Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Dynamic Nuclear Polarization of Sedimented Solutes
My Activity

Figure 1Loading Img
    Communication

    Dynamic Nuclear Polarization of Sedimented Solutes
    Click to copy article linkArticle link copied!

    View Author Information
    § ⊥ §Department of Chemistry “Ugo Schiff” and Magnetic Resonance Center (CERM), University of Florence, 50019 Sesto Fiorentino (FI), Italy
    Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2013, 135, 5, 1641–1644
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja312553b
    Published January 18, 2013
    Copyright © 2013 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Using the 480 kDa iron-storage protein complex, apoferritin (ApoF), as an example, we demonstrate that sizable dynamic nuclear polarization (DNP) enhancements can be obtained on sedimented protein samples. In sedimented solute DNP (SedDNP), the biradical polarizing agent is co-sedimented with the protein, but in the absence of a glass-forming agent. We observe DNP enhancement factors ε > 40 at a magnetic field of 5 T and temperatures below 90 K, indicating that the protein sediment state is “glassy” and suitable to disperse the biradical polarizing agent upon freezing. In contrast, frozen aqueous solutions of ApoF yield ε ≈ 2. Results of SedDNP are compared to those obtained from samples prepared using the traditional glass-forming agent glycerol. Collectively, these and results from previous investigations suggest that the sedimented state can be functionally described as a “microcrystalline glass” and in addition provide a new approach for preparation of samples for DNP experiments.

    Copyright © 2013 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Experimental details for sample preparation and DNP NMR experiments. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 57 publications.

    1. Thomas Biedenbänder, Victoria Aladin, Siavash Saeidpour, Björn Corzilius. Dynamic Nuclear Polarization for Sensitivity Enhancement in Biomolecular Solid-State NMR. Chemical Reviews 2022, 122 (10) , 9738-9794. https://doi.org/10.1021/acs.chemrev.1c00776
    2. Wing Ying Chow, Gaël De Paëpe, Sabine Hediger. Biomolecular and Biological Applications of Solid-State NMR with Dynamic Nuclear Polarization Enhancement. Chemical Reviews 2022, 122 (10) , 9795-9847. https://doi.org/10.1021/acs.chemrev.1c01043
    3. Zahra Harati Taji, Pavlo Bielytskyi, Mikhail Shein, Marc-Antoine Sani, Stefan Seitz, Anne K. Schütz. Transient RNA Interactions Leave a Covalent Imprint on a Viral Capsid Protein. Journal of the American Chemical Society 2022, 144 (19) , 8536-8550. https://doi.org/10.1021/jacs.1c12439
    4. Filippo Caracciolo, Pietro Carretta, Marta Filibian, and Lucio Melone . Dynamic Nuclear Polarization of β-Cyclodextrin Macromolecules. The Journal of Physical Chemistry B 2017, 121 (12) , 2584-2593. https://doi.org/10.1021/acs.jpcb.7b00836
    5. Charlène Presti, Aany S. Lilly Thankamony, Johan G. Alauzun, P. Hubert Mutin, Diego Carnevale, Cédric Lion, Hervé Vezin, Danielle Laurencin, and Olivier Lafon . NMR and EPR Characterization of Functionalized Nanodiamonds. The Journal of Physical Chemistry C 2015, 119 (22) , 12408-12422. https://doi.org/10.1021/acs.jpcc.5b02171
    6. Dominik J. Kubicki, Aaron J. Rossini, Armin Purea, Alexandre Zagdoun, Olivier Ouari, Paul Tordo, Frank Engelke, Anne Lesage, and Lyndon Emsley . Amplifying Dynamic Nuclear Polarization of Frozen Solutions by Incorporating Dielectric Particles. Journal of the American Chemical Society 2014, 136 (44) , 15711-15718. https://doi.org/10.1021/ja5088453
    7. Björn Corzilius, Vladimir K. Michaelis, Susanne A. Penzel, Enrico Ravera, Albert A. Smith, Claudio Luchinat, and Robert G. Griffin . Dynamic Nuclear Polarization of 1H, 13C, and 59Co in a Tris(ethylenediamine)cobalt(III) Crystalline Lattice Doped with Cr(III). Journal of the American Chemical Society 2014, 136 (33) , 11716-11727. https://doi.org/10.1021/ja5044374
    8. Enrico Ravera, Björn Corzilius, Vladimir K. Michaelis, Claudio Luchinat, Robert G. Griffin, and Ivano Bertini . DNP-Enhanced MAS NMR of Bovine Serum Albumin Sediments and Solutions. The Journal of Physical Chemistry B 2014, 118 (11) , 2957-2965. https://doi.org/10.1021/jp500016f
    9. Vladimir K. Michaelis, Björn Corzilius, Albert A. Smith, and Robert G. Griffin . Dynamic Nuclear Polarization of 17O: Direct Polarization. The Journal of Physical Chemistry B 2013, 117 (48) , 14894-14906. https://doi.org/10.1021/jp408440z
    10. Ivano Bertini, Claudio Luchinat, Giacomo Parigi, and Enrico Ravera . SedNMR: On the Edge between Solution and Solid-State NMR. Accounts of Chemical Research 2013, 46 (9) , 2059-2069. https://doi.org/10.1021/ar300342f
    11. Alexandre Zagdoun, Gilles Casano, Olivier Ouari, Martin Schwarzwälder, Aaron J. Rossini, Fabien Aussenac, Maxim Yulikov, Gunnar Jeschke, Christophe Copéret, Anne Lesage, Paul Tordo, and Lyndon Emsley . Large Molecular Weight Nitroxide Biradicals Providing Efficient Dynamic Nuclear Polarization at Temperatures up to 200 K. Journal of the American Chemical Society 2013, 135 (34) , 12790-12797. https://doi.org/10.1021/ja405813t
    12. Dallas Bell, Florian Lindemann, Lisa Gerland, Hanna Aucharova, Alexander Klein, Daniel Friedrich, Matthias Hiller, Kristof Grohe, Tobias Meier, Barth van Rossum, Anne Diehl, Jon Hughes, Leonard J. Mueller, Rasmus Linser, Anne-Frances Miller, Hartmut Oschkinat. Sedimentation of large, soluble proteins up to 140 kDa for 1H-detected MAS NMR and 13C DNP NMR – practical aspects. Journal of Biomolecular NMR 2024, 359 https://doi.org/10.1007/s10858-024-00444-9
    13. Linda Cerofolini, Giacomo Parigi, Enrico Ravera, Marco Fragai, Claudio Luchinat. Solid-state NMR methods for the characterization of bioconjugations and protein-material interactions. Solid State Nuclear Magnetic Resonance 2022, 122 , 101828. https://doi.org/10.1016/j.ssnmr.2022.101828
    14. Scott L. Carnahan, Yunhua Chen, James F. Wishart, Joseph W. Lubach, Aaron J. Rossini. Magic angle spinning dynamic nuclear polarization solid-state NMR spectroscopy of γ-irradiated molecular organic solids. Solid State Nuclear Magnetic Resonance 2022, 119 , 101785. https://doi.org/10.1016/j.ssnmr.2022.101785
    15. Shiying Zhu, Ehsan Kachooei, Jeffrey R. Harmer, Louise J. Brown, Frances Separovic, Marc-Antoine Sani. TOAC spin-labeled peptides tailored for DNP-NMR studies in lipid membrane environments. Biophysical Journal 2021, 120 (20) , 4501-4511. https://doi.org/10.1016/j.bpj.2021.08.040
    16. Diego Gauto, Ons Dakhlaoui, Ildefonso Marin-Montesinos, Sabine Hediger, Gaël De Paëpe. Targeted DNP for biomolecular solid-state NMR. Chemical Science 2021, 12 (18) , 6223-6237. https://doi.org/10.1039/D0SC06959K
    17. Thomas Wiegand. A solid-state NMR tool box for the investigation of ATP-fueled protein engines. Progress in Nuclear Magnetic Resonance Spectroscopy 2020, 117 , 1-32. https://doi.org/10.1016/j.pnmrs.2020.02.001
    18. Kristaps Jaudzems, Tatyana Polenova, Guido Pintacuda, Hartmut Oschkinat, Anne Lesage. DNP NMR of biomolecular assemblies. Journal of Structural Biology 2019, 206 (1) , 90-98. https://doi.org/10.1016/j.jsb.2018.09.011
    19. Anna König, Daniel Schölzel, Boran Uluca, Thibault Viennet, Ümit Akbey, Henrike Heise. Hyperpolarized MAS NMR of unfolded and misfolded proteins. Solid State Nuclear Magnetic Resonance 2019, 98 , 1-11. https://doi.org/10.1016/j.ssnmr.2018.12.003
    20. Denis Lacabanne, Marie-Laure Fogeron, Thomas Wiegand, Riccardo Cadalbert, Beat H. Meier, Anja Böckmann. Protein sample preparation for solid-state NMR investigations. Progress in Nuclear Magnetic Resonance Spectroscopy 2019, 110 , 20-33. https://doi.org/10.1016/j.pnmrs.2019.01.001
    21. Björn Corzilius. Dynamic Nuclear Polarization. 2018, 219-257. https://doi.org/10.1039/9781788013291-00219
    22. Kristaps Jaudzems, Andrea Bertarello, Sachin R. Chaudhari, Andrea Pica, Diane Cala‐De Paepe, Emeline Barbet‐Massin, Andrew J. Pell, Inara Akopjana, Svetlana Kotelovica, David Gajan, Olivier Ouari, Kaspars Tars, Guido Pintacuda, Anne Lesage. Dynamic Nuclear Polarization‐Enhanced Biomolecular NMR Spectroscopy at High Magnetic Field with Fast Magic‐Angle Spinning. Angewandte Chemie 2018, 130 (25) , 7580-7584. https://doi.org/10.1002/ange.201801016
    23. Kristaps Jaudzems, Andrea Bertarello, Sachin R. Chaudhari, Andrea Pica, Diane Cala‐De Paepe, Emeline Barbet‐Massin, Andrew J. Pell, Inara Akopjana, Svetlana Kotelovica, David Gajan, Olivier Ouari, Kaspars Tars, Guido Pintacuda, Anne Lesage. Dynamic Nuclear Polarization‐Enhanced Biomolecular NMR Spectroscopy at High Magnetic Field with Fast Magic‐Angle Spinning. Angewandte Chemie International Edition 2018, 57 (25) , 7458-7462. https://doi.org/10.1002/anie.201801016
    24. Alessandra Flori, Giulio Giovannetti, Maria Filomena Santarelli, Giovanni Donato Aquaro, Daniele De Marchi, Silvia Burchielli, Francesca Frijia, Vincenzo Positano, Luigi Landini, Luca Menichetti. Biomolecular imaging of 13C-butyrate with dissolution-DNP: Polarization enhancement and formulation for in vivo studies. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2018, 199 , 153-160. https://doi.org/10.1016/j.saa.2018.03.014
    25. Michelle Ha, Vladimir K. Michaelis. High-Frequency Dynamic Nuclear Polarization NMR for Solids: Part 1 – An Introduction. 2018, 1183-1206. https://doi.org/10.1007/978-3-319-28388-3_140
    26. Michelle Ha, Vladimir K. Michaelis. High-Frequency Dynamic Nuclear Polarization NMR for Solids: Part 2 – Development and Applications. 2018, 1207-1224. https://doi.org/10.1007/978-3-319-28388-3_141
    27. Thomas Wiegand, Wei-Chih Liao, Ta Chung Ong, Alexander Däpp, Riccardo Cadalbert, Christophe Copéret, Anja Böckmann, Beat H. Meier. Protein–nucleotide contacts in motor proteins detected by DNP-enhanced solid-state NMR. Journal of Biomolecular NMR 2017, 69 (3) , 157-164. https://doi.org/10.1007/s10858-017-0144-3
    28. Aany Sofia Lilly Thankamony, Johannes J. Wittmann, Monu Kaushik, Björn Corzilius. Dynamic nuclear polarization for sensitivity enhancement in modern solid-state NMR. Progress in Nuclear Magnetic Resonance Spectroscopy 2017, 102-103 , 120-195. https://doi.org/10.1016/j.pnmrs.2017.06.002
    29. Enrico Ravera, Giacomo Parigi, Claudio Luchinat. Perspectives on paramagnetic NMR from a life sciences infrastructure. Journal of Magnetic Resonance 2017, 282 , 154-169. https://doi.org/10.1016/j.jmr.2017.07.013
    30. Rivkah Rogawski, Ann E. McDermott. New NMR tools for protein structure and function: Spin tags for dynamic nuclear polarization solid state NMR. Archives of Biochemistry and Biophysics 2017, 628 , 102-113. https://doi.org/10.1016/j.abb.2017.06.010
    31. Michelle Ha, Vladimir K. Michaelis. High-Frequency Dynamic Nuclear Polarization NMR for Solids: Part 1 – An Introduction. 2017, 1-24. https://doi.org/10.1007/978-3-319-28275-6_140-1
    32. Michelle Ha, Vladimir K. Michaelis. High-Frequency Dynamic Nuclear Polarization NMR for Solids: Part 2 – Development and Applications. 2017, 1-18. https://doi.org/10.1007/978-3-319-28275-6_141-1
    33. Ümit Akbey, Hartmut Oschkinat. Structural biology applications of solid state MAS DNP NMR. Journal of Magnetic Resonance 2016, 269 , 213-224. https://doi.org/10.1016/j.jmr.2016.04.003
    34. Claire Sauvée, Gilles Casano, Sébastien Abel, Antal Rockenbauer, Dimitry Akhmetzyanov, Hakim Karoui, Didier Siri, Fabien Aussenac, Werner Maas, Ralph T. Weber, Thomas Prisner, Mélanie Rosay, Paul Tordo, Olivier Ouari. Tailoring of Polarizing Agents in the bTurea Series for Cross‐Effect Dynamic Nuclear Polarization in Aqueous Media. Chemistry – A European Journal 2016, 22 (16) , 5598-5606. https://doi.org/10.1002/chem.201504693
    35. Dominik J. Kubicki, Gilles Casano, Martin Schwarzwälder, Sébastien Abel, Claire Sauvée, Karthikeyan Ganesan, Maxim Yulikov, Aaron J. Rossini, Gunnar Jeschke, Christophe Copéret, Anne Lesage, Paul Tordo, Olivier Ouari, Lyndon Emsley. Rational design of dinitroxide biradicals for efficient cross-effect dynamic nuclear polarization. Chemical Science 2016, 7 (1) , 550-558. https://doi.org/10.1039/C5SC02921J
    36. Anil P. Jagtap, Michel-Andreas Geiger, Daniel Stöppler, Marcella Orwick-Rydmark, Hartmut Oschkinat, Snorri Th. Sigurdsson. bcTol: a highly water-soluble biradical for efficient dynamic nuclear polarization of biomolecules. Chemical Communications 2016, 52 (43) , 7020-7023. https://doi.org/10.1039/C6CC01813K
    37. Enrico Ravera, Vladimir K. Michaelis, Ta‐Chung Ong, Eric G. Keeler, Tommaso Martelli, Marco Fragai, Robert G. Griffin, Claudio Luchinat. Biosilica‐Entrapped Enzymes Studied by Using Dynamic Nuclear‐Polarization‐Enhanced High‐Field NMR Spectroscopy. ChemPhysChem 2015, 16 (13) , 2751-2754. https://doi.org/10.1002/cphc.201500549
    38. Jan‐Henrik Ardenkjaer‐Larsen, Gregory S. Boebinger, Arnaud Comment, Simon Duckett, Arthur S. Edison, Frank Engelke, Christian Griesinger, Robert G. Griffin, Christian Hilty, Hidaeki Maeda, Giacomo Parigi, Thomas Prisner, Enrico Ravera, Jan van Bentum, Shimon Vega, Andrew Webb, Claudio Luchinat, Harald Schwalbe, Lucio Frydman. Neue Ansätze zur Empfindlichkeitssteigerung in der biomolekularen NMR‐Spektroskopie. Angewandte Chemie 2015, 127 (32) , 9292-9317. https://doi.org/10.1002/ange.201410653
    39. Jan‐Henrik Ardenkjaer‐Larsen, Gregory S. Boebinger, Arnaud Comment, Simon Duckett, Arthur S. Edison, Frank Engelke, Christian Griesinger, Robert G. Griffin, Christian Hilty, Hidaeki Maeda, Giacomo Parigi, Thomas Prisner, Enrico Ravera, Jan van Bentum, Shimon Vega, Andrew Webb, Claudio Luchinat, Harald Schwalbe, Lucio Frydman. Facing and Overcoming Sensitivity Challenges in Biomolecular NMR Spectroscopy. Angewandte Chemie International Edition 2015, 54 (32) , 9162-9185. https://doi.org/10.1002/anie.201410653
    40. Yongchao Su, Loren Andreas, Robert G. Griffin. Magic Angle Spinning NMR of Proteins: High-Frequency Dynamic Nuclear Polarization and 1 H Detection. Annual Review of Biochemistry 2015, 84 (1) , 465-497. https://doi.org/10.1146/annurev-biochem-060614-034206
    41. Enrico Ravera, Tobias Schubeis, Tommaso Martelli, Marco Fragai, Giacomo Parigi, Claudio Luchinat. NMR of sedimented, fibrillized, silica-entrapped and microcrystalline (metallo)proteins. Journal of Magnetic Resonance 2015, 253 , 60-70. https://doi.org/10.1016/j.jmr.2014.12.019
    42. Magdalena Korsak, Tatiana Kozyreva. Beta Amyloid Hallmarks: From Intrinsically Disordered Proteins to Alzheimer’s Disease. 2015, 401-421. https://doi.org/10.1007/978-3-319-20164-1_14
    43. Enrico Ravera. The bigger they are, the harder they fall: A topical review on sedimented solutes for solid‐state NMR. Concepts in Magnetic Resonance Part A 2014, 43 (6) , 209-227. https://doi.org/10.1002/cmr.a.21318
    44. Wai-Ming Yau, Kent R. Thurber, Robert Tycko. Synthesis and evaluation of nitroxide-based oligoradicals for low-temperature dynamic nuclear polarization in solid state NMR. Journal of Magnetic Resonance 2014, 244 , 98-106. https://doi.org/10.1016/j.jmr.2014.05.002
    45. Claudio Luchinat, Giacomo Parigi, Enrico Ravera. Can metal ion complexes be used as polarizing agents for solution DNP? A theoretical discussion. Journal of Biomolecular NMR 2014, 58 (4) , 239-249. https://doi.org/10.1007/s10858-013-9728-8
    46. Vladimir K. Michaelis, Ta‐Chung Ong, Matthew K. Kiesewetter, Derik K. Frantz, Joseph J. Walish, Enrico Ravera, Claudio Luchinat, Timothy M. Swager, Robert G. Griffin. Topical Developments in High‐Field Dynamic Nuclear Polarization. Israel Journal of Chemistry 2014, 54 (1-2) , 207-221. https://doi.org/10.1002/ijch.201300126
    47. Marco Fragai, Claudio Luchinat, Tommaso Martelli, Enrico Ravera, Irit Sagi, Inna Solomonov, Yael Udi. SSNMR of biosilica-entrapped enzymes permits an easy assessment of preservation of native conformation in atomic detail. Chem. Commun. 2014, 50 (4) , 421-423. https://doi.org/10.1039/C3CC46896H
    48. R. Graf, M. R. Hansen, D. Hinderberger, K. Muennemann, H. W. Spiess. Advanced magnetic resonance strategies for the elucidation of nanostructured soft matter. Physical Chemistry Chemical Physics 2014, 16 (21) , 9700. https://doi.org/10.1039/c3cp54614d
    49. Lucio Ferella, Claudio Luchinat, Enrico Ravera, Antonio Rosato. SedNMR: a web tool for optimizing sedimentation of macromolecular solutes for SSNMR. Journal of Biomolecular NMR 2013, 57 (4) , 319-326. https://doi.org/10.1007/s10858-013-9795-x
    50. Claire Sauvée, Melanie Rosay, Gilles Casano, Fabien Aussenac, Ralph T. Weber, Olivier Ouari, Paul Tordo. Highly Efficient, Water‐Soluble Polarizing Agents for Dynamic Nuclear Polarization at High Frequency. Angewandte Chemie 2013, 125 (41) , 11058-11061. https://doi.org/10.1002/ange.201304657
    51. Claire Sauvée, Melanie Rosay, Gilles Casano, Fabien Aussenac, Ralph T. Weber, Olivier Ouari, Paul Tordo. Highly Efficient, Water‐Soluble Polarizing Agents for Dynamic Nuclear Polarization at High Frequency. Angewandte Chemie International Edition 2013, 52 (41) , 10858-10861. https://doi.org/10.1002/anie.201304657
    52. Marco Fragai, Claudio Luchinat, Giacomo Parigi, Enrico Ravera. Practical considerations over spectral quality in solid state NMR spectroscopy of soluble proteins. Journal of Biomolecular NMR 2013, 57 (2) , 155-166. https://doi.org/10.1007/s10858-013-9776-0
    53. Ivano Bertini, Gianluca Gallo, Magdalena Korsak, Claudio Luchinat, Jiafei Mao, Enrico Ravera. Formation Kinetics and Structural Features of Beta‐Amyloid Aggregates by Sedimented Solute NMR. ChemBioChem 2013, 14 (14) , 1891-1897. https://doi.org/10.1002/cbic.201300141
    54. Claudio Luchinat, Giacomo Parigi, Enrico Ravera. Water and Protein Dynamics in Sedimented Systems: A Relaxometric Investigation. ChemPhysChem 2013, 14 (13) , 3156-3161. https://doi.org/10.1002/cphc.201300167
    55. Hiroki Takahashi, Sabine Hediger, Gaël De Paëpe. Matrix-free dynamic nuclear polarization enables solid-state NMR 13C–13C correlation spectroscopy of proteins at natural isotopic abundance. Chemical Communications 2013, 49 (82) , 9479. https://doi.org/10.1039/c3cc45195j
    56. Anusarka Bhaumik, Claudio Luchinat, Giacomo Parigi, Enrico Ravera, Mauro Rinaldelli. NMR crystallography on paramagnetic systems: solved and open issues. CrystEngComm 2013, 15 (43) , 8639. https://doi.org/10.1039/c3ce41485j
    57. Oliver Neudert, Carlos Mattea, Hans Wolfgang Spiess, Siegfried Stapf, Kerstin Münnemann. A comparative study of 1H and 19F Overhauser DNP in fluorinated benzenes. Physical Chemistry Chemical Physics 2013, 15 (47) , 20717. https://doi.org/10.1039/c3cp52912f

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2013, 135, 5, 1641–1644
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja312553b
    Published January 18, 2013
    Copyright © 2013 American Chemical Society

    Article Views

    1257

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.