: Linking Nanoscale Measurements and Ensemble Behavior. ACS Nano 2023, 17 (21) , 21493-21505. https://doi.org/10.1021/acsnano.3c06335
    5. Hana Tarábková, Pavel Janda. Effect of Graphite Aging on Its Wetting Properties and Surface Blocking by Gaseous Nanodomains. Langmuir 2023, 39 (39) , 14154-14161. https://doi.org/10.1021/acs.langmuir.3c02151
    6. Sakthivel Srinivas, Sakkarapalayam Murugesan Senthil Kumar, Annamalai Senthil Kumar. Edge and Basal Plane Anisotropy of a Preanodized Pencil Graphite Electrode Surface Revealed Using Scanning Electrochemical Microscopy and Electrocatalytic Dopamine Oxidation as a Molecular Probe. Langmuir 2023, 39 (36) , 12563-12575. https://doi.org/10.1021/acs.langmuir.3c01112
    7. Ruobing Bai, Nathan L. Tolman, Zhenbo Peng, Haitao Liu. Influence of Atmospheric Contaminants on the Work Function of Graphite. Langmuir 2023, 39 (34) , 12159-12165. https://doi.org/10.1021/acs.langmuir.3c01459
    8. Jeremy May, Dipak Koirala, Forrest Dalbec, Joshua Russell, Hui Xiong, Elena Echeverria, David N. McIlroy, I. Francis Cheng. Superhydrophilicity and Antifouling Behavior in Electrochemically Oxidized Nanocrystalline Pseudographite. Industrial & Engineering Chemistry Research 2023, 62 (17) , 6687-6696. https://doi.org/10.1021/acs.iecr.3c00140
    9. Rama Kant, Gaurav Kumar Mishra. Theory for Heterogeneous Electron Transfer Kinetics on Nanocorrugated Atomic Stepped Metal Electrodes. The Journal of Physical Chemistry C 2023, 127 (14) , 6884-6899. https://doi.org/10.1021/acs.jpcc.2c08690
    10. Nathan L. Tolman, Ruobing Bai, Haitao Liu. Hydrocarbons in the Meniscus: Effects on Conductive Atomic Force Microscopy. Langmuir 2023, 39 (12) , 4274-4281. https://doi.org/10.1021/acs.langmuir.2c03222
    11. Yuanjiao Li, Alban Morel, Danick Gallant, Janine Mauzeroll. Controlling Surface Contact, Oxygen Transport, and Pitting of Surface Oxide via Single-Channel Scanning Electrochemical Cell Microscopy. Analytical Chemistry 2022, 94 (42) , 14603-14610. https://doi.org/10.1021/acs.analchem.2c02459
    12. Robert M. Stolz, Anna F. Kolln, Brunno C. Rocha, Anna Brinks, Aileen M. Eagleton, Lukasz Mendecki, Harish Vashisth, Katherine A. Mirica. Epitaxial Self-Assembly of Interfaces of 2D Metal–Organic Frameworks for Electroanalytical Detection of Neurotransmitters. ACS Nano 2022, 16 (9) , 13869-13883. https://doi.org/10.1021/acsnano.2c02529
    13. Chen Fang, Andrew Dopilka, Yueran Gu, Vassilia Zorba, Robert Kostecki, Gao Liu. Molecular Langmuir–Blodgett Film for Silicon Anode Interface Engineering. ACS Applied Energy Materials 2022, 5 (9) , 11655-11661. https://doi.org/10.1021/acsaem.2c02130
    14. Anur Yadav, Michel Wehrhold, Tilmann J. Neubert, Rodrigo M. Iost, Kannan Balasubramanian. Fast Electron Transfer Kinetics at an Isolated Graphene Edge Nanoelectrode with and without Nanoparticles: Implications for Sensing Electroactive Species. ACS Applied Nano Materials 2020, 3 (12) , 11725-11735. https://doi.org/10.1021/acsanm.0c02171
    15. Fakher M. Rabboh, Glen D. O’Neil. Voltammetric pH Measurements in Unadulterated Foodstuffs, Urine, and Serum with 3D-Printed Graphene/Poly(Lactic Acid) Electrodes. Analytical Chemistry 2020, 92 (22) , 14999-15006. https://doi.org/10.1021/acs.analchem.0c02902
    16. Yuanjiao Li, Alban Morel, Danick Gallant, Janine Mauzeroll. Oil-Immersed Scanning Micropipette Contact Method Enabling Long-term Corrosion Mapping. Analytical Chemistry 2020, 92 (18) , 12415-12422. https://doi.org/10.1021/acs.analchem.0c02177
    17. Justin Mitchell Hurst, Min A. Kim, Zhenbo Peng, Lei Li, Haitao Liu. Assessing and Mitigating Surface Contamination of Carbon Electrode Materials. Chemistry of Materials 2019, 31 (18) , 7133-7142. https://doi.org/10.1021/acs.chemmater.9b01758
    18. Yi Xiao, Yi Su, Xiaodong Liu, Weilin Xu. Defect-Driven Heterogeneous Electron Transfer between an Individual Graphene Sheet and Electrode. The Journal of Physical Chemistry Letters 2019, 10 (18) , 5402-5407. https://doi.org/10.1021/acs.jpclett.9b02134
    19. Chengyi Wu, Ding-Shyue Yang. Ordered Structures and Morphology-Induced Phase Transitions at Graphite–Acetonitrile Interfaces. The Journal of Physical Chemistry C 2019, 123 (36) , 22390-22396. https://doi.org/10.1021/acs.jpcc.9b06440
    20. Daniel Martín-Yerga, Agustín Costa-García, Patrick R. Unwin. Correlative Voltammetric Microscopy: Structure–Activity Relationships in the Microscopic Electrochemical Behavior of Screen Printed Carbon Electrodes. ACS Sensors 2019, 4 (8) , 2173-2180. https://doi.org/10.1021/acssensors.9b01021
    21. Enrico Daviddi, Katerina L. Gonos, Alex W. Colburn, Cameron L. Bentley, Patrick R. Unwin. Scanning Electrochemical Cell Microscopy (SECCM) Chronopotentiometry: Development and Applications in Electroanalysis and Electrocatalysis. Analytical Chemistry 2019, 91 (14) , 9229-9237. https://doi.org/10.1021/acs.analchem.9b02091
    22. Matěj Velický, Peter S. Toth, Colin R. Woods, Kostya S. Novoselov, Robert A. W. Dryfe. Electrochemistry of the Basal Plane versus Edge Plane of Graphite Revisited. The Journal of Physical Chemistry C 2019, 123 (18) , 11677-11685. https://doi.org/10.1021/acs.jpcc.9b01010
    23. Sergey V. Pavlov, Renat R. Nazmutdinov, Maxim V. Fedorov, Sergey A. Kislenko. Role of Graphene Edges in the Electron Transfer Kinetics: Insight from Theory and Molecular Modeling. The Journal of Physical Chemistry C 2019, 123 (11) , 6627-6634. https://doi.org/10.1021/acs.jpcc.8b12531
    24. Cameron L. Bentley, Minkyung Kang, Patrick R. Unwin. Nanoscale Surface Structure–Activity in Electrochemistry and Electrocatalysis. Journal of the American Chemical Society 2019, 141 (6) , 2179-2193. https://doi.org/10.1021/jacs.8b09828
    25. Pawin Iamprasertkun, Wisit Hirunpinyopas, Ashok Keerthi, Bin Wang, Boya Radha, Mark A. Bissett, Robert A. W. Dryfe. Capacitance of Basal Plane and Edge-Oriented Highly Ordered Pyrolytic Graphite: Specific Ion Effects. The Journal of Physical Chemistry Letters 2019, 10 (3) , 617-623. https://doi.org/10.1021/acs.jpclett.8b03523
    26. Martin Robinson, Alexandr N. Simonov, Jie Zhang, Alan M. Bond, David Gavaghan. Separating the Effects of Experimental Noise from Inherent System Variability in Voltammetry: The [Fe(CN)6]3–/4– Process. Analytical Chemistry 2019, 91 (3) , 1944-1953. https://doi.org/10.1021/acs.analchem.8b04238
    27. O. Charles Nwamba, Elena Echeverria, David N. McIlroy, Aaron Austin, Jean’ne M. Shreeve, D. Eric Aston. Thermal Modification of Graphite for Fast Electron Transport and Increased Capacitance. ACS Applied Nano Materials 2019, 2 (1) , 228-240. https://doi.org/10.1021/acsanm.8b01887
    28. Cameron L. Bentley, James Edmondson, Gabriel N. Meloni, David Perry, Viacheslav Shkirskiy, Patrick R. Unwin. Nanoscale Electrochemical Mapping. Analytical Chemistry 2019, 91 (1) , 84-108. https://doi.org/10.1021/acs.analchem.8b05235
    29. Niraja Kurapati, Pavithra Pathirathna, Ran Chen, Shigeru Amemiya. Voltammetric Measurement of Adsorption Isotherm for Ferrocene Derivatives on Highly Oriented Pyrolytic Graphite. Analytical Chemistry 2018, 90 (22) , 13632-13639. https://doi.org/10.1021/acs.analchem.8b03883
    30. César A. Ortiz-Ledón, Cynthia G. Zoski. Fabrication of Glass-Insulated Ultramicrometer to Submicrometer Carbon Fiber Electrodes to Support a Single Nanoparticle and Nanoparticle Ensembles in Electrocatalytic Investigations. Analytical Chemistry 2018, 90 (21) , 12616-12624. https://doi.org/10.1021/acs.analchem.8b02785
    31. Glen D. O’Neil, Han-wen Kuo, Duncan N. Lomax, John Wright, Daniel V. Esposito. Scanning Line Probe Microscopy: Beyond the Point Probe. Analytical Chemistry 2018, 90 (19) , 11531-11537. https://doi.org/10.1021/acs.analchem.8b02852
    32. Lucas-Alexandre Stern, Piotr Mocny, Heron Vrubel, Tugba Bilgic, Harm-Anton Klok, and Xile Hu . Polymer-Brush-Templated Three-Dimensional Molybdenum Sulfide Catalyst for Hydrogen Evolution. ACS Applied Materials & Interfaces 2018, 10 (7) , 6253-6261. https://doi.org/10.1021/acsami.7b16679
    33. Faduma M. Maddar, David Perry, and Patrick R. Unwin . Confined Crystallization of Organic Materials in Nanopipettes: Tracking the Early Stages of Crystal Growth and Making Seeds for Unusual Polymorphs. Crystal Growth & Design 2017, 17 (12) , 6565-6571. https://doi.org/10.1021/acs.cgd.7b01224
    34. Joseph F. Parker, Gabrielle E. Kamm, Ashlee D. McGovern, Paul A. DeSario, Debra R. Rolison, Justin C. Lytle, and Jeffrey W. Long . Rewriting Electron-Transfer Kinetics at Pyrolytic Carbon Electrodes Decorated with Nanometric Ruthenium Oxide. Langmuir 2017, 33 (37) , 9416-9425. https://doi.org/10.1021/acs.langmuir.7b01107
    35. Sumona Sinha, Santanu Pan, Samiran Choudhury, Jaivardhan Sinha, and Anjan Barman . Extrinsic Spin–Orbit Coupling-Induced Large Modulation of Gilbert Damping Coefficient in CoFeB Thin Film on the Graphene Stack with Different Defect Density. The Journal of Physical Chemistry C 2017, 121 (32) , 17442-17449. https://doi.org/10.1021/acs.jpcc.7b02790
    36. Edwin C. Mitchell, Lars E. Dunaway, Gregory S. McCarty, and Leslie A. Sombers . Spectroelectrochemical Characterization of the Dynamic Carbon-Fiber Surface in Response to Electrochemical Conditioning. Langmuir 2017, 33 (32) , 7838-7846. https://doi.org/10.1021/acs.langmuir.7b01443
    37. Sze-yin Tan, Jie Zhang, Alan M. Bond, Julie V. Macpherson, and Patrick R. Unwin . Influence of Tip and Substrate Properties and Nonsteady-State Effects on Nanogap Kinetic Measurements: Response to Comment on “Impact of Adsorption on Scanning Electrochemical Microscopy Voltammetry and Implications for Nanogap Measurements”. Analytical Chemistry 2017, 89 (13) , 7273-7276. https://doi.org/10.1021/acs.analchem.7b01664
    38. Ruben Bartali, Michal Otyepka, Martin Pykal, Petr Lazar, Victor Micheli, Gloria Gottardi, and Nadhira Laidani . Interaction of the Helium, Hydrogen, Air, Argon, and Nitrogen Bubbles with Graphite Surface in Water. ACS Applied Materials & Interfaces 2017, 9 (20) , 17517-17525. https://doi.org/10.1021/acsami.6b16493
    39. Sara Chakri, Anisha N. Patel, Isabelle Frateur, Frédéric Kanoufi, Eliane M. M. Sutter, T. T. Mai Tran, Bernard Tribollet, and Vincent Vivier . Imaging of a Thin Oxide Film Formation from the Combination of Surface Reflectivity and Electrochemical Methods. Analytical Chemistry 2017, 89 (10) , 5303-5310. https://doi.org/10.1021/acs.analchem.6b04921
    40. Hyun Gu Kim and Han-Bo-Ram Lee . Atomic Layer Deposition on 2D Materials. Chemistry of Materials 2017, 29 (9) , 3809-3826. https://doi.org/10.1021/acs.chemmater.6b05103
    41. Karen B. Ricardo, Anqin Xu, Muhammad Salim, Feng Zhou, and Haitao Liu . Deposition of DNA Nanostructures on Highly Oriented Pyrolytic Graphite. Langmuir 2017, 33 (16) , 3991-3997. https://doi.org/10.1021/acs.langmuir.6b03836
    42. Sze-yin Tan, Patrick R. Unwin, Julie V. Macpherson, Jie Zhang, and Alan M. Bond . Probing Electrode Heterogeneity Using Fourier-Transformed Alternating Current Voltammetry: Application to a Dual-Electrode Configuration. Analytical Chemistry 2017, 89 (5) , 2830-2837. https://doi.org/10.1021/acs.analchem.6b03924
    43. Noora Isoaho, Emilia Peltola, Sami Sainio, Niklas Wester, Vera Protopopova, Benjamin P. Wilson, Jari Koskinen, and Tomi Laurila . Carbon Nanostructure Based Platform for Enzymatic Glutamate Biosensors. The Journal of Physical Chemistry C 2017, 121 (8) , 4618-4626. https://doi.org/10.1021/acs.jpcc.6b10612
    44. Rossella Yivlialin, Gianlorenzo Bussetti, Marta Penconi, Alberto Bossi, Franco Ciccacci, Marco Finazzi, and Lamberto Duò . Vacuum-Deposited Porphyrin Protective Films on Graphite: Electrochemical Atomic Force Microscopy Investigation during Anion Intercalation. ACS Applied Materials & Interfaces 2017, 9 (4) , 4100-4105. https://doi.org/10.1021/acsami.6b12359
    45. Andrew Kozbial, Charlie Trouba, Haitao Liu, and Lei Li . Characterization of the Intrinsic Water Wettability of Graphite Using Contact Angle Measurements: Effect of Defects on Static and Dynamic Contact Angles. Langmuir 2017, 33 (4) , 959-967. https://doi.org/10.1021/acs.langmuir.6b04193
    46. Yasufumi Takahashi, Akichika Kumatani, Hitoshi Shiku, and Tomokazu Matsue . Scanning Probe Microscopy for Nanoscale Electrochemical Imaging. Analytical Chemistry 2017, 89 (1) , 342-357. https://doi.org/10.1021/acs.analchem.6b04355
    47. Andrew Kozbial, Feng Zhou, Zhiting Li, Haitao Liu, and Lei Li . Are Graphitic Surfaces Hydrophobic?. Accounts of Chemical Research 2016, 49 (12) , 2765-2773. https://doi.org/10.1021/acs.accounts.6b00447
    48. Camila Molena de Assis, Thu Huong Ho, Hercilio Gomes de Melo, Michel Keddam, Mireille Turmine, and Vincent Vivier . Electrochemical Impedance Spectroscopy in a Droplet of Solution for the Investigation of Liquid/Solid Interface. Analytical Chemistry 2016, 88 (24) , 12108-12115. https://doi.org/10.1021/acs.analchem.6b02795
    49. Sharel P. E, Yang-Rae Kim, David Perry, Cameron L. Bentley, and Patrick R. Unwin . Nanoscale Electrocatalysis of Hydrazine Electro-Oxidation at Blistered Graphite Electrodes. ACS Applied Materials & Interfaces 2016, 8 (44) , 30458-30466. https://doi.org/10.1021/acsami.6b10940
    50. Yuqin Zou, Alex S. Walton, Ian A. Kinloch, and Robert A. W. Dryfe . Investigation of the Differential Capacitance of Highly Ordered Pyrolytic Graphite as a Model Material of Graphene. Langmuir 2016, 32 (44) , 11448-11455. https://doi.org/10.1021/acs.langmuir.6b02910
    51. Xianwen Mao, Fei Guo, Esther H. Yan, Gregory C. Rutledge, and T. Alan Hatton . Remarkably High Heterogeneous Electron Transfer Activity of Carbon-Nanotube-Supported Reduced Graphene Oxide. Chemistry of Materials 2016, 28 (20) , 7422-7432. https://doi.org/10.1021/acs.chemmater.6b03024
    52. Je Hyun Bae, Yun Yu, and Michael V. Mirkin . Scanning Electrochemical Microscopy Study of Electron-Transfer Kinetics and Catalysis at Nanoporous Electrodes. The Journal of Physical Chemistry C 2016, 120 (37) , 20651-20658. https://doi.org/10.1021/acs.jpcc.6b01620
    53. Patrick R. Unwin, Aleix G. Güell, and Guohui Zhang . Nanoscale Electrochemistry of sp2 Carbon Materials: From Graphite and Graphene to Carbon Nanotubes. Accounts of Chemical Research 2016, 49 (9) , 2041-2048. https://doi.org/10.1021/acs.accounts.6b00301
    54. Guohui Zhang, Marc Walker, and Patrick R. Unwin . Low-Voltage Voltammetric Electrowetting of Graphite Surfaces by Ion Intercalation/Deintercalation. Langmuir 2016, 32 (30) , 7476-7484. https://doi.org/10.1021/acs.langmuir.6b01506
    55. Ranjit A. Patil, Cheng-Ping Chang, Rupesh S. Devan, Yung Liou, and Yuan-Ron Ma . Impact of Nanosize on Supercapacitance: Study of 1D Nanorods and 2D Thin-Films of Nickel Oxide. ACS Applied Materials & Interfaces 2016, 8 (15) , 9872-9880. https://doi.org/10.1021/acsami.6b00487
    56. Guohui Zhang, Aleix G. Güell, Paul M. Kirkman, Robert A. Lazenby, Thomas S. Miller, and Patrick R. Unwin . Versatile Polymer-Free Graphene Transfer Method and Applications. ACS Applied Materials & Interfaces 2016, 8 (12) , 8008-8016. https://doi.org/10.1021/acsami.6b00681
    57. Sze-yin Tan, Jie Zhang, Alan M. Bond, Julie V. Macpherson, and Patrick R. Unwin . Impact of Adsorption on Scanning Electrochemical Microscopy Voltammetry and Implications for Nanogap Measurements. Analytical Chemistry 2016, 88 (6) , 3272-3280. https://doi.org/10.1021/acs.analchem.5b04715
    58. Zhiting Li, Andrew Kozbial, Nikoloz Nioradze, David Parobek, Ganesh Jagadeesh Shenoy, Muhammad Salim, Shigeru Amemiya, Lei Li, and Haitao Liu . Water Protects Graphitic Surface from Airborne Hydrocarbon Contamination. ACS Nano 2016, 10 (1) , 349-359. https://doi.org/10.1021/acsnano.5b04843
    59. Minkyung Kang, David Perry, Yang-Rae Kim, Alex W. Colburn, Robert A. Lazenby, and Patrick R. Unwin . Time-Resolved Detection and Analysis of Single Nanoparticle Electrocatalytic Impacts. Journal of the American Chemical Society 2015, 137 (34) , 10902-10905. https://doi.org/10.1021/jacs.5b05856
    60. Yang-Rae Kim, Stanley C. S. Lai, Kim McKelvey, Guohui Zhang, David Perry, Thomas S. Miller, and Patrick R. Unwin . Nucleation and Aggregative Growth of Palladium Nanoparticles on Carbon Electrodes: Experiment and Kinetic Model. The Journal of Physical Chemistry C 2015, 119 (30) , 17389-17397. https://doi.org/10.1021/acs.jpcc.5b03513
    61. Kiran Bano, Jie Zhang, and Alan M. Bond , Patrick R. Unwin and Julie V. Macpherson . Diminished Electron Transfer Kinetics for [Ru(NH3)6]3+/2+, [α-SiW12O40]4–/5–, and [α-SiW12O40]5–/6– Processes at Boron-Doped Diamond Electrodes. The Journal of Physical Chemistry C 2015, 119 (22) , 12464-12472. https://doi.org/10.1021/acs.jpcc.5b02642
    62. Nikoloz Nioradze, Ran Chen, Niraja Kurapati, Anastasia Khvataeva-Domanov, Stéphane Mabic, and Shigeru Amemiya . Organic Contamination of Highly Oriented Pyrolytic Graphite As Studied by Scanning Electrochemical Microscopy. Analytical Chemistry 2015, 87 (9) , 4836-4843. https://doi.org/10.1021/acs.analchem.5b00213
    63. Aleix G. Güell, Anatolii S. Cuharuc, Yang-Rae Kim, Guohui Zhang, Sze-yin Tan, Neil Ebejer, and Patrick R. Unwin . Redox-Dependent Spatially Resolved Electrochemistry at Graphene and Graphite Step Edges. ACS Nano 2015, 9 (4) , 3558-3571. https://doi.org/10.1021/acsnano.5b00550
    64. Jin-Hui Zhong, Jie Zhang, Xi Jin, Jun-Yang Liu, Qiongyu Li, Mao-Hua Li, Weiwei Cai, De-Yin Wu, Dongping Zhan, and Bin Ren . Quantitative Correlation between Defect Density and Heterogeneous Electron Transfer Rate of Single Layer Graphene. Journal of the American Chemical Society 2014, 136 (47) , 16609-16617. https://doi.org/10.1021/ja508965w
    65. Matěj Velický, Dan F. Bradley, Adam J. Cooper, Ernie W. Hill, Ian A. Kinloch, Artem Mishchenko, Konstantin S. Novoselov, Hollie V. Patten, Peter S. Toth, Anna T. Valota, Stephen D. Worrall, and Robert A. W. Dryfe . Electron Transfer Kinetics on Mono- and Multilayer Graphene. ACS Nano 2014, 8 (10) , 10089-10100. https://doi.org/10.1021/nn504298r
    66. Alexandr N. Simonov, Graham P. Morris, Elena A. Mashkina, Blair Bethwaite, Kathryn Gillow, Ruth E. Baker, David J. Gavaghan, and Alan M. Bond . Inappropriate Use of the Quasi-Reversible Electrode Kinetic Model in Simulation-Experiment Comparisons of Voltammetric Processes That Approach the Reversible Limit. Analytical Chemistry 2014, 86 (16) , 8408-8417. https://doi.org/10.1021/ac5019952
    67. Guohui Zhang, Paul M. Kirkman, Anisha N. Patel, Anatolii S. Cuharuc, Kim McKelvey, and Patrick R. Unwin . Molecular Functionalization of Graphite Surfaces: Basal Plane versus Step Edge Electrochemical Activity. Journal of the American Chemical Society 2014, 136 (32) , 11444-11451. https://doi.org/10.1021/ja505266d
    68. Jabulani R. Barber, Hyo Jae Yoon, Carleen M. Bowers, Martin M. Thuo, Benjamin Breiten, Diana M. Gooding, and George M. Whitesides . Influence of Environment on the Measurement of Rates of Charge Transport across AgTS/SAM//Ga2O3/EGaIn Junctions. Chemistry of Materials 2014, 26 (13) , 3938-3947. https://doi.org/10.1021/cm5014784
    69. Andrew J. Wain, Andrew J. Pollard, and Christoph Richter . High-Resolution Electrochemical and Topographical Imaging Using Batch-Fabricated Cantilever Probes. Analytical Chemistry 2014, 86 (10) , 5143-5149. https://doi.org/10.1021/ac500946v
    70. Gareth P. Keeley, Niall McEvoy, Hugo Nolan, Michael Holzinger, Serge Cosnier, and Georg S. Duesberg . Electroanalytical Sensing Properties of Pristine and Functionalized Multilayer Graphene. Chemistry of Materials 2014, 26 (5) , 1807-1812. https://doi.org/10.1021/cm403501r
    71. Anisha N. Patel, Sze-yin Tan, Thomas S. Miller, Julie V. Macpherson, and Patrick R. Unwin . Comparison and Reappraisal of Carbon Electrodes for the Voltammetric Detection of Dopamine. Analytical Chemistry 2013, 85 (24) , 11755-11764. https://doi.org/10.1021/ac401969q
    72. Graham P. Morris, Alexandr N. Simonov, Elena A. Mashkina, Rafel Bordas, Kathryn Gillow, Ruth E. Baker, David J. Gavaghan, and Alan M. Bond . A Comparison of Fully Automated Methods of Data Analysis and Computer Assisted Heuristic Methods in an Electrode Kinetic Study of the Pathologically Variable [Fe(CN)6]3–/4– Process by AC Voltammetry. Analytical Chemistry 2013, 85 (24) , 11780-11787. https://doi.org/10.1021/ac4022105
    73. Kevin C. Leonard and Allen J. Bard . The Study of Multireactional Electrochemical Interfaces via a Tip Generation/Substrate Collection Mode of Scanning Electrochemical Microscopy: The Hydrogen Evolution Reaction for Mn in Acidic Solution. Journal of the American Chemical Society 2013, 135 (42) , 15890-15896. https://doi.org/10.1021/ja407395m
    74. Laura A. Hutton, James G. Iacobini, Eleni Bitziou, Robert B. Channon, Mark E. Newton, and Julie V. Macpherson . Examination of the Factors Affecting the Electrochemical Performance of Oxygen-Terminated Polycrystalline Boron-Doped Diamond Electrodes. Analytical Chemistry 2013, 85 (15) , 7230-7240. https://doi.org/10.1021/ac401042t
    75. Bo Zhang, Lixin Fan, Huawei Zhong, Yuwen Liu, and Shengli Chen . Graphene Nanoelectrodes: Fabrication and Size-Dependent Electrochemistry. Journal of the American Chemical Society 2013, 135 (27) , 10073-10080. https://doi.org/10.1021/ja402456b
    76. Nicole L. Ritzert, Joaquín Rodríguez-López, Cen Tan, and Héctor D. Abruña . Kinetics of Interfacial Electron Transfer at Single-Layer Graphene Electrodes in Aqueous and Nonaqueous Solutions. Langmuir 2013, 29 (5) , 1683-1694. https://doi.org/10.1021/la3042549
    77. Anisha N. Patel, Kim McKelvey, and Patrick R. Unwin . Nanoscale Electrochemical Patterning Reveals the Active Sites for Catechol Oxidation at Graphite Surfaces. Journal of the American Chemical Society 2012, 134 (50) , 20246-20249. https://doi.org/10.1021/ja3095894
    78. Vitoria Brambilla Messias, Débora Cristina Perez Modenez, Carem Emanoele de Souza Pereira, Regina Massako Takeuchi, André Luiz dos Santos. Practical considerations for using redox probes in electrochemical sensor characterization. Electrochimica Acta 2025, 511 , 145374. https://doi.org/10.1016/j.electacta.2024.145374
    79. Chenglong Xu, Greg G. Qiao, Nan Nan, Lei Bao. Environmental Influence on Stripe Formation at the Graphite‐Water Interface. ChemPhysChem 2024, 5 https://doi.org/10.1002/cphc.202400641
    80. Neha Kumari, Sahil Kumar, Prerit Chauhan, Gun Anit Kaur, Itika Kainthla, Mamta Shandilya. Environmentally Sustainable Techniques for rGO Synthesis: Focus on Spun Calcination and Clean Technology Advances. Journal of Inorganic and Organometallic Polymers and Materials 2024, 11 https://doi.org/10.1007/s10904-024-03385-w
    81. RO.MU. Jauhar, K. Ramachandran, S. Deepapriya, Sindhur Joshi, Ayman A. Ghfar, Lavanya Rao, B. Ramachandra Bhat, N.K. Udayashankar, V. Siva, R. Govindan, Byung Chul Kim, John D. Rodney. Growth of octahedral structured AgBiS2 single crystals and its insights on the high performance electrocatalytic hydrogen generation. International Journal of Hydrogen Energy 2024, 77 , 291-300. https://doi.org/10.1016/j.ijhydene.2024.06.157
    82. Lachlan F. Gaudin, India R. Wright, Thom R. Harris-Lee, Gunani Jayamaha, Minkyung Kang, Cameron L. Bentley. Five years of scanning electrochemical cell microscopy (SECCM): new insights and innovations. Nanoscale 2024, 16 (26) , 12345-12367. https://doi.org/10.1039/D4NR00859F
    83. Septia Kholimatussadiah, Chia-Ling Hsu, Shang-Wei Ke, Tsu-Chin Chou, Yung-Fu Wu, Rositsa Yakimova, Akichika Kumatani, Kuei-Hsien Chen, Li-Chyong Chen, He-Yun Du. In-situ observation of hydrogen nanobubbles formation on graphene surface by AFM-SECM. Electrochimica Acta 2024, 493 , 144425. https://doi.org/10.1016/j.electacta.2024.144425
    84. Balaji Chettiannan, Gowdhaman Arumugam, Manickam Selvaraj, Ramesh Rajendran. Exploring the effect of morphology on electrochemical performance of nickel and cobalt metal-organic frameworks and their derivatives for supercapacitor and hydrogen evolution. Journal of Energy Storage 2024, 94 , 112390. https://doi.org/10.1016/j.est.2024.112390
    85. Gunani Jayamaha, Mahin Maleki, Cameron L. Bentley, Minkyung Kang. Practical guidelines for the use of scanning electrochemical cell microscopy (SECCM). The Analyst 2024, 149 (9) , 2542-2555. https://doi.org/10.1039/D4AN00117F
    86. Maciej Fronczak, Zoltán Károly, Predrag Banković, Zorica Mojović. The influence of precursor selection on electrochemical properties of radiofrequency thermal plasma synthesized graphene. Microchemical Journal 2024, 199 , 110079. https://doi.org/10.1016/j.microc.2024.110079
    87. Shuai Liu, Guilhem Pignol, Corinne Lagrost, Bingwei Mao, Jiawei Yan, Philippe Hapiot. Electron Transfer Kinetics at Single‐Layer Graphene/Ionic Liquid Interfaces. ChemElectroChem 2024, 11 (6) https://doi.org/10.1002/celc.202300658
    88. Ilya Sterin, Anna Tverdokhlebova, Oleh Smutok, Evgeny Katz. Chemically modifying electrodes—a classical tool box. Journal of Solid State Electrochemistry 2024, 28 (3-4) , 757-827. https://doi.org/10.1007/s10008-023-05743-z
    89. A.G. Krivenko, N.S. Komarova, I.A. Kostanovskiy, D. Stolyarov, Y.M. Shul’ga, S.V. Savilov, R. Yu. Novotortsev, Yu. A. Dobrovolsky, S.M. Aldoshin, J. Ni. Features of electrochemical behavior of graphene films on metal foams. Materials Technology 2023, 38 (1) https://doi.org/10.1080/10667857.2023.2211374
    90. Bozhao Wu, Yongping Kang, Cai Lu, Langquan Shui, Wengen Ouyang, Qi Peng, Qiankun He, Ze Liu. A Simple Method to Measure the Contact Angle of Metal Droplets on Graphite. Nanomanufacturing and Metrology 2023, 6 (1) https://doi.org/10.1007/s41871-023-00207-4
    91. India R. Wright, Lachlan F. Gaudin, Lisandra L. Martin, Cameron L. Bentley. Spatially-resolved bioelectrochemistry with scanning electrochemical cell microscopy: A microscale study of coenzyme Q10 modified carbon electrodes. Electrochimica Acta 2023, 471 , 143362. https://doi.org/10.1016/j.electacta.2023.143362
    92. John F. Cassidy, Rafaela C. de Carvalho, Anthony J. Betts. Use of Inner/Outer Sphere Terminology in Electrochemistry—A Hexacyanoferrate II/III Case Study. Electrochem 2023, 4 (3) , 313-349. https://doi.org/10.3390/electrochem4030022
    93. Ashwin K.V. Mruthunjaya, Alastair M. Hodges, Ronald C. Chatelier, Angel A.J. Torriero. Calibration-free disposable electrochemical sensor with co-facing electrodes: Theory and characterisation with fixed and changing mediator concentration. Electrochimica Acta 2023, 460 , 142596. https://doi.org/10.1016/j.electacta.2023.142596
    94. Lucas F. de Lima, André L. Ferreira, Ishani Ranjan, Ronald G. Collman, William R. de Araujo, Cesar de la Fuente-Nunez. A bacterial cellulose-based and low-cost electrochemical biosensor for ultrasensitive detection of SARS-CoV-2. Cell Reports Physical Science 2023, 4 (8) , 101476. https://doi.org/10.1016/j.xcrp.2023.101476
    95. Sakthivel Srinivas, Annamalai Senthil Kumar. Surface-Activated Pencil Graphite Electrode for Dopamine Sensor Applications: A Critical Review. Biosensors 2023, 13 (3) , 353. https://doi.org/10.3390/bios13030353
    96. Stanley Udochukwu Ofoegbu, Mário Guerreiro Silva Ferreira, Helena I. S. Nogueira, Mikhail Zheludkevich. Comparison of the Electrochemical Response of Carbon-Fiber-Reinforced Plastic (CFRP), Glassy Carbon, and Highly Ordered Pyrolytic Graphite (HOPG) in Near-Neutral Aqueous Chloride Media. C 2023, 9 (1) , 7. https://doi.org/10.3390/c9010007
    97. Shingo KAJIKAWA, Sho MORITA, Hiroshi USUKI, Naohiko SUGITA. Development of the spindle shaft for machining center using high thermal conductivity material. Journal of Advanced Mechanical Design, Systems, and Manufacturing 2023, 17 (6) , JAMDSM0065-JAMDSM0065. https://doi.org/10.1299/jamdsm.2023jamdsm0065
    98. András Pálinkás, György Kálvin, Péter Vancsó, Konrád Kandrai, Márton Szendrő, Gergely Németh, Miklós Németh, Áron Pekker, József S. Pap, Péter Petrik, Katalin Kamarás, Levente Tapasztó, Péter Nemes-Incze. The composition and structure of the ubiquitous hydrocarbon contamination on van der Waals materials. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-34641-7
    99. Guilhem Pignol, Patricia Bassil, Jean-Marie Fontmorin, Didier Floner, Florence Geneste, Philippe Hapiot. Electrochemical Properties of Carbon Fibers from Felts. Molecules 2022, 27 (19) , 6584. https://doi.org/10.3390/molecules27196584
    100. Alina I. Inozemtseva, Artem V. Sergeev, Kirill S. Napolskii, Sergey E. Kushnir, Vladislav Belov, Daniil M. Itkis, Dmitry Yu. Usachov, Lada V. Yashina. Graphene electrochemistry: ‘Adiabaticity’ of electron transfer. Electrochimica Acta 2022, 427 , 140901. https://doi.org/10.1016/j.electacta.2022.140901
    Load more citations

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2012, 134, 49, 20117–20130
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja308615h
    Published November 12, 2012
    Copyright © 2012 American Chemical Society

    Article Views

    7744

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.