ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

CuTe Nanocrystals: Shape and Size Control, Plasmonic Properties, and Use as SERS Probes and Photothermal Agents

View Author Information
Catalonia Energy Research Institute−IREC, Barcelona 08930, Spain
Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus de la UAB, Bellaterra 08193, Spain
Philipps Universität Marburg, 35037 Marburg, Germany
Departament d’Electrònica, Universitat de Barcelona, Barcelona 08028, Spain
# Department of Electronic Engeneering, Universitat Rovira i Virgili, Tarragona 43007, Spain
Center for Chemical Technology of Catalonia, Tarragona 43007, Spain
§ Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
Cite this: J. Am. Chem. Soc. 2013, 135, 19, 7098–7101
Publication Date (Web):April 30, 2013
https://doi.org/10.1021/ja401428e
Copyright © 2013 American Chemical Society

    Article Views

    9945

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    We report a procedure to prepare highly monodisperse copper telluride nanocubes, nanoplates, and nanorods. The procedure is based on the reaction of a copper salt with trioctylphosphine telluride in the presence of lithium bis(trimethylsilyl)amide and oleylamine. CuTe nanocrystals display a strong near-infrared optical absorption associated with localized surface plasmon resonances. We exploit this plasmon resonance for the design of surface-enhanced Raman scattering sensors for unconventional optical probes. Furthermore, we also report here our preliminary analysis of the use of CuTe nanocrystals as cytotoxic and photothermal agents.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Additional characterization, and procedures followed for SERS measurements, polymer coating, and photothermal experiments. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 386 publications.

    1. Wenwen Yuan, Keran Jiao, Hang Yuan, Hongzhao Sun, Eng Gee Lim, Ivona Mitrovic, Sixuan Duan, Shan Cong, Ruiqi Yong, Feifan Li, Pengfei Song. Metal–Organic Frameworks/Heterojunction Structures for Surface-Enhanced Raman Scattering with Enhanced Sensitivity and Tailorability. ACS Applied Materials & Interfaces 2024, 16 (20) , 26374-26385. https://doi.org/10.1021/acsami.4c01588
    2. Haibao Zhang, Yongxing Lin, Chunhong Qiao, Liang Wang, Cheng Cai, Hui He, Xingyou Tian. Construction of the Au Nanoparticle/Graphene Oxide/Au Nanotube (AuNP/GO/AuNT) Sandwich Membrane for Surface-Enhanced Raman Scattering Sensing. Langmuir 2024, 40 (13) , 6806-6815. https://doi.org/10.1021/acs.langmuir.3c03670
    3. Alexander G. Rachkov, Kevin Chalek, Hang Yin, Mingjie Xu, Gregory P. Holland, Alina M. Schimpf. Redox Chemistries for Vacancy Modulation in Plasmonic Copper Phosphide Nanocrystals. ACS Nano 2024, 18 (7) , 5282-5296. https://doi.org/10.1021/acsnano.3c08962
    4. Xin Li, Jian Yang, Fan Ye, Liangping Xiao, Xingyun Li, Jian Weng, Liping Sun. Modulating the Energy-Band of Metal Oxide@Metal–Organic Framework Core–Shell Nanoparticles for Enhanced Raman Sensing. ACS Applied Nano Materials 2024, 7 (2) , 2291-2303. https://doi.org/10.1021/acsanm.3c05767
    5. Sheila Hernandez, Martin Perez-Estebanez, William Cheuquepan, Juan V. Perales-Rondon, Aranzazu Heras, Alvaro Colina. Raman, UV–Vis Absorption, and Fluorescence Spectroelectrochemistry for Studying the Enhancement of the Raman Scattering Using Nanocrystals Activated by Metal Cations. Analytical Chemistry 2023, 95 (44) , 16070-16078. https://doi.org/10.1021/acs.analchem.3c01172
    6. Maedehsadat Mousavi, Mohammad B. Ghasemian, Mahroo Baharfar, Mohammad Tajik, Yuan Chi, Guangzhao Mao, Kourosh Kalantar-Zadeh, Jianbo Tang. Liquid Metal Interface for Two-Precursor Autogenous Deposition of Metal Telluride–Tellurium Networks. ACS Applied Materials & Interfaces 2023, 15 (40) , 47394-47404. https://doi.org/10.1021/acsami.3c10049
    7. Chenying He, Yuanao Zhang, Ting Wen, Shenghai Pei, Zhixun Wang, Juan Xia, Guangcheng Xi, Wenjie Li, Jiahong Wang, Guoqiang Gu, Guohua Zhong, Lei Wei, Chunlei Yang, Ming Chen. Heteropolyacids: An Ultrasensitive Ionic Volume-Enhanced Raman Scattering Platform. Analytical Chemistry 2023, 95 (28) , 10752-10761. https://doi.org/10.1021/acs.analchem.3c01793
    8. Mariia Ivanchenko, Hao Jing. Smart Design of Noble Metal–Copper Chalcogenide Dual Plasmonic Heteronanoarchitectures for Emerging Applications: Progress and Prospects. Chemistry of Materials 2023, 35 (12) , 4598-4620. https://doi.org/10.1021/acs.chemmater.3c00346
    9. Nisha Kushwah, Gotluru Kedarnath, Amey Wadawale, Kruti K. Halankar, Balaji P. Mandal, Mohsin Jafar, Bathula Vishwanadh. Molecular Precursor-Driven Synthesis of Copper Telluride Nanostructures for LIB Anode Application. Inorganic Chemistry 2023, 62 (23) , 8823-8834. https://doi.org/10.1021/acs.inorgchem.3c00269
    10. Congcong Xing, Yu Zhang, Ke Xiao, Xu Han, Yu Liu, Bingfei Nan, Maria Garcia Ramon, Khak Ho Lim, Junshan Li, Jordi Arbiol, Bed Poudel, Amin Nozariasbmarz, Wenjie Li, Maria Ibáñez, Andreu Cabot. Thermoelectric Performance of Surface-Engineered Cu1.5–xTe–Cu2Se Nanocomposites. ACS Nano 2023, 17 (9) , 8442-8452. https://doi.org/10.1021/acsnano.3c00495
    11. Long Liu, Bing Bai, Xuyong Yang, Zuliang Du, Guohua Jia. Anisotropic Heavy-Metal-Free Semiconductor Nanocrystals: Synthesis, Properties, and Applications. Chemical Reviews 2023, 123 (7) , 3625-3692. https://doi.org/10.1021/acs.chemrev.2c00688
    12. Jie Lin, Dinghu Zhang, Jian Yu, Ting Pan, Xiaoxia Wu, Tianxiang Chen, Changyong Gao, Chao Chen, Xiaotian Wang, Aiguo Wu. Amorphous Nitrogen-Doped Carbon Nanocages with Excellent SERS Sensitivity and Stability for Accurate Identification of Tumor Cells. Analytical Chemistry 2023, 95 (10) , 4671-4681. https://doi.org/10.1021/acs.analchem.2c05272
    13. Tamitake Itoh, Marek Procházka, Zhen-Chao Dong, Wei Ji, Yuko S. Yamamoto, Yao Zhang, Yukihiro Ozaki. Toward a New Era of SERS and TERS at the Nanometer Scale: From Fundamentals to Innovative Applications. Chemical Reviews 2023, 123 (4) , 1552-1634. https://doi.org/10.1021/acs.chemrev.2c00316
    14. Wen-Ru Chang, Chun Hsiao, Yan-Feng Chen, Chung-Feng Jeffrey Kuo, Chih-Wei Chiu. Au Nanorods on Carbon-Based Nanomaterials as Nanohybrid Substrates for High-Efficiency Dynamic Surface-Enhanced Raman Scattering. ACS Omega 2022, 7 (45) , 41815-41826. https://doi.org/10.1021/acsomega.2c06485
    15. Lingling Jiang, Yali Hu, Haina Zhang, Xiliang Luo, Ruo Yuan, Xia Yang. Charge-Transfer Resonance and Surface Defect-Dominated WO3 Hollow Microspheres as SERS Substrates for the miRNA 155 Assay. Analytical Chemistry 2022, 94 (19) , 6967-6975. https://doi.org/10.1021/acs.analchem.1c05200
    16. Zhiquan He, Tengda Rong, Yan Li, Junjie Ma, Quanshui Li, Furong Wu, Yuhang Wang, Fengping Wang. Two-Dimensional TiVC Solid-Solution MXene as Surface-Enhanced Raman Scattering Substrate. ACS Nano 2022, 16 (3) , 4072-4083. https://doi.org/10.1021/acsnano.1c09736
    17. Jiarui Wu, Zhanjie Zhang, Chenxu Qiao, Changfeng Yi, Zushun Xu, Tianyou Chen, Xiaofang Dai. Synthesis of Monodisperse ZIF-67@CuSe@PVP Nanoparticles for pH-Responsive Drug Release and Photothermal Therapy. ACS Biomaterials Science & Engineering 2022, 8 (1) , 284-292. https://doi.org/10.1021/acsbiomaterials.1c01124
    18. Suvodeep Sen, Sanjib Shyamal, Shyamal Kumar Mehetor, Puspanjali Sahu, Narayan Pradhan. Au-Cu2–xTe Plasmonic Heteronanostructure Photoelectrocatalysts. The Journal of Physical Chemistry Letters 2021, 12 (47) , 11585-11590. https://doi.org/10.1021/acs.jpclett.1c03222
    19. Shixin Zhang, Durga P. Acharya, Xiaomin Tang, Huaili Zheng, Guang Yang, Derrick Ng, Zongli Xie. Dual Functions of a Au@AgNP-Incorporated Nanocomposite Desalination Membrane with an Enhanced Antifouling Property and Fouling Detection Via Surface-Enhanced Raman Spectroscopy. ACS Applied Materials & Interfaces 2021, 13 (38) , 46202-46212. https://doi.org/10.1021/acsami.1c15948
    20. Fan Qi, Yun Chang, Runxiao Zheng, Xiaqing Wu, Yunyun Wu, Bing Li, Tingting Sun, Pingcun Wang, Hao Zhang, Haiyuan Zhang. Copper Phosphide Nanoparticles Used for Combined Photothermal and Photodynamic Tumor Therapy. ACS Biomaterials Science & Engineering 2021, 7 (6) , 2745-2754. https://doi.org/10.1021/acsbiomaterials.1c00189
    21. Xing Yee Gan, Riti Sen, Jill E. Millstone. Connecting Cation Exchange and Metal Deposition Outcomes via Hume–Rothery-Like Design Rules Using Copper Selenide Nanoparticles. Journal of the American Chemical Society 2021, 143 (21) , 8137-8144. https://doi.org/10.1021/jacs.1c02765
    22. Guoning Liu, Shaopeng Qi, Jinxi Chen, Yongbing Lou, Yixin Zhao, Clemens Burda. Cu–Sb–S Ternary Semiconductor Nanoparticle Plasmonics. Nano Letters 2021, 21 (6) , 2610-2617. https://doi.org/10.1021/acs.nanolett.1c00006
    23. Alexander G. Rachkov, Alina M. Schimpf. Colloidal Synthesis of Tunable Copper Phosphide Nanocrystals. Chemistry of Materials 2021, 33 (4) , 1394-1406. https://doi.org/10.1021/acs.chemmater.0c04460
    24. Yuan Zeng, Paul Hyunggyu Joo, Kesong Yang, Andrea R. Tao. Computation-Motivated Design of Ternary Plasmonic Copper Chalcogenide Nanocrystals. Chemistry of Materials 2021, 33 (1) , 117-125. https://doi.org/10.1021/acs.chemmater.0c02951
    25. Mingyang Liu, Qilin Yu, Wei Chen, Xiangsheng Liu, Pedro J. J. Alvarez. Engineering of CoSe2 Nanosheets via Vacancy Manipulation for Efficient Cancer Therapy. ACS Applied Bio Materials 2020, 3 (11) , 7800-7809. https://doi.org/10.1021/acsabm.0c00981
    26. Kihoon Kim, Lauren C. Reimnitz, Shin Hum Cho, Jungchul Noh, Ziyue Dong, Stephen L. Gibbs, Brian A. Korgel, Delia J. Milliron. Effect of Nonincorporative Cations on the Size and Shape of Indium Oxide Nanocrystals. Chemistry of Materials 2020, 32 (21) , 9347-9354. https://doi.org/10.1021/acs.chemmater.0c03281
    27. Mengqi Sun, Xiaoqi Fu, Kexun Chen, Hui Wang. Dual-Plasmonic Gold@Copper Sulfide Core–Shell Nanoparticles: Phase-Selective Synthesis and Multimodal Photothermal and Photocatalytic Behaviors. ACS Applied Materials & Interfaces 2020, 12 (41) , 46146-46161. https://doi.org/10.1021/acsami.0c13420
    28. Wensheng Xie, Zhenhu Guo, Qin Gao, Dan Wang, Kang Liang, Zi Gu, Ling Yun Zhao. Manganese-Doped Layered Double Hydroxide: A Biodegradable Theranostic Nanoplatform with Tumor Microenvironment Response for Magnetic Resonance Imaging-Guided Photothermal Therapy. ACS Applied Bio Materials 2020, 3 (9) , 5845-5855. https://doi.org/10.1021/acsabm.0c00564
    29. M. P. Kannan, Anirban Som, Tripti Ahuja, Vidhya Subramanian, A. Sreekumaran Nair, Thalappil Pradeep. Nonstoichiometric Copper Sulfide Nanostructures at the Brass–Rubber Interface: Implications for Rubber Vulcanization Temperature in the Tire Industry. ACS Applied Nano Materials 2020, 3 (8) , 7685-7694. https://doi.org/10.1021/acsanm.0c01298
    30. Sangeetha Kumaravel, Kannimuthu Karthick, Prabaharan Thiruvengetam, Jinta Merlin Johny, Selvasundarasekar Sam Sankar, Subrata Kundu. Tuning Cu Overvoltage for a Copper–Telluride System in Electrocatalytic Water Reduction and Feasible Feedstock Conversion: A New Approach. Inorganic Chemistry 2020, 59 (15) , 11129-11141. https://doi.org/10.1021/acs.inorgchem.0c01648
    31. Sunil Pandey, Amit Kumar Sharma, Jhong-Lin Guo, Nallin Sharma, Hui-Fen Wu. Direct White Light Emission from Ultrasmall Europium Nanocrystals. ACS Sustainable Chemistry & Engineering 2020, 8 (27) , 9955-9961. https://doi.org/10.1021/acssuschemeng.0c02813
    32. Juan Carlos Castro-Palacio, Konstantin Ladutenko, Alejandro Prada, Guillermo González-Rubio, Pablo Díaz-Núñez, Andrés Guerrero-Martínez, Pedro Fernández de Córdoba, Jorge Kohanoff, José Manuel Perlado, Ovidio Peña-Rodríguez, Antonio Rivera. Hollow Gold Nanoparticles Produced by Femtosecond Laser Irradiation. The Journal of Physical Chemistry Letters 2020, 11 (13) , 5108-5114. https://doi.org/10.1021/acs.jpclett.0c01233
    33. Rebecca C. Miller, James R. Neilson, Amy L. Prieto. Amide-Assisted Synthesis of Iron Germanium Sulfide (Fe2GeS4) Nanostars: The Effect of LiN(SiMe3)2 on Precursor Reactivity for Favoring Nanoparticle Nucleation or Growth. Journal of the American Chemical Society 2020, 142 (15) , 7023-7035. https://doi.org/10.1021/jacs.0c00260
    34. Qiuyu Gong, Jie Xing, Yinjuan Huang, Aiguo Wu, Jing Yu, Qichun Zhang. Perylene Diimide Oligomer Nanoparticles with Ultrahigh Photothermal Conversion Efficiency for Cancer Theranostics. ACS Applied Bio Materials 2020, 3 (3) , 1607-1615. https://doi.org/10.1021/acsabm.9b01187
    35. Agata Fularz, Sawsan Almohammed, James H. Rice. Oxygen Incorporation-Induced SERS Enhancement in Silver Nanoparticle-Decorated ZnO Nanowires. ACS Applied Nano Materials 2020, 3 (2) , 1666-1673. https://doi.org/10.1021/acsanm.9b02395
    36. Xing Yee Gan, Scott E. Crawford, Emily A. Eikey, Riti Sen, Jack R. Killinger, Jill E. Millstone. Optoelectronic Impacts of Particle Size in Water-Dispersible Plasmonic Copper Selenide Nanoparticles. The Journal of Physical Chemistry C 2020, 124 (8) , 4747-4754. https://doi.org/10.1021/acs.jpcc.9b11547
    37. Maria Blanco-Formoso, Mariacristina Turino, Beatriz Rivas-Murias, Luca Guerrini, Alexey Shavel, Roberto de la Rica, Miguel Correa-Duarte, Veronica Salgueiriño, Nicolas Pazos-Perez, Ramon A. Alvarez-Puebla. Iron-Assisted Synthesis of Highly Monodispersed and Magnetic Citrate-Stabilized Small Silver Nanoparticles. The Journal of Physical Chemistry C 2020, 124 (5) , 3270-3276. https://doi.org/10.1021/acs.jpcc.9b10606
    38. Seounghun Kang, Yeong-Gyu Gil, Young-Jin Kim, Young-Kwan Kim, Dal-Hee Min, Hongje Jang. Environmentally Friendly Synthesis of Au–Te-Clustered Nanoworms via Galvanic Replacement for Wavelength-Selective Combination Cancer Therapy. ACS Applied Materials & Interfaces 2020, 12 (5) , 5511-5519. https://doi.org/10.1021/acsami.9b19862
    39. Nabeel Ahmad, Marta Bon, Daniele Passerone, Rolf Erni. Template-Assisted in Situ Synthesis of Ag@Au Bimetallic Nanostructures Employing Liquid-Phase Transmission Electron Microscopy. ACS Nano 2019, 13 (11) , 13333-13342. https://doi.org/10.1021/acsnano.9b06614
    40. Caiju Chen, Mengling Liao, Beibei Shan, Ming Li. In Situ Observation of Thermally Induced Structural Transitions in Vacancy-Doped Cuprous Telluride (Cu2–xTe) Nanowires Using Raman Spectroscopy. The Journal of Physical Chemistry C 2019, 123 (40) , 24763-24771. https://doi.org/10.1021/acs.jpcc.9b08427
    41. Mingze Li, Xingce Fan, Yimeng Gao, Teng Qiu. W18O49/Monolayer MoS2 Heterojunction-Enhanced Raman Scattering. The Journal of Physical Chemistry Letters 2019, 10 (14) , 4038-4044. https://doi.org/10.1021/acs.jpclett.9b00972
    42. Yuanyuan Qiu, Miao Lin, Gaoxian Chen, Chenchen Fan, Mingwang Li, Xiajing Gu, Shan Cong, Zhigang Zhao, Lei Fu, Xiaohong Fang, Zeyu Xiao. Photodegradable CuS SERS Probes for Intraoperative Residual Tumor Detection, Ablation, and Self-Clearance. ACS Applied Materials & Interfaces 2019, 11 (26) , 23436-23444. https://doi.org/10.1021/acsami.9b00469
    43. Yu Cao, Pei Liang, Qianmin Dong, Dan Wang, De Zhang, Lisha Tang, Le Wang, Shangzhong Jin, Dejiang Ni, Zhi Yu. Facile Reduction Method Synthesis of Defective MoO2–x Nanospheres Used for SERS Detection with High Chemical Enhancement. Analytical Chemistry 2019, 91 (13) , 8683-8690. https://doi.org/10.1021/acs.analchem.9b02394
    44. Xinqi Chen, Hui Zhang, Yuye Zhao, Wei-Di Liu, Wei Dai, Tian Wu, Xiaofang Lu, Cao Wu, Wei Luo, Yuchi Fan, Lianjun Wang, Wan Jiang, Zhi-Gang Chen, Jianping Yang. Carbon-Encapsulated Copper Sulfide Leading to Enhanced Thermoelectric Properties. ACS Applied Materials & Interfaces 2019, 11 (25) , 22457-22463. https://doi.org/10.1021/acsami.9b06212
    45. Amelie Heuer-Jungemann, Neus Feliu, Ioanna Bakaimi, Majd Hamaly, Alaaldin Alkilany, Indranath Chakraborty, Atif Masood, Maria F. Casula, Athanasia Kostopoulou, Eunkeu Oh, Kimihiro Susumu, Michael H. Stewart, Igor L. Medintz, Emmanuel Stratakis, Wolfgang J. Parak, Antonios G. Kanaras. The Role of Ligands in the Chemical Synthesis and Applications of Inorganic Nanoparticles. Chemical Reviews 2019, 119 (8) , 4819-4880. https://doi.org/10.1021/acs.chemrev.8b00733
    46. Xiaotian Wang, Wenxiong Shi, Shaoxiong Wang, Hewei Zhao, Jie Lin, Zhao Yang, Mo Chen, Lin Guo. Two-Dimensional Amorphous TiO2 Nanosheets Enabling High-Efficiency Photoinduced Charge Transfer for Excellent SERS Activity. Journal of the American Chemical Society 2019, 141 (14) , 5856-5862. https://doi.org/10.1021/jacs.9b00029
    47. Shengping Wen, Xuran Miao, Gao-Chao Fan, Tingting Xu, Li-Ping Jiang, Ping Wu, Chenxin Cai, Jun-Jie Zhu. Aptamer-Conjugated Au Nanocage/SiO2 Core–Shell Bifunctional Nanoprobes with High Stability and Biocompatibility for Cellular SERS Imaging and Near-Infrared Photothermal Therapy. ACS Sensors 2019, 4 (2) , 301-308. https://doi.org/10.1021/acssensors.8b00682
    48. Wenliang Wang, Wenling Feng, Qiao Li, Yutong Zhao, Di Zhao, Zenghao Xia, Wenjian Wang, Shiliang Zhang, Xiaoxia Zheng, Zhihong Jing. Near-Infrared Light-Activated CuFeSe2 Hierarchical Nanostructures: Synthesis, Characterization, and Growth Mechanism. Crystal Growth & Design 2019, 19 (2) , 1226-1232. https://doi.org/10.1021/acs.cgd.8b01654
    49. Maofeng Zhang, Tun Chen, Yongkai Liu, Jiluan Zhang, Haoran Sun, Jian Yang, Jiping Zhu, Jiaqin Liu, Yucheng Wu. Plasmonic 3D Semiconductor–Metal Nanopore Arrays for Reliable Surface-Enhanced Raman Scattering Detection and In-Site Catalytic Reaction Monitoring. ACS Sensors 2018, 3 (11) , 2446-2454. https://doi.org/10.1021/acssensors.8b01023
    50. A. K. M. Rezaul Haque Chowdhury, Bo Tan, Krishnan Venkatakrishnan. SERS-Active 3D Interconnected Nanocarbon Web toward Nonplasmonic in Vitro Sensing of HeLa Cells and Fibroblasts. ACS Applied Materials & Interfaces 2018, 10 (42) , 35715-35733. https://doi.org/10.1021/acsami.8b10308
    51. Derrick C. Kaseman, Austin Gamble Jarvi, Xing Yee Gan, Sunil Saxena, Jill E. Millstone. Evolution of Surface Copper(II) Environments in Cu2–xSe Nanoparticles. Chemistry of Materials 2018, 30 (20) , 7313-7321. https://doi.org/10.1021/acs.chemmater.8b03967
    52. Lili Yang, Yusi Peng, Yong Yang, Jianjun Liu, Zhiyuan Li, Yunfeng Ma, Zhang Zhang, Yuquan Wei, Shuai Li, Zhengren Huang, Nguyen Viet Long. Green and Sensitive Flexible Semiconductor SERS Substrates: Hydrogenated Black TiO2 Nanowires. ACS Applied Nano Materials 2018, 1 (9) , 4516-4527. https://doi.org/10.1021/acsanm.8b00796
    53. Aleksandr P. Litvin, Sergei A. Cherevkov, Aliaksei Dubavik, Anton A. Babaev, Peter S. Parfenov, Ana L. Simões Gamboa, Anatoly V. Fedorov, Alexander V. Baranov. Thin Layer of Semiconductor Plasmonic Nanocrystals for the Enhancement of NIR Fluorophores. The Journal of Physical Chemistry C 2018, 122 (35) , 20469-20475. https://doi.org/10.1021/acs.jpcc.8b06059
    54. Enrico Mugnaioli, Mauro Gemmi, Renyong Tu, Jeremy David, Giovanni Bertoni, Roberto Gaspari, Luca De Trizio, Liberato Manna. Ab Initio Structure Determination of Cu2–xTe Plasmonic Nanocrystals by Precession-Assisted Electron Diffraction Tomography and HAADF-STEM Imaging. Inorganic Chemistry 2018, 57 (16) , 10241-10248. https://doi.org/10.1021/acs.inorgchem.8b01445
    55. Sumana Paul, Sirshendu Ghosh, Biswajit Dalal, Pousali Chal, Biswarup Satpati, Subodh Kumar De. Cation Exchange Mediated Synthesis and Tuning of Bimodal Plasmon in Alloyed Ternary Cu3BiS3–xSex Nanorods. Chemistry of Materials 2018, 30 (15) , 5020-5031. https://doi.org/10.1021/acs.chemmater.8b01269
    56. Taisiia Berestok, Pablo Guardia, Maria Ibáñez, Michaela Meyns, Massimo Colombo, Maksym V. Kovalenko, Francesca Peiró, Andreu Cabot. Electrostatic-Driven Gelation of Colloidal Nanocrystals. Langmuir 2018, 34 (31) , 9167-9174. https://doi.org/10.1021/acs.langmuir.8b01111
    57. Wei Liu, Hua Bai, Xinshi Li, Wentao Li, Junfeng Zhai, Junfang Li, Guangcheng Xi. Improved Surface-Enhanced Raman Spectroscopy Sensitivity on Metallic Tungsten Oxide by the Synergistic Effect of Surface Plasmon Resonance Coupling and Charge Transfer. The Journal of Physical Chemistry Letters 2018, 9 (14) , 4096-4100. https://doi.org/10.1021/acs.jpclett.8b01624
    58. Sumana Paul, Sirshendu Ghosh, Subodh Kumar De. Efficient Charge Separation in Plasmonic ZnS@Sn:ZnO Nanoheterostructure: Nanoscale Kirkendall Effect and Enhanced Photophysical Properties. Langmuir 2018, 34 (14) , 4324-4339. https://doi.org/10.1021/acs.langmuir.8b00442
    59. Ankit Agrawal, Shin Hum Cho, Omid Zandi, Sandeep Ghosh, Robert W. Johns, Delia J. Milliron. Localized Surface Plasmon Resonance in Semiconductor Nanocrystals. Chemical Reviews 2018, 118 (6) , 3121-3207. https://doi.org/10.1021/acs.chemrev.7b00613
    60. Gaozheng Zhao, Huihui Wu, Ruilu Feng, Dongdong Wang, Pengping Xu, Peng Jiang, Kang Yang, Haibao Wang, Zhen Guo, and Qianwang Chen . Novel Metal Polyphenol Framework for MR Imaging-Guided Photothermal Therapy. ACS Applied Materials & Interfaces 2018, 10 (4) , 3295-3304. https://doi.org/10.1021/acsami.7b16222
    61. Qiqi Zhang, Xinshi Li, Wencai Yi, Wentao Li, Hua Bai, Jingyao Liu, and Guangcheng Xi . Plasmonic MoO2 Nanospheres as a Highly Sensitive and Stable Non-Noble Metal Substrate for Multicomponent Surface-Enhanced Raman Analysis. Analytical Chemistry 2017, 89 (21) , 11765-11771. https://doi.org/10.1021/acs.analchem.7b03385
    62. Haibo Yin, Yasutaka Kuwahara, Kohsuke Mori, Hefeng Cheng, Meicheng Wen, Yuning Huo, and Hiromi Yamashita . Localized Surface Plasmon Resonances in Plasmonic Molybdenum Tungsten Oxide Hybrid for Visible-Light-Enhanced Catalytic Reaction. The Journal of Physical Chemistry C 2017, 121 (42) , 23531-23540. https://doi.org/10.1021/acs.jpcc.7b08403
    63. Xiaojuan Huang, Wenlong Zhang, Guoqiang Guan, Guosheng Song, Rujia Zou, and Junqing Hu . Design and Functionalization of the NIR-Responsive Photothermal Semiconductor Nanomaterials for Cancer Theranostics. Accounts of Chemical Research 2017, 50 (10) , 2529-2538. https://doi.org/10.1021/acs.accounts.7b00294
    64. Victoria Benavente Llorente, Volodymyr M. Dzhagan, Nikolai Gaponik, Rodrigo A. Iglesias, Dietrich R. T. Zahn, and Vladimir Lesnyak . Electrochemical Tuning of Localized Surface Plasmon Resonance in Copper Chalcogenide Nanocrystals. The Journal of Physical Chemistry C 2017, 121 (33) , 18244-18253. https://doi.org/10.1021/acs.jpcc.7b05334
    65. Claudia Coughlan, Maria Ibáñez, Oleksandr Dobrozhan, Ajay Singh, Andreu Cabot, and Kevin M. Ryan . Compound Copper Chalcogenide Nanocrystals. Chemical Reviews 2017, 117 (9) , 5865-6109. https://doi.org/10.1021/acs.chemrev.6b00376
    66. Xudong Zheng, Feng Ren, Shunping Zhang, Xiaolei Zhang, Hengyi Wu, Xingang Zhang, Zhuo Xing, Wenjing Qin, Yong Liu, and Changzhong Jiang . A General Method for Large-Scale Fabrication of Semiconducting Oxides with High SERS Sensitivity. ACS Applied Materials & Interfaces 2017, 9 (16) , 14534-14544. https://doi.org/10.1021/acsami.7b03839
    67. Mahdi Karimi, Parham Sahandi Zangabad, Soodeh Baghaee-Ravari, Mehdi Ghazadeh, Hamid Mirshekari, and Michael R. Hamblin . Smart Nanostructures for Cargo Delivery: Uncaging and Activating by Light. Journal of the American Chemical Society 2017, 139 (13) , 4584-4610. https://doi.org/10.1021/jacs.6b08313
    68. Yi Xie, Wenhui Chen, Giovanni Bertoni, Ilka Kriegel, Mo Xiong, Neng Li, Mirko Prato, Andreas Riedinger, Ayyappan Sathya, and Liberato Manna . Tuning and Locking the Localized Surface Plasmon Resonances of CuS (Covellite) Nanocrystals by an Amorphous CuPdxS Shell. Chemistry of Materials 2017, 29 (4) , 1716-1723. https://doi.org/10.1021/acs.chemmater.6b05184
    69. Sivaprasad Chinnakkannu Vijayakumar, Krishnan Venkatakrishnan, and Bo Tan . SERS Active Nanobiosensor Functionalized by Self-Assembled 3D Nickel Nanonetworks for Glutathione Detection. ACS Applied Materials & Interfaces 2017, 9 (6) , 5077-5091. https://doi.org/10.1021/acsami.6b13576
    70. Ivano Alessandri and John R. Lombardi . Enhanced Raman Scattering with Dielectrics. Chemical Reviews 2016, 116 (24) , 14921-14981. https://doi.org/10.1021/acs.chemrev.6b00365
    71. Jiaojiao Zheng, Baosong Dai, Jia Liu, Jialong Liu, muwei Ji, Jiajia Liu, Yuanmin Zhou, Meng Xu, and Jiatao Zhang . Hierarchical Self-Assembly of Cu7Te5 Nanorods into Superstructures with Enhanced SERS Performance. ACS Applied Materials & Interfaces 2016, 8 (51) , 35426-35434. https://doi.org/10.1021/acsami.6b11058
    72. Xiaojing Yu, Jinglei Bi, Guang Yang, Haizheng Tao, and Shengchun Yang . Synergistic Effect Induced High Photothermal Performance of Au Nanorod@Cu7S4 Yolk–Shell Nanooctahedron Particles. The Journal of Physical Chemistry C 2016, 120 (43) , 24533-24541. https://doi.org/10.1021/acs.jpcc.6b06213
    73. Ningning Ma, Yao-Wen Jiang, Xiaodong Zhang, Hao Wu, John N. Myers, Peidang Liu, Haizhen Jin, Ning Gu, Nongyue He, Fu-Gen Wu, and Zhan Chen . Enhanced Radiosensitization of Gold Nanospikes via Hyperthermia in Combined Cancer Radiation and Photothermal Therapy. ACS Applied Materials & Interfaces 2016, 8 (42) , 28480-28494. https://doi.org/10.1021/acsami.6b10132
    74. Andreas Wolf, Dominik Hinrichs, Joachim Sann, Jan F. Miethe, Nadja C. Bigall, and Dirk Dorfs . Growth of Cu2–xSe–CuPt and Cu1.1S–Pt Hybrid Nanoparticles. The Journal of Physical Chemistry C 2016, 120 (38) , 21925-21931. https://doi.org/10.1021/acs.jpcc.6b05574
    75. Nathaniel K. Swenson, Mark A. Ratner, and Emily A. Weiss . Computational Study of the Resonance Enhancement of Raman Signals of Ligands Adsorbed to CdSe Clusters through Photoexcitation of the Cluster. The Journal of Physical Chemistry C 2016, 120 (37) , 20954-20960. https://doi.org/10.1021/acs.jpcc.6b02804
    76. Mahdi Karimi, Parham Sahandi Zangabad, Alireza Ghasemi, Mohammad Amiri, Mohsen Bahrami, Hedieh Malekzad, Hadi Ghahramanzadeh Asl, Zahra Mahdieh, Mahnaz Bozorgomid, Amir Ghasemi, Mohammad Reza Rahmani Taji Boyuk, and Michael R. Hamblin . Temperature-Responsive Smart Nanocarriers for Delivery Of Therapeutic Agents: Applications and Recent Advances. ACS Applied Materials & Interfaces 2016, 8 (33) , 21107-21133. https://doi.org/10.1021/acsami.6b00371
    77. Lihui Chen, Masanori Sakamoto, Mitsutaka Haruta, Takashi Nemoto, Ryota Sato, Hiroki Kurata, and Toshiharu Teranishi . Tin Ion Directed Morphology Evolution of Copper Sulfide Nanoparticles and Tuning of Their Plasmonic Properties via Phase Conversion. Langmuir 2016, 32 (30) , 7582-7587. https://doi.org/10.1021/acs.langmuir.6b02035
    78. Sandeep Ghosh, Tommaso Avellini, Alessia Petrelli, Ilka Kriegel, Roberto Gaspari, Guilherme Almeida, Giovanni Bertoni, Andrea Cavalli, Francesco Scotognella, Teresa Pellegrino, and Liberato Manna . Colloidal CuFeS2 Nanocrystals: Intermediate Fe d-Band Leads to High Photothermal Conversion Efficiency. Chemistry of Materials 2016, 28 (13) , 4848-4858. https://doi.org/10.1021/acs.chemmater.6b02192
    79. Youngjin Jang, Diana Yanover, Richard Karel Čapek, Arthur Shapiro, Nathan Grumbach, Yaron Kauffmann, Aldona Sashchiuk, and Efrat Lifshitz . Cation Exchange Combined with Kirkendall Effect in the Preparation of SnTe/CdTe and CdTe/SnTe Core/Shell Nanocrystals. The Journal of Physical Chemistry Letters 2016, 7 (13) , 2602-2609. https://doi.org/10.1021/acs.jpclett.6b00995
    80. Grzegorz Gabka, Piotr Bujak, Andrzej Ostrowski, Waldemar Tomaszewski, Wojciech Lisowski, Janusz W. Sobczak, and Adam Pron . Cu–Fe–S Nanocrystals Exhibiting Tunable Localized Surface Plasmon Resonance in the Visible to NIR Spectral Ranges. Inorganic Chemistry 2016, 55 (13) , 6660-6669. https://doi.org/10.1021/acs.inorgchem.6b00912
    81. Renyong Tu, Yi Xie, Giovanni Bertoni, Aidin Lak, Roberto Gaspari, Arnaldo Rapallo, Andrea Cavalli, Luca De Trizio, Liberato Manna. Influence of the Ion Coordination Number on Cation Exchange Reactions with Copper Telluride Nanocrystals. Journal of the American Chemical Society 2016, 138 (22) , 7082-7090. https://doi.org/10.1021/jacs.6b02830
    82. Donglei Zhou, Dali Liu, Wen Xu, Ze Yin, Xu Chen, Pingwei Zhou, Shaobo Cui, Zhanguo Chen, and Hongwei Song . Observation of Considerable Upconversion Enhancement Induced by Cu2–xS Plasmon Nanoparticles. ACS Nano 2016, 10 (5) , 5169-5179. https://doi.org/10.1021/acsnano.6b00649
    83. Min Zhou, Mei Tian, and Chun Li . Copper-Based Nanomaterials for Cancer Imaging and Therapy. Bioconjugate Chemistry 2016, 27 (5) , 1188-1199. https://doi.org/10.1021/acs.bioconjchem.6b00156
    84. Rabeka Alam, Molly Labine, Christopher J. Karwacki, and Prashant V. Kamat . Modulation of Cu2–xS Nanocrystal Plasmon Resonance through Reversible Photoinduced Electron Transfer. ACS Nano 2016, 10 (2) , 2880-2886. https://doi.org/10.1021/acsnano.5b08066
    85. Steven Asiala Lee Barrett Samuel Mabbott Duncan Graham . Advances in Biofunctional SERS-Active Nanoparticles for Future Clinical Diagnostics and Therapeutics. 2016, 131-161. https://doi.org/10.1021/bk-2016-1245.ch007
    86. Xiaowei Li Hiro Minamimoto Satoshi Yasuda Kei Murakoshi . Surface-Enhanced Raman Spectroscopy for the Characterization of Semiconductor Nanostructure Surfaces. 2016, 163-180. https://doi.org/10.1021/bk-2016-1245.ch008
    87. Andreas Riedinger, Tommaso Avellini, Alberto Curcio, Mattia Asti, Yi Xie, Renyong Tu, Sergio Marras, Alice Lorenzoni, Sara Rubagotti, Michele Iori, Pier Cesare Capponi, Annibale Versari, Liberato Manna, Ettore Seregni, and Teresa Pellegrino . Post-Synthesis Incorporation of 64Cu in CuS Nanocrystals to Radiolabel Photothermal Probes: A Feasible Approach for Clinics. Journal of the American Chemical Society 2015, 137 (48) , 15145-15151. https://doi.org/10.1021/jacs.5b07973
    88. Yi Xie, Giovanni Bertoni, Andreas Riedinger, Ayyappan Sathya, Mirko Prato, Sergio Marras, Renyong Tu, Teresa Pellegrino, and Liberato Manna . Nanoscale Transformations in Covellite (CuS) Nanocrystals in the Presence of Divalent Metal Cations in a Mild Reducing Environment. Chemistry of Materials 2015, 27 (21) , 7531-7537. https://doi.org/10.1021/acs.chemmater.5b03892
    89. Zhen Liu, Xianjun Liu, Yingda Du, Jinsong Ren, and Xiaogang Qu . Using Plasmonic Copper Sulfide Nanocrystals as Smart Light-Driven Sterilants. ACS Nano 2015, 9 (10) , 10335-10346. https://doi.org/10.1021/acsnano.5b04380
    90. Tracy M. Mattox, Ankit Agrawal, and Delia J. Milliron . Low Temperature Synthesis and Surface Plasmon Resonance of Colloidal Lanthanum Hexaboride (LaB6) Nanocrystals. Chemistry of Materials 2015, 27 (19) , 6620-6624. https://doi.org/10.1021/acs.chemmater.5b02297
    91. Da-Young Hong, Seong Kyu Kim, and Young-Uk Kwon . Synergistic Effects between Gold Nanoparticles and Nanostructured Platinum Film in Surface-Enhanced Raman Spectroscopy. The Journal of Physical Chemistry C 2015, 119 (39) , 22611-22617. https://doi.org/10.1021/acs.jpcc.5b05204
    92. Andreas Nordheider, J. Derek Woollins, and Tristram Chivers . Organophosphorus–Tellurium Chemistry: From Fundamentals to Applications. Chemical Reviews 2015, 115 (18) , 10378-10406. https://doi.org/10.1021/acs.chemrev.5b00279
    93. Wenliang Wang, Wenling Feng, Tao Ding, and Qing Yang . Phosphine-Free Synthesis and Characterization of Cubic-Phase Cu2SnTe3 Nanocrystals with Optical and Optoelectronic Properties. Chemistry of Materials 2015, 27 (18) , 6181-6184. https://doi.org/10.1021/acs.chemmater.5b02743
    94. Madathumpady Abubaker Habeeb Muhammed, Markus Döblinger, and Jessica Rodríguez-Fernández . Switching Plasmons: Gold Nanorod–Copper Chalcogenide Core–Shell Nanoparticle Clusters with Selectable Metal/Semiconductor NIR Plasmon Resonances. Journal of the American Chemical Society 2015, 137 (36) , 11666-11677. https://doi.org/10.1021/jacs.5b05337
    95. Xianliang Wang, Xin Liu, Deqiang Yin, Yujie Ke, and Mark T. Swihart . Size-, Shape-, and Composition-Controlled Synthesis and Localized Surface Plasmon Resonance of Copper Tin Selenide Nanocrystals. Chemistry of Materials 2015, 27 (9) , 3378-3388. https://doi.org/10.1021/acs.chemmater.5b00618
    96. Xianliang Wang, Yujie Ke, Hengyu Pan, Kuo Ma, Qinqin Xiao, Deqiang Yin, Gang Wu, and Mark T. Swihart . Cu-Deficient Plasmonic Cu2–xS Nanoplate Electrocatalysts for Oxygen Reduction. ACS Catalysis 2015, 5 (4) , 2534-2540. https://doi.org/10.1021/acscatal.5b00115
    97. Ankit Agrawal, Ilka Kriegel, and Delia J. Milliron . Shape-Dependent Field Enhancement and Plasmon Resonance of Oxide Nanocrystals. The Journal of Physical Chemistry C 2015, 119 (11) , 6227-6238. https://doi.org/10.1021/acs.jpcc.5b01648
    98. Xianliang Wang and Mark T. Swihart . Controlling the Size, Shape, Phase, Band Gap, and Localized Surface Plasmon Resonance of Cu2–xS and CuxInyS Nanocrystals. Chemistry of Materials 2015, 27 (5) , 1786-1791. https://doi.org/10.1021/cm504626u
    99. Deepika Jamwal, Gurpreet Kaur, Pankaj Raizada, Pardeep Singh, Dinesh Pathak, and Pankaj Thakur . Twin-Tail Surfactant Peculiarity in Superficial Fabrication of Semiconductor Quantum Dots: Toward Structural, Optical, and Electrical Features. The Journal of Physical Chemistry C 2015, 119 (9) , 5062-5073. https://doi.org/10.1021/jp510428z
    100. Wei Feng, Xiaojun Zhou, Wei Nie, Liang Chen, Kexin Qiu, Yanzhong Zhang, and Chuanglong He . Au/Polypyrrole@Fe3O4 Nanocomposites for MR/CT Dual-Modal Imaging Guided-Photothermal Therapy: An in Vitro Study. ACS Applied Materials & Interfaces 2015, 7 (7) , 4354-4367. https://doi.org/10.1021/am508837v
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect