ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Tuning the Reactivity of TEMPO by Coordination to a Lewis Acid: Isolation and Reactivity of MCl31-TEMPO) (M = Fe, Al)

View Author Information
Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
Cite this: J. Am. Chem. Soc. 2012, 134, 47, 19350–19353
Publication Date (Web):November 7, 2012
https://doi.org/10.1021/ja309499h
Copyright © 2012 American Chemical Society

    Article Views

    5207

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (2)»

    Abstract

    Abstract Image

    Addition of 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) to MCl3 (M = Fe, Al) results in the formation of MCl31-TEMPO) [M = Fe (1), Al (2)]. Both 1 and 2 oxidize alcohols to generate ketones or aldehydes along with the reduced complexes MCl31-TEMPOH) [M = Fe (3), Al (4)]. Complexes 14 were fully characterized, including analysis by X-ray crystallography. Additionally, control experiments indicated that neither MCl3 (M = Al, Fe) nor TEMPO are capable of effecting the oxidation of alcohols independently.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Experimental procedures, crystallographic details (CIF), spectral data for 14, alcohol oxidations, and control reactions. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 84 publications.

    1. Dirk Leifert, Armido Studer. Organic Synthesis Using Nitroxides. Chemical Reviews 2023, 123 (16) , 10302-10380. https://doi.org/10.1021/acs.chemrev.3c00212
    2. Shangxu Jiang, Yihui Xie, Yuan Xie, Li-Juan Yu, Xiaoqing Yan, Fu-Gang Zhao, Chanaka J. Mudugamuwa, Michelle L. Coote, Zhongfan Jia, Kai Zhang. Lewis Acid-Induced Reversible Disproportionation of TEMPO Enables Aqueous Aluminum Radical Batteries. Journal of the American Chemical Society 2023, 145 (26) , 14519-14528. https://doi.org/10.1021/jacs.3c04203
    3. Wenqing Wang, Qianqian Wang, Xuguang Ding, Xiangjun Liu, Peiyang Sun, Xinping Wang. Synthesis and Chemical Redox Studies of Half-Sandwich Chromium Carbonyl Azobenzenes. Organometallics 2022, 41 (18) , 2572-2579. https://doi.org/10.1021/acs.organomet.2c00298
    4. Miguel Á. Baeza Cinco, Guang Wu, Joshua Telser, Trevor W. Hayton. Structural and Spectroscopic Characterization of a Zinc-Bound N-Oxyphthalimide Radical. Inorganic Chemistry 2022, 61 (34) , 13250-13255. https://doi.org/10.1021/acs.inorgchem.2c01765
    5. Jordan E. Nutting, Kaining Mao, Shannon S. Stahl. Iron(III) Nitrate/TEMPO-Catalyzed Aerobic Alcohol Oxidation: Distinguishing between Serial versus Integrated Redox Cooperativity. Journal of the American Chemical Society 2021, 143 (28) , 10565-10570. https://doi.org/10.1021/jacs.1c05224
    6. Ivan S. Golovanov, Roman S. Malykhin, Vladislav K. Lesnikov, Yulia V. Nelyubina, Valentin V. Novikov, Kirill V. Frolov, Andrey I. Stadnichenko, Evgeny V. Tretyakov, Sema L. Ioffe, Alexey Yu. Sukhorukov. Revealing the Structure of Transition Metal Complexes of Formaldoxime. Inorganic Chemistry 2021, 60 (8) , 5523-5537. https://doi.org/10.1021/acs.inorgchem.0c03362
    7. Xiao-Wei Zhang, Guo-Qing Jiang, Shu-Hui Lei, Xiang-Huan Shan, Jian-Ping Qu, Yan-Biao Kang. Iron-Catalyzed α,β-Dehydrogenation of Carbonyl Compounds. Organic Letters 2021, 23 (5) , 1611-1615. https://doi.org/10.1021/acs.orglett.1c00043
    8. Jun-Long Zhan, Meng-Wei Wu, Dian Wei, Bang-Yi Wei, Yu Jiang, Wei Yu, Bing Han. 4-HO-TEMPO-Catalyzed Redox Annulation of Cyclopropanols with Oxime Acetates toward Pyridine Derivatives. ACS Catalysis 2019, 9 (5) , 4179-4188. https://doi.org/10.1021/acscatal.9b00832
    9. Mei Hong, Jie Min, Shuangyan Wu, Huangui Cui, Yuxin Zhao, Jiatong Li, Shifa Wang. Metal Nitrate Catalysis for Selective Oxidation of 5-Hydroxymethylfurfural into 2,5-Diformylfuran under Oxygen Atmosphere. ACS Omega 2019, 4 (4) , 7054-7060. https://doi.org/10.1021/acsomega.9b00391
    10. Hazi Ahmad Beejapur, Qi Zhang, Kecheng Hu, Li Zhu, Jianli Wang, Zhibin Ye. TEMPO in Chemical Transformations: From Homogeneous to Heterogeneous. ACS Catalysis 2019, 9 (4) , 2777-2830. https://doi.org/10.1021/acscatal.8b05001
    11. Nathan A. Phan, James C. Fettinger, Louise A. Berben. A Ligand Protonation Series in Aluminum(III) Complexes of Tridentate Bis(enol)amine Ligand. Organometallics 2018, 37 (23) , 4527-4533. https://doi.org/10.1021/acs.organomet.8b00628
    12. Maozhong Miao, Mengchao Jin, Huaping Xu, Panpan Chen, Shouzhi Zhang, Hongjun Ren. Synthesis of 5H-Dibenzo[c,g]chromen-5-ones via FeCl3-Mediated Tandem C–O Bond Cleavage/6π Electrocyclization/Oxidative Aromatization. Organic Letters 2018, 20 (18) , 5718-5722. https://doi.org/10.1021/acs.orglett.8b02434
    13. Yongjiang Liu, Xiao Wang, Song Chen, Shaomin Fu, Bo Liu. Iron-Catalyzed Intramolecular Perezone-Type [5 + 2] Cycloaddition: Access to Tricyclo[6.3.1.01,6]dodecane. Organic Letters 2018, 20 (10) , 2934-2938. https://doi.org/10.1021/acs.orglett.8b00989
    14. Dmitrii S. Bolotin, Nadezhda A. Bokach, Marina Ya. Demakova, and Vadim Yu. Kukushkin . Metal-Involving Synthesis and Reactions of Oximes. Chemical Reviews 2017, 117 (21) , 13039-13122. https://doi.org/10.1021/acs.chemrev.7b00264
    15. Yun-Lin Liu, Gerald Kehr, Constantin G. Daniliuc, and Gerhard Erker . Utilizing the TEMPO Radical in Zirconocene Cation and Hydrido Zirconocene Chemistry. Organometallics 2017, 36 (17) , 3407-3414. https://doi.org/10.1021/acs.organomet.7b00558
    16. Xue-Qiang Chu, Wen-Bin Cao, Xiao-Ping Xu, and Shun-Jun Ji . Iron Catalysis for Modular Pyrimidine Synthesis through β-Ammoniation/Cyclization of Saturated Carbonyl Compounds with Amidines. The Journal of Organic Chemistry 2017, 82 (2) , 1145-1154. https://doi.org/10.1021/acs.joc.6b02767
    17. Xingguo Jiang, Jiasheng Zhang, and Shengming Ma . Iron Catalysis for Room-Temperature Aerobic Oxidation of Alcohols to Carboxylic Acids. Journal of the American Chemical Society 2016, 138 (27) , 8344-8347. https://doi.org/10.1021/jacs.6b03948
    18. Andrew M. Poitras, Justin A. Bogart, Bren E. Cole, Patrick J. Carroll, Eric J. Schelter, and Christopher R. Graves . Synthesis and Characterization of Aluminum Complexes of Redox-Active Pyridyl Nitroxide Ligands. Inorganic Chemistry 2015, 54 (22) , 10901-10908. https://doi.org/10.1021/acs.inorgchem.5b01941
    19. Thuy-Ai D. Nguyen, Ashley M. Wright, Joshua S. Page, Guang Wu, and Trevor W. Hayton . Oxidation of Alcohols and Activated Alkanes with Lewis Acid-Activated TEMPO. Inorganic Chemistry 2014, 53 (21) , 11377-11387. https://doi.org/10.1021/ic5018888
    20. Krzysztof Budny-Godlewski, Dominik Kubicki, Iwona Justyniak, and Janusz Lewiński . A New Look at the Reactivity of TEMPO toward Diethylzinc. Organometallics 2014, 33 (19) , 5093-5096. https://doi.org/10.1021/om5008117
    21. Bradford L. Ryland, Scott D. McCann, Thomas C. Brunold, and Shannon S. Stahl . Mechanism of Alcohol Oxidation Mediated by Copper(II) and Nitroxyl Radicals. Journal of the American Chemical Society 2014, 136 (34) , 12166-12173. https://doi.org/10.1021/ja5070137
    22. Ryan R. Langeslay, Justin R. Walensky, Joseph W. Ziller, and William J. Evans . Reactivity of Organothorium Complexes with TEMPO. Inorganic Chemistry 2014, 53 (16) , 8455-8463. https://doi.org/10.1021/ic501034b
    23. Justin P. Lomont, Son C. Nguyen, and Charles B. Harris . Ultrafast Infrared Studies of the Role of Spin States in Organometallic Reaction Dynamics. Accounts of Chemical Research 2014, 47 (5) , 1634-1642. https://doi.org/10.1021/ar500032d
    24. Derek Isrow, Nathan J. DeYonker, Anjaneyulu Koppaka, Perry J. Pellechia, Charles Edwin Webster, and Burjor Captain . Metal–Ligand Synergistic Effects in the Complex Ni(η2-TEMPO)2: Synthesis, Structures, and Reactivity. Inorganic Chemistry 2013, 52 (24) , 13882-13893. https://doi.org/10.1021/ic401296f
    25. Justin P. Lomont, Son C. Nguyen, and Charles B. Harris . Reactivity of TEMPO toward 16- and 17-Electron Organometallic Reaction Intermediates: A Time-Resolved IR Study. Journal of the American Chemical Society 2013, 135 (30) , 11266-11273. https://doi.org/10.1021/ja404476m
    26. Justin A. Bogart, Heui Beom Lee, Michael A. Boreen, Minsik Jun, and Eric J. Schelter . Fine-Tuning the Oxidative Ability of Persistent Radicals: Electrochemical and Computational Studies of Substituted 2-Pyridylhydroxylamines. The Journal of Organic Chemistry 2013, 78 (12) , 6344-6349. https://doi.org/10.1021/jo400944r
    27. Amit Pratap Singh, Prinson P. Samuel, Herbert W. Roesky, Martin C. Schwarzer, Gernot Frenking, Navdeep S. Sidhu, and Birger Dittrich . A Singlet Biradicaloid Zinc Compound and Its Nonradical Counterpart. Journal of the American Chemical Society 2013, 135 (19) , 7324-7329. https://doi.org/10.1021/ja402351x
    28. Ashley M. Wright, Homaira T. Zaman, Guang Wu, and Trevor W. Hayton . Nitric Oxide Release from a Nickel Nitrosyl Complex Induced by One-Electron Oxidation. Inorganic Chemistry 2013, 52 (6) , 3207-3216. https://doi.org/10.1021/ic302697v
    29. Jessica M. Hoover, Bradford L. Ryland, and Shannon S. Stahl . Mechanism of Copper(I)/TEMPO-Catalyzed Aerobic Alcohol Oxidation. Journal of the American Chemical Society 2013, 135 (6) , 2357-2367. https://doi.org/10.1021/ja3117203
    30. Qiang Wu, Peng Hu. Photoinduced C−O Bond Formation through C−C Bond Cleavage of Alcohols by Suppressing Alcohol Oxidation. Advanced Synthesis & Catalysis 2024, 4 https://doi.org/10.1002/adsc.202301437
    31. Peng-Fei Dai, Qiang-Qiang Li, Jian-Ping Qu, Yan-Biao Kang. Recent Developments on the Earth-Abundant-Metal-Catalyzed α,β-Dehydrogenation of Carbonyl Compounds. Synthesis 2023, 343 https://doi.org/10.1055/a-2232-8882
    32. Vladislav K. Lesnikov, Ivan S. Golovanov, Yulia V. Nelyubina, Svetlana A. Aksenova, Alexey Yu. Sukhorukov. Crown-hydroxylamines are pH-dependent chelating N,O-ligands with a potential for aerobic oxidation catalysis. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-43530-6
    33. Jinhang Dai, Qingya Cao, Ziting Du, Ronghe Yang, Delong Yang, Fukun Li, Xingxing Gu. Facile synthesis of N-acetylglycine from chitin-derived N-acetylmonoethanolamine. Catalysis Communications 2023, 185 , 106812. https://doi.org/10.1016/j.catcom.2023.106812
    34. Chaohuang Chen, Constantin G. Daniliuc, Sina Klabunde, Michael Ryan Hansen, Gerald Kehr, Gerhard Erker. Generation of boryl-nitroxide radicals from a boraalkene via the nitroso ene reaction. Chemical Science 2022, 13 (36) , 10891-10896. https://doi.org/10.1039/D2SC02485C
    35. Marika Nakamura, Risa Hyakutake, Shogo Morisako, Takahiro Sasamori, Yoshiyuki Mizuhata, Norihiro Tokitoh, Kouichi Nakashima, Hiroki Fukumoto, Tomohiro Agou. Boron complexes of π-extended nitroxide ligands exhibiting three-state redox processes and near-infrared-II (NIR-II) absorption properties. Dalton Transactions 2022, 51 (36) , 13675-13680. https://doi.org/10.1039/D2DT02545K
    36. Chenghao Zhang, Mengmeng Huang, Jiabin Yin, Fengyan Lou, Xingkun Chen, Jisong Zhang. Green and practical TEMPO-functionalized activated carbon as a durable catalyst for continuous aerobic oxidation of alcohols. Journal of Catalysis 2022, 413 , 968-977. https://doi.org/10.1016/j.jcat.2022.08.010
    37. Ann K. Kayser, Peter T. Wolczanski, Thomas R. Cundari, Melissa M. Bollmeyer, Kyle M. Lancaster, Samantha N. MacMillan. TEMPO coordination and reactivity in group 6; pseudo-pentagonal planar (η 2 -TEMPO) 2 CrX (X = Cl, TEMPO). Chemical Communications 2022, 58 (70) , 9818-9821. https://doi.org/10.1039/D2CC03838B
    38. Sophie W. Anferov, John S. Anderson. A cobalt adduct of an N-hydroxy-piperidinium cation. Journal of Coordination Chemistry 2022, 75 (11-14) , 1853-1864. https://doi.org/10.1080/00958972.2022.2119557
    39. Ivan S. Golovanov, Anton V. Leonov, Vladislav K. Lesnikov, Evgeny V. Pospelov, Kirill V. Frolov, Alexander A. Korlyukov, Yulia V. Nelyubina, Valentin V. Novikov, Alexey Yu. Sukhorukov. Iron( iv ) complexes with tetraazaadamantane-based ligands: synthesis, structure, applications in dioxygen activation and labeling of biomolecules. Dalton Transactions 2022, 51 (11) , 4284-4296. https://doi.org/10.1039/D1DT04104E
    40. Shi-Jun Li, Wei Fang, Jeremy O. Richardson, De-Cai Fang. Tunnelling assisted hydrogen elimination mechanisms of FeCl 3 /TEMPO. Chemical Communications 2022, 58 (4) , 565-568. https://doi.org/10.1039/D1CC06035J
    41. Zhenyu Wu, Xiubing Huang, Xiangjun Li, Guangtong Hai, Baozhen Li, Ge Wang. Covalent-organic frameworks with keto-enol tautomerism for efficient photocatalytic oxidative coupling of amines to imines under visible light. Science China Chemistry 2021, 64 (12) , 2169-2179. https://doi.org/10.1007/s11426-021-1088-2
    42. Yanlin Pan, Jie Cui, Yongliang Wei, Zhaochao Xu, Tongdao Wang. B–H and O–H bonds activation via a single electron transfer of frustrated radical pairs. Dalton Transactions 2021, 50 (25) , 8947-8954. https://doi.org/10.1039/D1DT01169C
    43. Tongdao Wang, Constantin G. Daniliuc, Gerald Kehr, Gerhard Erker. FLP Reduction of Carbon Monoxide and Related Reactions. 2021, 87-112. https://doi.org/10.1007/978-3-030-58888-5_3
    44. Zhen Ma, Kamran T. Mahmudov, Vusala A. Aliyeva, Atash V. Gurbanov, Armando J.L. Pombeiro. TEMPO in metal complex catalysis. Coordination Chemistry Reviews 2020, 423 , 213482. https://doi.org/10.1016/j.ccr.2020.213482
    45. Mei Hong, Shuangyan Wu, Jiatong Li, Jing Wang, Lifen Wei, Kun Li. Aerobic oxidation of 5-(hydroxymethyl)furfural into 2,5-diformylfuran catalyzed by starch supported aluminum nitrate. Catalysis Communications 2020, 136 , 105909. https://doi.org/10.1016/j.catcom.2019.105909
    46. Liu Leo Liu, Douglas W. Stephan. Radicals derived from Lewis acid/base pairs. Chemical Society Reviews 2019, 48 (13) , 3454-3463. https://doi.org/10.1039/C8CS00940F
    47. Imtiaz Khan, Aliya Ibrar, Syeda Aaliya Shehzadi. Building molecular complexity through transition-metal-catalyzed oxidative annulations/cyclizations: Harnessing the utility of phenols, naphthols and 1,3-dicarbonyl compounds. Coordination Chemistry Reviews 2019, 380 , 440-470. https://doi.org/10.1016/j.ccr.2018.11.001
    48. Ibanphylla Syiemlieh, Mrityunjaya Asthana, Sharad K. Asthana, Sunshine D. Kurbah, Angira Koch, Ram A. Lal. Water soluble new bimetallic catalyst [CuZn(bz)3(bpy)2]PF6 in hydrogen peroxide mediated oxidation of alcohols to aldehydes/ketones and C-N functional groups. Journal of Organometallic Chemistry 2018, 878 , 48-59. https://doi.org/10.1016/j.jorganchem.2018.10.001
    49. Youngsuk Kim, Kimoon Kim, Eunsung Lee. Oxime Ether Radical Cations Stabilized by N‐Heterocyclic Carbenes. Angewandte Chemie 2018, 130 (1) , 268-271. https://doi.org/10.1002/ange.201710530
    50. Youngsuk Kim, Kimoon Kim, Eunsung Lee. Oxime Ether Radical Cations Stabilized by N‐Heterocyclic Carbenes. Angewandte Chemie International Edition 2018, 57 (1) , 262-265. https://doi.org/10.1002/anie.201710530
    51. Xin Tao, Constantin G. Daniliuc, Oliver Janka, Rainer Pöttgen, Robert Knitsch, Michael Ryan Hansen, Hellmut Eckert, Maximilian Lübbesmeyer, Armido Studer, Gerald Kehr, Gerhard Erker. Reduction of Dioxygen by Radical/B( p ‐C 6 F 4 X) 3 Pairs to Give Isolable Bis(borane)superoxide Compounds. Angewandte Chemie 2017, 129 (52) , 16868-16871. https://doi.org/10.1002/ange.201709309
    52. Xin Tao, Constantin G. Daniliuc, Oliver Janka, Rainer Pöttgen, Robert Knitsch, Michael Ryan Hansen, Hellmut Eckert, Maximilian Lübbesmeyer, Armido Studer, Gerald Kehr, Gerhard Erker. Reduction of Dioxygen by Radical/B( p ‐C 6 F 4 X) 3 Pairs to Give Isolable Bis(borane)superoxide Compounds. Angewandte Chemie International Edition 2017, 56 (52) , 16641-16644. https://doi.org/10.1002/anie.201709309
    53. Guo‐Qiang Chen, Constantin G. Daniliuc, Gerald Kehr, Gerhard Erker. Making Use of the Functional Group Combination of a Phosphane/Borane Lewis Pair Connected by an Unsaturated Four‐Carbon Bridge. European Journal of Inorganic Chemistry 2017, 2017 (38-39) , 4519-4524. https://doi.org/10.1002/ejic.201700570
    54. Xin Tao, Fatma Türkyilmaz, Constantin G. Daniliuc, Gerald Kehr, Gerhard Erker. Reactions of strongly electrophilic alkenyl(pentafluorophenyl)boranes with the TEMPO radical. Journal of Organometallic Chemistry 2017, 847 , 167-172. https://doi.org/10.1016/j.jorganchem.2017.03.030
    55. Kexian Chen, Jianyong Mao, Shiyi Shen, Lin Fei, Haiying Xie, Kezhi Jiang. Mechanistic elucidation of the origins of the hydrogen-abstraction reactivity of hydroxyimide organocatalysts and its application in catalyst design. Chemical Physics Letters 2017, 684 , 225-232. https://doi.org/10.1016/j.cplett.2017.06.054
    56. Michael Hog, Marius Schneider, Gauthier Studer, Monika Bäuerle, Steffen A. Föhrenbacher, Harald Scherer, Ingo Krossing. An Investigation of the Symmetric and Asymmetric Cleavage Products in the System Aluminum Trihalide/1‐Butylimidazole. Chemistry – A European Journal 2017, 23 (46) , 11054-11066. https://doi.org/10.1002/chem.201701553
    57. Gerald Kehr, Gerhard Erker. Frustrated Lewis Pair Chemistry: Searching for New Reactions. The Chemical Record 2017, 17 (8) , 803-815. https://doi.org/10.1002/tcr.201700010
    58. Haipeng Wei, Liyan Zhang, Hoa Phan, Xiaobo Huang, Tun Seng Herng, Jun Zhou, Wangdong Zeng, Jun Ding, Shenglian Luo, Jishan Wu, Zebing Zeng. A Stable N ‐Annulated Perylene‐Bridged Bisphenoxyl Diradicaloid and the Corresponding Boron Trifluoride Complex. Chemistry – A European Journal 2017, 23 (39) , 9419-9424. https://doi.org/10.1002/chem.201701692
    59. Jadwiga Pyziak, Jędrzej Walkowiak, Bogdan Marciniec. Recent Advances in Boron‐Substituted 1,3‐Dienes Chemistry: Synthesis and Application. Chemistry – A European Journal 2017, 23 (15) , 3502-3541. https://doi.org/10.1002/chem.201602124
    60. Tse‐Lok Ho. 2,2,6,6‐Tetramethylpiperidine 1‐oxyl, ( TEMPO )(2). 2017https://doi.org/10.1002/9780471264194.fos12196
    61. Tse‐Lok Ho. 2,2,6,6‐Tetramethylpiperidine 1‐oxyl, ( TEMPO )(2). 2017https://doi.org/10.1002/9780471264194.fos12196.pub2
    62. Liang Chen, Jun Tang, Qi Zhang, Jianli Wang. Linear amphiphilic TEMPO-grafted poly(ether sulfone) as polymeric interfacial catalyst: Synthesis, self-assembly behavior, and application. Reactive and Functional Polymers 2016, 105 , 134-139. https://doi.org/10.1016/j.reactfunctpolym.2016.06.005
    63. Xin Tao, Gerald Kehr, Xiaowu Wang, Constantin G. Daniliuc, Stefan Grimme, Gerhard Erker. Rapid Dihydrogen Cleavage by Persistent Nitroxide Radicals under Frustrated Lewis Pair Conditions. Chemistry – A European Journal 2016, 22 (28) , 9504-9507. https://doi.org/10.1002/chem.201602058
    64. Fatma Türkyilmaz, Gerald Kehr, Jun Li, Constantin G. Daniliuc, Matthias Tesch, Armido Studer, Gerhard Erker. Selective N,O‐Addition of the TEMPO Radical to Conjugated Boryldienes. Angewandte Chemie 2016, 128 (4) , 1492-1495. https://doi.org/10.1002/ange.201509114
    65. Fatma Türkyilmaz, Gerald Kehr, Jun Li, Constantin G. Daniliuc, Matthias Tesch, Armido Studer, Gerhard Erker. Selective N,O‐Addition of the TEMPO Radical to Conjugated Boryldienes. Angewandte Chemie International Edition 2016, 55 (4) , 1470-1473. https://doi.org/10.1002/anie.201509114
    66. David J. Liptrot. Single Electron Transfer Steps in Group 2 Catalysis. 2016, 131-145. https://doi.org/10.1007/978-3-319-21036-0_5
    67. Ahmed Juwad Shakir, Codruta Paraschivescu, Mihaela Matache, Madalina Tudose, Alice Mischie, Felicia Spafiu, Petre Ionita. A convenient alternative for the selective oxidation of alcohols by silica supported TEMPO using dioxygen as the final oxidant. Tetrahedron Letters 2015, 56 (49) , 6878-6881. https://doi.org/10.1016/j.tetlet.2015.10.099
    68. Crispin Lichtenberg, Demyan E. Prokopchuk, Mario Adelhardt, Liliana Viciu, Karsten Meyer, Hansjörg Grützmacher. Reactivity of an All‐Ferrous Iron–Nitrogen Heterocubane under Reductive and Oxidative Conditions. Chemistry – A European Journal 2015, 21 (44) , 15797-15805. https://doi.org/10.1002/chem.201502530
    69. E.I. Davydova, T.N. Sevastianova, A.Y. Timoshkin. Molecular complexes of group 13 element trihalides, pentafluorophenyl derivatives and Lewis superacids. Coordination Chemistry Reviews 2015, 297-298 , 91-126. https://doi.org/10.1016/j.ccr.2015.02.019
    70. Lu Jia, Kexian Chen, Lingyao Wang, Renfeng Du, Congmin Wang, Jia Yao, Haoran Li. Diverse catalytic efficiency of nitroxyl radicals tuned by Lewis acids in the oxidation of hydrocarbons. Catalysis Communications 2015, 67 , 31-34. https://doi.org/10.1016/j.catcom.2015.04.006
    71. Shashikant U. Dighe, Deepan Chowdhury, Sanjay Batra. Iron Nitrate/TEMPO: a Superior Homogeneous Catalyst for Oxidation of Primary Alcohols to Nitriles in Air. Advanced Synthesis & Catalysis 2014, 356 (18) , 3892-3896. https://doi.org/10.1002/adsc.201400718
    72. Qun Cao, Laura M. Dornan, Luke Rogan, N. Louise Hughes, Mark J. Muldoon. Aerobic oxidation catalysis with stable radicals. Chem. Commun. 2014, 50 (35) , 4524-4543. https://doi.org/10.1039/C3CC47081D
    73. Fan Jia, Zhiping Li. Iron-catalyzed/mediated oxidative transformation of C–H bonds. Org. Chem. Front. 2014, 1 (2) , 194-214. https://doi.org/10.1039/C3QO00087G
    74. Yuma Morimoto. Aerobic Oxidation of Alcohols with TEMPO and Transition-metal Complexes. Bulletin of Japan Society of Coordination Chemistry 2014, 63 (0) , 49-51. https://doi.org/10.4019/bjscc.63.49
    75. Fleur Drouet, Jieping Zhu, Géraldine Masson. Iron Chloride‐Catalyzed Three‐Component Domino Sequences: Syntheses of Functionalized α‐Oxy‐ N ‐acylhemiaminals and α‐Oxyimides. Advanced Synthesis & Catalysis 2013, 355 (18) , 3563-3569. https://doi.org/10.1002/adsc.201300847
    76. Kartik Chandra Mondal, Herbert W. Roesky, A. Claudia Stückl, Fabian Ehret, Wolfgang Kaim, Birger Dittrich, Bholanath Maity, Debasis Koley. Formation of Trichlorosilyl‐Substituted Carbon‐Centered Stable Radicals through the Use of π‐Accepting Carbenes. Angewandte Chemie 2013, 125 (45) , 12020-12023. https://doi.org/10.1002/ange.201300668
    77. Kartik Chandra Mondal, Herbert W. Roesky, A. Claudia Stückl, Fabian Ehret, Wolfgang Kaim, Birger Dittrich, Bholanath Maity, Debasis Koley. Formation of Trichlorosilyl‐Substituted Carbon‐Centered Stable Radicals through the Use of π‐Accepting Carbenes. Angewandte Chemie International Edition 2013, 52 (45) , 11804-11807. https://doi.org/10.1002/anie.201300668
    78. Ashley M. Wright, Joshua S. Page, Jeremiah J. Scepaniak, Guang Wu, Trevor W. Hayton. Divergent Reactivity of TEMPO with MBr 3 (M = B, Al). European Journal of Inorganic Chemistry 2013, 2013 (22-23) , 3817-3820. https://doi.org/10.1002/ejic.201300163
    79. Zhiliang Huang, Liqun Jin, Ye Feng, Pan Peng, Hong Yi, Aiwen Lei. Iron‐Catalyzed Oxidative Radical Cross‐Coupling/Cyclization between Phenols and Olefins. Angewandte Chemie 2013, 125 (28) , 7292-7296. https://doi.org/10.1002/ange.201210023
    80. Zhiliang Huang, Liqun Jin, Ye Feng, Pan Peng, Hong Yi, Aiwen Lei. Iron‐Catalyzed Oxidative Radical Cross‐Coupling/Cyclization between Phenols and Olefins. Angewandte Chemie International Edition 2013, 52 (28) , 7151-7155. https://doi.org/10.1002/anie.201210023
    81. Xiang-Jun Shi, Jie Qian, Fan-Fan Tan, Chuan-Ming Yu. Mild Aerobic Oxidation of Alcohols Catalysed by Fe 2 (SO 4 ) 3 /4-OH-TEMPO/NaNO 2. Journal of Chemical Research 2013, 37 (7) , 398-401. https://doi.org/10.3184/174751913X13700197900636
    82. Yi Sing Gee, Kamelia Fathy Abd El Kader, Christopher J. T. Hyland. Synthetic methods: part (ii) oxidation and reduction methods. Annual Reports Section "B" (Organic Chemistry) 2013, 109 , 103. https://doi.org/10.1039/c3oc90011h
    83. Evan A. Haidasz, Bo Li, Derek A. Pratt. Reaction mechanisms: radical and radical ion reactions. Annual Reports Section "B" (Organic Chemistry) 2013, 109 , 295. https://doi.org/10.1039/c3oc90013d
    84. Ryan K. Quinn, Valerie A. Schmidt, Erik J. Alexanian. Radical carbooxygenations of alkenes using hydroxamic acids. Chemical Science 2013, 4 (10) , 4030. https://doi.org/10.1039/c3sc51466h

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect