Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Shape-Controlled Synthesis of Colloidal Superparticles from Nanocubes
My Activity

Figure 1Loading Img
    Communication

    Shape-Controlled Synthesis of Colloidal Superparticles from Nanocubes
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
    Cornell High Energy Synchrotron Source, Wilson Laboratory, Cornell University, Ithaca, New York 14853, United States
    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2012, 134, 44, 18225–18228
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja308962w
    Published October 11, 2012
    Copyright © 2012 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    This communication reports a shape-controlled synthesis of colloidal superparticles (SPs) from iron oxide nanocubes. Our results show that the formation of SPs is under thermodynamic control and that their shape is determined by Gibbs free energy minimization. The resulting SPs adopt a simple-cubic superlattice structure, and their shape can be tuned between spheres and cubes by varying the relative free energy contributions from the surface and bulk free energy terms. The formation of sphere-shaped SPs from nanocubes suggests that the size-dependent hydration effect predicted by the Lum–Chandler–Weeks theory plays a very important role in the self-assembly of nano-objects. In addition, the iron oxide SPs exhibit shape-dependent therapeutic effects in magnetomechanical treatments of cancer cells in vitro.

    Copyright © 2012 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Experimental details and additional data. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 121 publications.

    1. Mohammad Suman Chowdhury, Daniel Arenas Esteban, Rabia Amin, Claudia Román-Freijeiro, Enja Laureen Rösch, Markus Etzkorn, Meinhard Schilling, Frank Ludwig, Sara Bals, Verónica Salgueiriño, Aidin Lak. Organic Molecular Glues to Design Three-Dimensional Cubic Nano-assemblies of Magnetic Nanoparticles. Chemistry of Materials 2024, 36 (14) , 6865-6876. https://doi.org/10.1021/acs.chemmater.4c00770
    2. Emanuele Marino, R. Allen LaCour, Thomas E. Kodger. Emergent Properties from Three-Dimensional Assemblies of (Nano)particles in Confined Spaces. Crystal Growth & Design 2024, 24 (14) , 6060-6080. https://doi.org/10.1021/acs.cgd.4c00260
    3. Chong Yu, Hongxia Guo. Molecular Dynamics Simulation Study on Self-Assembly of Polymer-Grafted Nanocrystals: From Isotropic Cores to Anisotropic Cores. Journal of Chemical Theory and Computation 2024, 20 (4) , 1625-1635. https://doi.org/10.1021/acs.jctc.3c00551
    4. Yohei Takatsuji, Riho Matsumoto, Gen Sazaki, Yuya Oaki, Hiroaki Imai. Construction of Millimeter-Wide Monolayers of Ordered Nanocubes as a Stain of “Wineglass Tears” Driven by the Marangoni Flow. Langmuir 2023, 39 (11) , 4091-4099. https://doi.org/10.1021/acs.langmuir.2c03382
    5. Siyu Wan, Xiangyun Xi, Heyang Zhang, Jing Ning, Ziyue Zheng, Zhebin Zhang, Ying Long, Yuwei Deng, Pengshuo Fan, Dong Yang, Tongtao Li, Angang Dong. Shape-Mediated Oriented Assembly of Concave Nanoparticles under Cylindrical Confinement. ACS Nano 2022, 16 (12) , 21315-21323. https://doi.org/10.1021/acsnano.2c09479
    6. Zhen Xiao, Linlin Zhang, Vicki L. Colvin, Qingbo Zhang, Gang Bao. Synthesis and Application of Magnetic Nanocrystal Clusters. Industrial & Engineering Chemistry Research 2022, 61 (22) , 7613-7625. https://doi.org/10.1021/acs.iecr.1c04879
    7. Emanuele Marino, Sjoerd W. van Dongen, Steven J. Neuhaus, Weixingyue Li, Austin W. Keller, Cherie R. Kagan, Thomas E. Kodger, Christopher B. Murray. Monodisperse Nanocrystal Superparticles through a Source–Sink Emulsion System. Chemistry of Materials 2022, 34 (6) , 2779-2789. https://doi.org/10.1021/acs.chemmater.2c00039
    8. Hao Fu, Dan Yang, Di Qiu, Chun Hua Yan, Ren Cai, Yaping Du, Weihong Tan. Highly Stable 3D Supercuboids to 2D ZnSe Nanosheets: Formation for a High-Efficiency Catalysis System. The Journal of Physical Chemistry Letters 2022, 13 (7) , 1855-1862. https://doi.org/10.1021/acs.jpclett.2c00268
    9. Sascha Keßler, Elrike R. Reinalter, Bing Ni, Helmut Cölfen. Rational Design of Environmentally Compatible Nickel Hexacyanoferrate Mesocrystals as Catalysts. The Journal of Physical Chemistry C 2021, 125 (48) , 26503-26511. https://doi.org/10.1021/acs.jpcc.1c08284
    10. Huimin Kong, Wenjie Zhang, Ge Shi, Zhe Cui, Peng Fu, Minying Liu, Yanjie He, Xiaoguang Qiao, Xinchang Pang. General Route to Colloidal Nanocrystal Clusters with Precise Hierarchical Control via Star-like Nanoreactors. Langmuir 2021, 37 (35) , 10461-10468. https://doi.org/10.1021/acs.langmuir.1c01286
    11. Michael Kampferbeck, Lea R. Klauke, Horst Weller, Tobias Vossmeyer. Little Adjustments Significantly Simplify the Gram-Scale Synthesis of High-Quality Iron Oxide Nanocubes. Langmuir 2021, 37 (32) , 9851-9857. https://doi.org/10.1021/acs.langmuir.1c01456
    12. Eirini Myrovali, Kyrillos Papadopoulos, Irene Iglesias, Marina Spasova, Michael Farle, Ulf Wiedwald, Makis Angelakeris. Long-Range Ordering Effects in Magnetic Nanoparticles. ACS Applied Materials & Interfaces 2021, 13 (18) , 21602-21612. https://doi.org/10.1021/acsami.1c01820
    13. Lijun Thayyil Raju, Olga Koshkina, Huanshu Tan, Andreas Riedinger, Katharina Landfester, Detlef Lohse, Xuehua Zhang. Particle Size Determines the Shape of Supraparticles in Self-Lubricating Ternary Droplets. ACS Nano 2021, 15 (3) , 4256-4267. https://doi.org/10.1021/acsnano.0c06814
    14. Wenxian Du, Tianzhi Liu, Fengfeng Xue, Xiaojun Cai, Qian Chen, Yuanyi Zheng, Hangrong Chen. Fe3O4 Mesocrystals with Distinctive Magnetothermal and Nanoenzyme Activity Enabling Self-Reinforcing Synergistic Cancer Therapy. ACS Applied Materials & Interfaces 2020, 12 (17) , 19285-19294. https://doi.org/10.1021/acsami.0c02465
    15. Qian Song, Zhenjie Xue, Cong Liu, Xuezhi Qiao, Lu Liu, Chuanhui Huang, Keyan Liu, Xiao Li, Zhili Lu, Tie Wang. General Strategy to Optimize Gas Evolution Reaction via Assembled Striped-Pattern Superlattices. Journal of the American Chemical Society 2020, 142 (4) , 1857-1863. https://doi.org/10.1021/jacs.9b10388
    16. Xin Huang, Jinlong Zhu, Binghui Ge, Kerong Deng, Xiaotong Wu, Tianyuan Xiao, Tian Jiang, Zewei Quan, Y. Charles Cao, Zhongwu Wang. Understanding Fe3O4 Nanocube Assembly with Reconstruction of a Consistent Superlattice Phase Diagram. Journal of the American Chemical Society 2019, 141 (7) , 3198-3206. https://doi.org/10.1021/jacs.8b13082
    17. Sunyi Lee, Nitee Kumari, Ki-Wan Jeon, Amit Kumar, Sumit Kumar, Jung Hun Koo, Jihwan Lee, Yoon-Kyoung Cho, In Su Lee. Monofacet-Selective Cavitation within Solid-State Silica-Nanoconfinement toward Janus Iron Oxide Nanocube. Journal of the American Chemical Society 2018, 140 (45) , 15176-15180. https://doi.org/10.1021/jacs.8b09869
    18. Martin Kluenker, Muhammad Nawaz Tahir, Rene Dören, Mareike Deuker, Patric Komforth, Sergi Plana-Ruiz, Bastian Barton, Sergii I. Shylin, Vadim Ksenofontov, Martin Panthöfer, Nadine Wiesmann, Jana Herzberger, Angela Möller, Holger Frey, Jürgen Brieger, Ute Kolb, Wolfgang Tremel. Iron Oxide Superparticles with Enhanced MRI Performance by Solution Phase Epitaxial Growth. Chemistry of Materials 2018, 30 (13) , 4277-4288. https://doi.org/10.1021/acs.chemmater.8b01128
    19. Zhijie Yang, Thomas Altantzis, Sara Bals, Gustaaf Van Tendeloo, Marie-Paule Pileni. Do Binary Supracrystals Enhance the Crystal Stability?. The Journal of Physical Chemistry C 2018, 122 (25) , 13515-13521. https://doi.org/10.1021/acs.jpcc.7b12373
    20. Liang Xu, Hai-Wei Liang, Yuan Yang, Shu-Hong Yu. Stability and Reactivity: Positive and Negative Aspects for Nanoparticle Processing. Chemical Reviews 2018, 118 (7) , 3209-3250. https://doi.org/10.1021/acs.chemrev.7b00208
    21. Riho Matsumoto, Yoshitaka Nakagawa, Kazumi Kato, Yuya Oaki, and Hiroaki Imai . Spatial Control of Crystallographic Direction in 2D Microarrays of Anisotropic Nanoblocks on Trenched Substrates. Langmuir 2017, 33 (48) , 13805-13810. https://doi.org/10.1021/acs.langmuir.7b03264
    22. Daniele Maiolo, Claudia Pigliacelli, Paola Sánchez Moreno, Martina Bruna Violatto, Laura Talamini, Ilaria Tirotta, Rosanna Piccirillo, Massimo Zucchetti, Lavinia Morosi, Roberta Frapolli, Gabriele Candiani, Paolo Bigini, Pierangelo Metrangolo, and Francesca Baldelli Bombelli . Bioreducible Hydrophobin-Stabilized Supraparticles for Selective Intracellular Release. ACS Nano 2017, 11 (9) , 9413-9423. https://doi.org/10.1021/acsnano.7b04979
    23. Jooneon Park, Marc D. Porter, and Michael C. Granger . Colloidally Assembled Zinc Ferrite Magnetic Beads: Superparamagnetic Labels with High Magnetic Moments for MR Sensors. ACS Applied Materials & Interfaces 2017, 9 (23) , 19569-19577. https://doi.org/10.1021/acsami.7b03182
    24. Rui Tan, Yucheng Yuan, Yasutaka Nagaoka, Dennis Eggert, Xudong Wang, Sravan Thota, Peng Guo, Hongrong Yang, Jing Zhao, and Ou Chen . Monodisperse Hexagonal Pyramidal and Bipyramidal Wurtzite CdSe-CdS Core–Shell Nanocrystals. Chemistry of Materials 2017, 29 (9) , 4097-4108. https://doi.org/10.1021/acs.chemmater.7b00968
    25. Yifan Wang, James T. McGinley, and John C. Crocker . Dimpled Polyhedral Colloids Formed by Colloidal Crystal Templating. Langmuir 2017, 33 (12) , 3080-3087. https://doi.org/10.1021/acs.langmuir.7b00202
    26. Jun Zhang, Jinlong Zhu, Ruipeng Li, Jiye Fang, and Zhongwu Wang . Entropy-Driven Pt3Co Nanocube Assembles and Thermally Mediated Electrical Conductivity with Anisotropic Variation of the Rhombohedral Superlattice. Nano Letters 2017, 17 (1) , 362-367. https://doi.org/10.1021/acs.nanolett.6b04295
    27. Zacharoula Iatridi, Kosmas Vamvakidis, Ioannis Tsougos, Katerina Vassiou, Catherine Dendrinou-Samara, and Georgios Bokias . Multifunctional Polymeric Platform of Magnetic Ferrite Colloidal Superparticles for Luminescence, Imaging, and Hyperthermia Applications. ACS Applied Materials & Interfaces 2016, 8 (51) , 35059-35070. https://doi.org/10.1021/acsami.6b13161
    28. Tao Li, Andrew J. Senesi, and Byeongdu Lee . Small Angle X-ray Scattering for Nanoparticle Research. Chemical Reviews 2016, 116 (18) , 11128-11180. https://doi.org/10.1021/acs.chemrev.5b00690
    29. Michael A. Boles, Michael Engel, and Dmitri V. Talapin . Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials. Chemical Reviews 2016, 116 (18) , 11220-11289. https://doi.org/10.1021/acs.chemrev.6b00196
    30. James T. McGinley, Yifan Wang, Ian C. Jenkins, Talid Sinno, and John C. Crocker . Crystal-Templated Colloidal Clusters Exhibit Directional DNA Interactions. ACS Nano 2015, 9 (11) , 10817-10825. https://doi.org/10.1021/acsnano.5b03272
    31. Ruipeng Li, Kaifu Bian, Yuxuan Wang, Hongwu Xu, Jennifer A. Hollingsworth, Tobias Hanrath, Jiye Fang, and Zhongwu Wang . An Obtuse Rhombohedral Superlattice Assembled by Pt Nanocubes. Nano Letters 2015, 15 (9) , 6254-6260. https://doi.org/10.1021/acs.nanolett.5b02879
    32. Tetyana I. Levchenko, Christian Kübel, Di Wang, Bahareh Khalili Najafabadi, Yining Huang, and John F. Corrigan . Controlled Solvothermal Routes to Hierarchical 3D Superparticles of Nanoscopic CdS. Chemistry of Materials 2015, 27 (10) , 3666-3682. https://doi.org/10.1021/acs.chemmater.5b00586
    33. Zijian Zhou, Xianglong Zhu, Dongjun Wu, Qiaoli Chen, Dengtong Huang, Chengjie Sun, Jingyu Xin, Kaiyuan Ni, and Jinhao Gao . Anisotropic Shaped Iron Oxide Nanostructures: Controlled Synthesis and Proton Relaxation Shortening Effects. Chemistry of Materials 2015, 27 (9) , 3505-3515. https://doi.org/10.1021/acs.chemmater.5b00944
    34. Nicolas Goubet, Jianhui Yang, Pierre-Antoine Albouy, and Marie-Paule Pileni . Spontaneous Formation of High-Index Planes in Gold Single Domain Nanocrystal Superlattices. Nano Letters 2014, 14 (11) , 6632-6638. https://doi.org/10.1021/nl503289a
    35. Ruipeng Li, Kaifu Bian, Tobias Hanrath, William A. Bassett, and Zhongwu Wang . Decoding the Superlattice and Interface Structure of Truncate PbS Nanocrystal-Assembled Supercrystal and Associated Interaction Forces. Journal of the American Chemical Society 2014, 136 (34) , 12047-12055. https://doi.org/10.1021/ja5057032
    36. Zijian Zhou, Zhenghuan Zhao, Hui Zhang, Zhenyu Wang, Xiaoyuan Chen, Ruifang Wang, Zhong Chen, and Jinhao Gao . Interplay between Longitudinal and Transverse Contrasts in Fe3O4 Nanoplates with (111) Exposed Surfaces. ACS Nano 2014, 8 (8) , 7976-7985. https://doi.org/10.1021/nn5038652
    37. Antonio Cervadoro, Minjung Cho, Jaehong Key, Christy Cooper, Cinzia Stigliano, Santosh Aryal, Audrius Brazdeikis, James F. Leary, and Paolo Decuzzi . Synthesis of Multifunctional Magnetic NanoFlakes for Magnetic Resonance Imaging, Hyperthermia, and Targeting.. ACS Applied Materials & Interfaces 2014, 6 (15) , 12939-12946. https://doi.org/10.1021/am504270c
    38. Yoshitaka Nakagawa, Hiroyuki Kageyama, Yuya Oaki, and Hiroaki Imai . Direction Control of Oriented Self-Assembly for 1D, 2D, and 3D Microarrays of Anisotropic Rectangular Nanoblocks. Journal of the American Chemical Society 2014, 136 (10) , 3716-3719. https://doi.org/10.1021/ja410183q
    39. Xiaoyu Sun, Ke Ding, Yi Hou, Zhenyu Gao, Wensheng Yang, Lihong Jing, and Mingyuan Gao . Bifunctional Superparticles Achieved by Assembling Fluorescent CuInS2@ZnS Quantum Dots and Amphibious Fe3O4 Nanocrystals. The Journal of Physical Chemistry C 2013, 117 (40) , 21014-21020. https://doi.org/10.1021/jp408036p
    40. Danielle C. Reifsnyder, Xingchen Ye, Thomas R. Gordon, Chengyu Song, and Christopher B. Murray . Three-Dimensional Self-Assembly of Chalcopyrite Copper Indium Diselenide Nanocrystals into Oriented Films. ACS Nano 2013, 7 (5) , 4307-4315. https://doi.org/10.1021/nn4008059
    41. Tie Wang, Xirui Wang, Derek LaMontagne, Zhongwu Wang, and Y. Charles Cao . Macroscale Lateral Alignment of Semiconductor Nanorods into Freestanding Thin Films. Journal of the American Chemical Society 2013, 135 (16) , 6022-6025. https://doi.org/10.1021/ja402539f
    42. Ching-Wen Liao, Yeh-Sheng Lin, Kaushik Chanda, Yen-Fang Song, and Michael H. Huang . Formation of Diverse Supercrystals from Self-Assembly of a Variety of Polyhedral Gold Nanocrystals. Journal of the American Chemical Society 2013, 135 (7) , 2684-2693. https://doi.org/10.1021/ja311008r
    43. Wanjie Xu, Yuanzhi Chen, Liubin Shi, Laisen Wang, Dong-Liang Peng. Bi-magnetic Mn3O4@Ni core–shell binary superparticles: Self-assembly preparation and magnetic behaviors. Journal of Colloid and Interface Science 2024, 673 , 517-526. https://doi.org/10.1016/j.jcis.2024.06.103
    44. Wanjie Xu, Yuanzhi Chen, Markus Niederberger, Elena Tervoort, Jie Mei, Dong‐Liang Peng. Self‐Assembled Preparation of Porous Nickel Phosphide Superparticles with Tunable Phase and Porosity for Efficient Hydrogen Evolution. Small 2024, 20 (26) https://doi.org/10.1002/smll.202309435
    45. Moeka Sasaki, Shota Hashimoto, Yoshiki Iso, Yuya Oaki, Tetsuhiko Isobe, Hiroaki Imai. Enhanced and stabilized photoluminescence of perovskite cesium lead bromide nanocubes through ordered assemblies. Nanoscale Advances 2023, 5 (9) , 2553-2557. https://doi.org/10.1039/D2NA00784C
    46. Chuanhui Huang, Tie Wang. Nanoparticle-assembled interface for tailoring dynamics of chemical reactions. 2023, 14-27. https://doi.org/10.1016/B978-0-12-822425-0.00007-5
    47. Chaolumen Wu, Qingsong Fan, Yadong Yin. Emulsion-confined self-assembly of colloidal nanoparticles into 3D superstructures. Cell Reports Physical Science 2022, 3 (12) , 101162. https://doi.org/10.1016/j.xcrp.2022.101162
    48. Christian Jenewein, Stefan M. Schupp, Bing Ni, Lukas Schmidt-Mende, Helmut Cölfen. Tuning the Electronic Properties of Mesocrystals. Small Science 2022, 2 (8) https://doi.org/10.1002/smsc.202200014
    49. Lixiao Shen, Fengdi Tu, Ziqi Shang, Miao Ma, Yunfei Xia, Zigang Zhao, Lei Zhao, Zhenbo Wang, Guangjie Shao. Surfactant-assisted synthesis of platinum nanoparticle catalysts for proton exchange membrane fuel cells. International Journal of Hydrogen Energy 2022, 47 (33) , 15001-15011. https://doi.org/10.1016/j.ijhydene.2022.03.004
    50. Omar Azzaroni, M. Lorena Cortez, Matías Rafti, Waldemar A. Marmisollé, Katsuhiko Ariga. Materials Nanoarchitectonics Here, There, Everywhere: Looking Back and Leaping Forward. 2022, 546-578. https://doi.org/10.1039/9781788019613-00546
    51. Dirk Honecker, Mathias Bersweiler, Sergey Erokhin, Dmitry Berkov, Karine Chesnel, Diego Alba Venero, Asma Qdemat, Sabrina Disch, Johanna K. Jochum, Andreas Michels, Philipp Bender. Using small-angle scattering to guide functional magnetic nanoparticle design. Nanoscale Advances 2022, 4 (4) , 1026-1059. https://doi.org/10.1039/D1NA00482D
    52. Cong Li, Xiaoyun Qin, Zhenghao Zhang, Yujia Lv, Shengwei Zhang, Yijie Fan, Shiyuan Liang, Bowen Guo, Zhou Li, Yan Liu, Dan Luo. Structure-activity collective properties underlying self-assembled superstructures. Nano Today 2022, 42 , 101354. https://doi.org/10.1016/j.nantod.2021.101354
    53. Jun Huang, Kai Yuan, Yiwang Chen. Wide Voltage Aqueous Asymmetric Supercapacitors: Advances, Strategies, and Challenges. Advanced Functional Materials 2022, 32 (4) https://doi.org/10.1002/adfm.202108107
    54. Sascha Keßler, Elrike R. Reinalter, Johannes Schmidt, Helmut Cölfen. Environmentally Benign Formation of Nickel Hexacyanoferrate-Derived Mesoframes for Heterogeneous Catalysis. Nanomaterials 2021, 11 (10) , 2756. https://doi.org/10.3390/nano11102756
    55. S.V. Komogortsev, S.V. Stolyar, L.A. Chekanova, R.N. Yaroslavtsev, O.A. Bayukov, D.A. Velikanov, M.N. Volochaev, P.E. Eroshenko, R.S. Iskhakov. Square plate shaped magnetite nanocrystals. Journal of Magnetism and Magnetic Materials 2021, 527 , 167730. https://doi.org/10.1016/j.jmmm.2021.167730
    56. Verner Håkonsen, Gurvinder Singh, José A. De Toro, Peter S. Normile, Erik Wahlström, Jianying He, Zhiliang Zhang. Reconfigurable Mechanical Anisotropy in Self‐Assembled Magnetic Superstructures. Advanced Science 2021, 8 (8) https://doi.org/10.1002/advs.202002683
    57. Zachary J. Urbach, Sarah S. Park, Steven L. Weigand, James E. Rix, Byeongdu Lee, Chad A. Mirkin. Probing the Consequences of Cubic Particle Shape and Applied Field on Colloidal Crystal Engineering with DNA. Angewandte Chemie 2021, 133 (8) , 4111-4115. https://doi.org/10.1002/ange.202012907
    58. Zachary J. Urbach, Sarah S. Park, Steven L. Weigand, James E. Rix, Byeongdu Lee, Chad A. Mirkin. Probing the Consequences of Cubic Particle Shape and Applied Field on Colloidal Crystal Engineering with DNA. Angewandte Chemie International Edition 2021, 60 (8) , 4065-4069. https://doi.org/10.1002/anie.202012907
    59. Si Li, Xiao Guo, Maozhong Sun, Aihua Qu, Changlong Hao, Xiaoling Wu, Jun Guo, Chuanlai Xu, Hua Kuang, Liguang Xu. Self-limiting self-assembly of supraparticles for potential biological applications. Nanoscale 2021, 13 (4) , 2302-2311. https://doi.org/10.1039/D0NR08001B
    60. Yangen Xie, Chunsheng Wang, Zhijie Yang, Huiying Wei, Jingjing Wei. Dimensionality-controlled self-assembly of CdSe nanorods into discrete suprastructures within emulsion droplets. New Journal of Chemistry 2020, 44 (48) , 21112-21118. https://doi.org/10.1039/D0NJ05059H
    61. Hezhi Liu, Yongjun Ji, Jing Li, Yu Zhang, Xueguang Wang, Haijun Yu, Dingsheng Wang, Ziyi Zhong, Lin Gu, Guangwen Xu, Yadong Li, Fabing Su. A general bottom-up synthesis of CuO-based trimetallic oxide mesocrystal superstructures for efficient catalytic production of trichlorosilane. Nano Research 2020, 13 (10) , 2819-2827. https://doi.org/10.1007/s12274-020-2934-2
    62. Igor Stanković, Luis Lizardi, Carlos García. Assembly of nanocube super-structures directed by surface and magnetic interactions. Nanoscale 2020, 12 (37) , 19390-19403. https://doi.org/10.1039/D0NR03485A
    63. Kerong Deng, Zhishan Luo, Li Tan, Zewei Quan. Self-assembly of anisotropic nanoparticles into functional superstructures. Chemical Society Reviews 2020, 49 (16) , 6002-6038. https://doi.org/10.1039/D0CS00541J
    64. Yuxin Li, Xiang Zhu, Yawen Chen, Shiqiao Zhang, Jia Li, Jianguo Liu. Rapid synthesis of highly active Pt/C catalysts with various metal loadings from single batch platinum colloid. Journal of Energy Chemistry 2020, 47 , 138-145. https://doi.org/10.1016/j.jechem.2019.12.004
    65. Wenna Wu, Ling Wang, Yitong Wang, Luxuan Guo, Shuli Dong, Jingcheng Hao. Colloidal clusters of icosahedrons and face-centred cubes. Journal of Colloid and Interface Science 2020, 563 , 308-317. https://doi.org/10.1016/j.jcis.2019.12.084
    66. Hiroaki Imai, Riho Matsumoto, Mihiro Takasaki, Keishi Tsukiyama, Keisuke Sawano, Yoshitaka Nakagawa. Evaporation-driven manipulation of nanoscale brickwork structures for the design of 1D, 2D, and 3D microarrays of rectangular building blocks. CrystEngComm 2019, 21 (45) , 6905-6914. https://doi.org/10.1039/C9CE00960D
    67. Verner Håkonsen, Gurvinder Singh, Peter S. Normile, José A. De Toro, Erik Wahlström, Jianying He, Zhiliang Zhang. Magnetically Enhanced Mechanical Stability and Super‐Size Effects in Self‐Assembled Superstructures of Nanocubes. Advanced Functional Materials 2019, 29 (46) https://doi.org/10.1002/adfm.201904825
    68. Dilong Liu, Weiping Cai, Melinda Marin, Yadong Yin, Yue Li. Air‐Liquid Interfacial Self‐Assembly of Two‐Dimensional Periodic Nanostructured Arrays. ChemNanoMat 2019, 5 (11) , 1338-1360. https://doi.org/10.1002/cnma.201900322
    69. Xin Huang, Zhongwu Wang. Supercrystallography-Based Decoding of Structure and Driving Force of Nanocrystal Assembly. Materials 2019, 12 (22) , 3771. https://doi.org/10.3390/ma12223771
    70. Zhenjie Xue, Cong Yan, Tie Wang. From Atoms to Lives: The Evolution of Nanoparticle Assemblies. Advanced Functional Materials 2019, 29 (12) https://doi.org/10.1002/adfm.201807658
    71. Zijian Zhou, Lijiao Yang, Jinhao Gao, Xiaoyuan Chen. Structure–Relaxivity Relationships of Magnetic Nanoparticles for Magnetic Resonance Imaging. Advanced Materials 2019, 31 (8) https://doi.org/10.1002/adma.201804567
    72. Da Wang, Michiel Hermes, Ramakrishna Kotni, Yaoting Wu, Nikos Tasios, Yang Liu, Bart de Nijs, Ernest B. van der Wee, Christopher B. Murray, Marjolein Dijkstra, Alfons van Blaaderen. Interplay between spherical confinement and particle shape on the self-assembly of rounded cubes. Nature Communications 2018, 9 (1) https://doi.org/10.1038/s41467-018-04644-4
    73. Verner Håkonsen, Gurvinder Singh, Jianying He, Zhiliang Zhang. Focused ion beam milling of self-assembled magnetic superstructures: an approach to fabricate nanoporous materials with tunable porosity. Materials Horizons 2018, 5 (6) , 1211-1218. https://doi.org/10.1039/C8MH01112E
    74. Jeong Yu Lee, Ho Yeon Son, Jae Chul Park, Jongnam Park, Yoon Sung Nam. Paclitaxel-induced formation of 3D nanocrystal superlattices within injectable protein-based hybrid nanoparticles. Chemical Communications 2018, 54 (82) , 11586-11589. https://doi.org/10.1039/C8CC05753B
    75. Xavier Bouju, Étienne Duguet, Fabienne Gauffre, Claude R. Henry, Myrtil L. Kahn, Patrice Mélinon, Serge Ravaine. Nonisotropic Self‐Assembly of Nanoparticles: From Compact Packing to Functional Aggregates. Advanced Materials 2018, 30 (27) https://doi.org/10.1002/adma.201706558
    76. Congyu Wu, Yajing Shen, Mengwei Chen, Kun Wang, Yongyong Li, Yu Cheng. Recent Advances in Magnetic‐Nanomaterial‐Based Mechanotransduction for Cell Fate Regulation. Advanced Materials 2018, 30 (17) https://doi.org/10.1002/adma.201705673
    77. Martin Kluenker, Sven Kurch, Muhammad Nawaz Tahir, Wolfgang Tremel. Bio-nano: Theranostic at Cellular Level. 2018, 85-170. https://doi.org/10.1007/978-3-319-94174-5_3
    78. Takumi Ishiwata, Ayano Michibata, Kenta Kokado, Sylvie Ferlay, Mir Wais Hosseini, Kazuki Sada. Box-like gel capsules from heterostructures based on a core–shell MOF as a template of crystal crosslinking. Chemical Communications 2018, 54 (12) , 1437-1440. https://doi.org/10.1039/C7CC07158B
    79. Yoshitaka Nakagawa, Riho Matsumoto, Hiroyuki Kageyama, Yuya Oaki, Hiroaki Imai. Layer-by-layer manipulation of anisotropic nanoblocks: orientation-switched superlattices through orthogonal stacking of a and c directions. Nanoscale 2018, 10 (27) , 12957-12962. https://doi.org/10.1039/C8NR00777B
    80. Ting Yin, Haigang Wu, Qian Zhang, Guo Gao, Joseph G Shapter, Yulan Shen, Qiaozhi He, Peng Huang, Wen Qi, Chunlei Zhang, Yuming Yang, Daxiang Cui. In vivo targeted therapy of gastric tumors via the mechanical rotation of a flower-like Fe3O4@Au nanoprobe under an alternating magnetic field. NPG Asia Materials 2017, 9 (7) , e408-e408. https://doi.org/10.1038/am.2017.117
    81. Zijian Zhou, Xiaoyuan Chen. Magnetic Nanomaterials for Diagnostics. 2017, 365-392. https://doi.org/10.1002/9783527803255.ch12
    82. Sen Chen, Juncheng E, Sheng-Nian Luo. SLADS : a parallel code for direct simulations of scattering of large anisotropic dense nanoparticle systems. Journal of Applied Crystallography 2017, 50 (3) , 951-958. https://doi.org/10.1107/S1600576717004162
    83. Tianyun Chen, Yaofan Lei, Qinghua Yang, Yuen Wu. Stable and accessible metal catalysts confined by mesoporous carbon structures derived from multicomponent colloidal spheres. Journal of Materials Chemistry A 2017, 5 (7) , 3136-3139. https://doi.org/10.1039/C6TA08537G
    84. Fen Qiao, Xuewan Wang, Qian Wang, Gang He, Yi Xie. Functionalized self-assembly of colloidal CdX (X = S, Se) nanorods on solid substrates for device applications. Nanoscale 2017, 9 (24) , 8066-8079. https://doi.org/10.1039/C7NR01974B
    85. Ji‐eun Park, Danielle Reifsnyder Hickey, Sangmi Jun, Seulki Kang, Xiaole Hu, Xi‐Jun Chen, So‐Jung Park. Surfactant‐Assisted Emulsion Self‐Assembly of Nanoparticles into Hollow Vesicle‐Like Structures and 2D Plates. Advanced Functional Materials 2016, 26 (43) , 7791-7798. https://doi.org/10.1002/adfm.201603971
    86. Jacek K. Stolarczyk, Andras Deak, Dermot F. Brougham. Nanoparticle Clusters: Assembly and Control Over Internal Order, Current Capabilities, and Future Potential. Advanced Materials 2016, 28 (27) , 5400-5424. https://doi.org/10.1002/adma.201505350
    87. Dandan Zang, Huaqi Huang, Ruixuan Qin, Xingli Wang, Xiaoliang Fang, Nanfeng Zheng. A facile one-pot synthesis of supercubes of Pt nanocubes. Science China Chemistry 2016, 59 (4) , 452-458. https://doi.org/10.1007/s11426-015-5545-0
    88. Benjamin Abécassis. Three‐Dimensional Self Assembly of Semiconducting Colloidal Nanocrystals: From Fundamental Forces to Collective Optical Properties. ChemPhysChem 2016, 17 (5) , 618-631. https://doi.org/10.1002/cphc.201500856
    89. J. Rivas, Y.V. Kolen'ko, M. Bañobre-López. Magnetic Nanocolloids. 2016, 75-129. https://doi.org/10.1016/B978-0-12-801578-0.00003-5
    90. Yoshitaka Nakagawa, Hiroyuki Kageyama, Yuya Oaki, Hiroaki Imai. Orientation-selective alignments of nanoblocks in a and c directions of a tetragonal system through molecularly mediated manipulation. Chemical Communications 2016, 52 (32) , 5597-5600. https://doi.org/10.1039/C5CC10644C
    91. D. Dedovets, P. Bauduin, J. Causse, L. Girard, O. Diat. Switchable self-assembly of Prussian blue analogs nano-tiles triggered by salt stimulus. Physical Chemistry Chemical Physics 2016, 18 (4) , 3188-3196. https://doi.org/10.1039/C5CP06574G
    92. Chuanxin Hou, Tao Liu, Yuqi Fan, Hiroaki Imai, Runhua Fan, Hong Lin, Qingliang He, Ning Wang, Feng Dang, Zhanhu Guo. Selectively assembled 2D microarrays from binary nanocrystals. CrystEngComm 2016, 18 (17) , 3008-3014. https://doi.org/10.1039/C6CE00282J
    93. Riho Matsumoto, Yoshitaka Nakagawa, Hiroyuki Kageyama, Yuya Oaki, Hiroaki Imai. Evaporation-driven regularization of crystallographically ordered arrangements of truncated nanoblocks: from 1D chains to 2D rhombic superlattices. CrystEngComm 2016, 18 (33) , 6138-6142. https://doi.org/10.1039/C6CE01512C
    94. Ran Su, Dawei Zhang, Yang Liu, Jiangbo Lu, Zhipeng Wang, Linglong Li, Jihong Bian, Ming Wu, Xiaojie Lou, Yaodong Yang. Novel lead-free ferroelectric film by ultra-small Ba 0.8 Sr 0.2 TiO 3 nanocubes assembled for a large electrocaloric effect. Physical Chemistry Chemical Physics 2016, 18 (42) , 29033-29040. https://doi.org/10.1039/C6CP05462E
    95. Rebecca O. Fuller, Bee-Min Goh, George A. Koutsantonis, Matthys J. Loedolff, Martin Saunders, Robert C. Woodward. A simple procedure for the production of large ferromagnetic cobalt nanoparticles. Dalton Transactions 2016, 45 (30) , 11983-11989. https://doi.org/10.1039/C6DT01935H
    96. Esteban Piccinini, Diego Pallarola, Fernando Battaglini, Omar Azzaroni. Self-limited self-assembly of nanoparticles into supraparticles: towards supramolecular colloidal materials by design. Molecular Systems Design & Engineering 2016, 1 (2) , 155-162. https://doi.org/10.1039/C6ME00016A
    97. S. Ulrich, C. Hirsch, L. Diener, P. Wick, R. M. Rossi, M. B. Bannwarth, L. F. Boesel. Preparation of ellipsoid-shaped supraparticles with modular compositions and investigation of shape-dependent cell-uptake. RSC Advances 2016, 6 (92) , 89028-89039. https://doi.org/10.1039/C6RA19861A
    98. Dan Luo, Cong Yan, Tie Wang. Interparticle Forces Underlying Nanoparticle Self‐Assemblies. Small 2015, 11 (45) , 5984-6008. https://doi.org/10.1002/smll.201501783
    99. R. Fu, Y. Y. Yan, C. Roberts. Study of the effect of dipole interactions on hyperthermia heating the cluster composed of superparamagnetic nanoparticles. AIP Advances 2015, 5 (12) https://doi.org/10.1063/1.4939514
    100. Shaojue Wu, Chung Yen Ang, Zhong Luo, Si Yu Tan, Kim Truc Nguyen, Yanli Zhao. Byproduct-induced in-situ formation of gold colloidal superparticles. Science China Materials 2015, 58 (11) , 860-866. https://doi.org/10.1007/s40843-015-0094-6
    Load all citations

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2012, 134, 44, 18225–18228
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja308962w
    Published October 11, 2012
    Copyright © 2012 American Chemical Society

    Article Views

    8128

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.