ACS Publications. Most Trusted. Most Cited. Most Read
In Situ Optical and Structural Studies on Photoluminesence Quenching in CdSe/CdS/Au Heterostructures
My Activity

Figure 1Loading Img
    Article

    In Situ Optical and Structural Studies on Photoluminesence Quenching in CdSe/CdS/Au Heterostructures
    Click to copy article linkArticle link copied!

    View Author Information
    Center for Nanoscale Materials, Materials Science Division, §Advanced Photon Source, Chemical Sciences and Engineering Division, Electron Microscopy Center, Argonne National Laboratory, 9700 South Cass Ave., Argonne, Illinois 60439, United States
    # CSRRI-IIT, MRCAT, Sector 10, Bldg 433B, Argonne National Laboratory, Argonne, Illinois 60439, United States
    Physics Department, Illinois Institute of Technology, Chicago, Illinois 60616, United States
    Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, Illinois 60208, United States
    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2014, 136, 6, 2342–2350
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja4092616
    Published January 21, 2014
    Copyright © 2014 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    We report here detailed in situ studies of nucleation and growth of Au on CdSe/CdS nanorods using synchrotron SAXS technique and time-resolved spectroscopy. We examine structural and optical properties of CdSe/CdS/Au heterostructures formed under UV illumination. We compare the results for CdSe/CdS/Au heterostructures with the results of control experiments on CdSe/CdS nanorods exposed to gold precursor under conditions when no such heterostructures are formed (no UV illumination). Our data indicate similar photoluminescence (PL) quenching and PL decay profiles in both types of samples. Via transient absorption and PL, we show that such behavior is consistent with rapid (faster than 3 ps) hole trapping by gold–sulfur sites at the surface of semiconductor nanoparticles. This dominant process was overlooked in previous end-point studies on semiconductor/metal heterostructures.

    Copyright © 2014 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    HRTEM of CdSe/CdS treated with gold precursors. SAXS data and fits for different reaction times. Evolution of Au NP number and size distribution as a function of the reaction time of CdSe/CdS and gold precursor under UV illumination. Absorption and PL spectra of CdSe/CdS exposed to gold precursor in the darkness (no-UV sample) as a function of the reaction time. TA spectra of CdSe/CdS nanorods, UV and no-UV samples. TA kinetics data for CdSe/CdS nanorods, no-UV and UV samples. Data on the effect of electron scavengers on TA of CdSe/CdS nanorods treated with gold precursor. Details on the EXAFS and XANES measurements. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 66 publications.

    1. Avijit Patra, Koushik Jagadish, N. Ravishankar, Narayan Pradhan. Epitaxial Heterostructures of CsPbBr3 Perovskite Nanocrystals with Post-transition Metal Bismuth. Nano Letters 2024, 24 (5) , 1710-1716. https://doi.org/10.1021/acs.nanolett.3c04513
    2. Rakesh Kumar Behera, Narayan Pradhan. Impact of Thermal Annealing on Facet-Directed Epitaxial and Decorated Nonepitaxial Pd-CsPbBr3 Nanocrystal Heterostructures. Chemistry of Materials 2023, 35 (24) , 10694-10701. https://doi.org/10.1021/acs.chemmater.3c02563
    3. Rakesh Kumar Behera, Koushik Jagadish, Sanjib Shyamal, Narayan Pradhan. Pt-CsPbBr3 Perovskite Nanocrystal Heterostructures: All Epitaxial. Nano Letters 2023, 23 (17) , 8050-8056. https://doi.org/10.1021/acs.nanolett.3c01997
    4. Xiaodi Yu, Shenhua Chen, Ziqing Bian, Wenhua Li, Zhishan Bo. Formation of Core–Shell AuCu@Ag Nanocrystals through the Nanoscale Kirkendall Effect. Inorganic Chemistry 2023, 62 (17) , 6851-6855. https://doi.org/10.1021/acs.inorgchem.3c00619
    5. Yuval Ben-Shahar, David Stone, Uri Banin. Rich Landscape of Colloidal Semiconductor–Metal Hybrid Nanostructures: Synthesis, Synergetic Characteristics, and Emerging Applications. Chemical Reviews 2023, 123 (7) , 3790-3851. https://doi.org/10.1021/acs.chemrev.2c00770
    6. Junjie Hao, Haochen Liu, Kai Wang, Xiao Wei Sun, Jean-Pierre Delville, Marie-Helene Delville. Hole Scavenging and Electron–Hole Pair Photoproduction Rate: Two Mandatory Key Factors to Control Single-Tip Au–CdSe/CdS Nanoheterodimers. ACS Nano 2021, 15 (9) , 15328-15341. https://doi.org/10.1021/acsnano.1c06383
    7. Qingguo Bai, Ivan Shupyk, Laetitia Vauriot, Jerome Majimel, Christine Labrugere, Marie-Helene Delville, Jean-Pierre Delville. Design of Metal@Titanium Oxide Nano-heterodimers by Laser-Driven Photodeposition: Growth Mechanism and Modeling. ACS Nano 2021, 15 (2) , 2947-2961. https://doi.org/10.1021/acsnano.0c09155
    8. Xiao Tang, Xiaohang Li. Ripening of Gold Clusters into a Single Domain on Semiconductor Quantum Rods during Langmuir–Blodgett Deposition. Crystal Growth & Design 2020, 20 (9) , 5890-5895. https://doi.org/10.1021/acs.cgd.0c00582
    9. Minji Ha, Jae-Ho Kim, Myunghwa You, Qian Li, Chunhai Fan, Jwa-Min Nam. Multicomponent Plasmonic Nanoparticles: From Heterostructured Nanoparticles to Colloidal Composite Nanostructures. Chemical Reviews 2019, 119 (24) , 12208-12278. https://doi.org/10.1021/acs.chemrev.9b00234
    10. Yu Jin Kim, Troy D. Loeffler, Zhaowei Chen, Subramanian K. R. S. Sankaranarayanan. Promoting Noncovalent Intermolecular Interactions Using a C60 Core Particle in Aqueous PC60s-Covered Colloids for Ultraefficient Photoinduced Particle Activity. ACS Applied Materials & Interfaces 2019, 11 (42) , 38798-38807. https://doi.org/10.1021/acsami.9b14240
    11. Eran Aronovitch, Lothar Houben, Maya Bar-Sadan. Seeded Rods with Ag and Pd Bimetallic Tips—Spontaneous Rearrangements of the Nanoalloys on the Atomic Scale. Chemistry of Materials 2019, 31 (18) , 7231-7237. https://doi.org/10.1021/acs.chemmater.9b01523
    12. Xiaoyang Che, Boubacar Traore, Claudine Katan, Hong-Hua Fang, Maria Antonietta Loi, Jacky Even, Mikaël Kepenekian. Charge Trap Formation and Passivation in Methylammonium Lead Tribromide. The Journal of Physical Chemistry C 2019, 123 (22) , 13812-13817. https://doi.org/10.1021/acs.jpcc.9b04189
    13. Xiao Tang, Elvira Kröger, Andreas Nielsen, Simon Schneider, Christian Strelow, Alf Mews, Tobias Kipp. Fluorescent Metal–Semiconductor Hybrid Structures by Ultrasound-Assisted in Situ Growth of Gold Nanoparticles on Silica-Coated CdSe-Dot/CdS-Rod Nanocrystals. Chemistry of Materials 2019, 31 (1) , 224-232. https://doi.org/10.1021/acs.chemmater.8b04233
    14. Tzung-En Hsieh, Ta-Wei Yang, Cheng-Yin Hsieh, Shing-Jong Huang, Yi-Qi Yeh, Ching-Hsiang Chen, Elise Y. Li, Yi-Hsin Liu. Unraveling the Structure of Magic-Size (CdSe)13 Cluster Pairs. Chemistry of Materials 2018, 30 (15) , 5468-5477. https://doi.org/10.1021/acs.chemmater.8b02468
    15. Yifat Nakibli, Yair Mazal, Yonatan Dubi, Maria Wächtler, and Lilac Amirav . Size Matters: Cocatalyst Size Effect on Charge Transfer and Photocatalytic Activity. Nano Letters 2018, 18 (1) , 357-364. https://doi.org/10.1021/acs.nanolett.7b04210
    16. Yuriy Khalavka, Sebastian Harms, Andreas Henkel, Malte Strozyk, Rubén Ahijado-Guzmán, and Carsten Sönnichsen . Synthesis of Au–CdS@CdSe Hybrid Nanoparticles with a Highly Reactive Gold Domain. Langmuir 2018, 34 (1) , 187-190. https://doi.org/10.1021/acs.langmuir.7b02756
    17. Peng-Cheng Chen, Jingshan S. Du, Brian Meckes, Liliang Huang, Zhuang Xie, James L. Hedrick, Vinayak P. Dravid, and Chad A. Mirkin . Structural Evolution of Three-Component Nanoparticles in Polymer Nanoreactors. Journal of the American Chemical Society 2017, 139 (29) , 9876-9884. https://doi.org/10.1021/jacs.7b03163
    18. Andrew D. La Croix, Andrew O’Hara, Kemar R. Reid, Noah J. Orfield, Sokrates T. Pantelides, Sandra J. Rosenthal, and Janet E. Macdonald . Design of a Hole Trapping Ligand. Nano Letters 2017, 17 (2) , 909-914. https://doi.org/10.1021/acs.nanolett.6b04213
    19. Subila K. Balakrishnan and Prashant V. Kamat . Au–CsPbBr3 Hybrid Architecture: Anchoring Gold Nanoparticles on Cubic Perovskite Nanocrystals. ACS Energy Letters 2017, 2 (1) , 88-93. https://doi.org/10.1021/acsenergylett.6b00592
    20. Maria Wächtler, Philip Kalisman, and Lilac Amirav . Charge-Transfer Dynamics in Nanorod Photocatalysts with Bimetallic Metal Tips. The Journal of Physical Chemistry C 2016, 120 (42) , 24491-24497. https://doi.org/10.1021/acs.jpcc.6b09265
    21. Tao Li, Andrew J. Senesi, and Byeongdu Lee . Small Angle X-ray Scattering for Nanoparticle Research. Chemical Reviews 2016, 116 (18) , 11128-11180. https://doi.org/10.1021/acs.chemrev.5b00690
    22. Anirban Dutta, Aneeya K. Samantara, Samrat Das Adhikari, Bikash Kumar Jena, and Narayan Pradhan . Au Nanowire-Striped Cu3P Platelet Photoelectrocatalysts. The Journal of Physical Chemistry Letters 2016, 7 (6) , 1077-1082. https://doi.org/10.1021/acs.jpclett.6b00341
    23. Philip Kalisman, Yifat Nakibli, and Lilac Amirav . Perfect Photon-to-Hydrogen Conversion Efficiency. Nano Letters 2016, 16 (3) , 1776-1781. https://doi.org/10.1021/acs.nanolett.5b04813
    24. Thusitha Etampawala, Derek L. Mull, Jong K. Keum, David M. Jenkins, and Mark Dadmun . Insights into the Morphology and Kinetics of Growth of Silver Metal–Organic Nanotubes. Crystal Growth & Design 2016, 16 (3) , 1395-1403. https://doi.org/10.1021/acs.cgd.5b01509
    25. Huogen Yu, Xiao Huang, Ping Wang, and Jiaguo Yu . Enhanced Photoinduced-Stability and Photocatalytic Activity of CdS by Dual Amorphous Cocatalysts: Synergistic Effect of Ti(IV)-Hole Cocatalyst and Ni(II)-Electron Cocatalyst. The Journal of Physical Chemistry C 2016, 120 (7) , 3722-3730. https://doi.org/10.1021/acs.jpcc.6b00126
    26. Jayanta Dana, Tushar Debnath, Partha Maity, and Hirendra N. Ghosh . Enhanced Charge Separation in an Epitaxial Metal–Semiconductor Nanohybrid Material Anchored with an Organic Molecule. The Journal of Physical Chemistry C 2015, 119 (38) , 22181-22189. https://doi.org/10.1021/acs.jpcc.5b06055
    27. Yifat Nakibli, Philip Kalisman, and Lilac Amirav . Less Is More: The Case of Metal Cocatalysts. The Journal of Physical Chemistry Letters 2015, 6 (12) , 2265-2268. https://doi.org/10.1021/acs.jpclett.5b00872
    28. Suraj Naskar, Anja Schlosser, Jan F. Miethe, Frank Steinbach, Armin Feldhoff, and Nadja C. Bigall . Site-Selective Noble Metal Growth on CdSe Nanoplatelets. Chemistry of Materials 2015, 27 (8) , 3159-3166. https://doi.org/10.1021/acs.chemmater.5b01110
    29. Xiaoman Zhai, Rubo Zhang, Jialun Lin, Yunqian Gong, Yafen Tian, Wen Yang, and Xiaoling Zhang . Shape-Controlled CdS/ZnS Core/Shell Heterostructured Nanocrystals: Synthesis, Characterization, and Periodic DFT Calculations. Crystal Growth & Design 2015, 15 (3) , 1344-1350. https://doi.org/10.1021/cg501747e
    30. Biplab K Patra, Arnab Shit, Amit K Guria, Suresh Sarkar, Gyanaranjan Prusty, and Narayan Pradhan . Coincident Site Epitaxy at the Junction of Au–Cu2ZnSnS4 Heteronanostructures. Chemistry of Materials 2015, 27 (3) , 650-657. https://doi.org/10.1021/cm504434q
    31. Biplab K. Patra, Amit K. Guria, Anirban Dutta, Arnab Shit, and Narayan Pradhan . Au-SnS Hetero Nanostructures: Size of Au Matters. Chemistry of Materials 2014, 26 (24) , 7194-7200. https://doi.org/10.1021/cm5039914
    32. Liang Wu, Yi Li, Guo-Qiang Liu, Shu-Hong Yu. Polytypic metal chalcogenide nanocrystals. Chemical Society Reviews 2024, 53 (19) , 9832-9873. https://doi.org/10.1039/D3CS01095C
    33. Lei Li, Peng Chen, Rui Su, Hongyu Xu, Qiuyang Li, Qixuan Zhong, Haoming Yan, Xiaoyu Yang, Juntao Hu, Shunde Li, Tianyu Huang, Yun Xiao, Bin Liu, Yongqiang Ji, Dengke Wang, Huiliang Sun, Xugang Guo, Zheng‐Hong Lu, Henry J. Snaith, Qihuang Gong, Lichen Zhao, Rui Zhu. Buried‐Metal‐Grid Electrodes for Efficient Parallel‐Connected Perovskite Solar Cells. Advanced Materials 2024, 36 (2) https://doi.org/10.1002/adma.202305238
    34. Jiayi Chen, Derek Hao, Wei Chen, Yazi Liu, Zongyou Yin, Hsien‐Yi Hsu, Bing‐Jie Ni, Aixiang Wang, Simon W. Lewis, Guohua Jia. Engineering Colloidal Metal‐Semiconductor Nanorods Hybrid Nanostructures for Photocatalysis †. Chinese Journal of Chemistry 2023, 41 (22) , 3050-3062. https://doi.org/10.1002/cjoc.202300191
    35. Siyuan Wang, Hao Fu, Ziyun Zhong, Yaping Du. Ultrathin hetero-nanosheets of cobalt oxide and nanoclusters for catalytic desulfurization. Next Materials 2023, 1 (3) , 100032. https://doi.org/10.1016/j.nxmate.2023.100032
    36. Wail Al Zoubi, Rosy Amalia Kurnia Putri, Mostafa R. Abukhadra, Young Gun Ko. Recent experimental and theoretical advances in the design and science of high-entropy alloy nanoparticles. Nano Energy 2023, 110 , 108362. https://doi.org/10.1016/j.nanoen.2023.108362
    37. Yitong Wang, Yuhua Wang. High-entropy alloys in catalyses and supercapacitors: Progress, prospects. Nano Energy 2022, 104 , 107958. https://doi.org/10.1016/j.nanoen.2022.107958
    38. Liwei Wang, Ruoping Li, Mingju Huang. Synthesis and adsorption properties of CdS-Au hybrid nanorings. Materials Letters 2021, 304 , 130722. https://doi.org/10.1016/j.matlet.2021.130722
    39. Helena Fridman, Michael Volokh, Taleb Mokari. Dynamics of the nanocrystal structure and composition in growth solutions monitored by in situ lab-scale X-ray diffraction. Nanoscale 2021, 13 (45) , 19076-19084. https://doi.org/10.1039/D1NR05371J
    40. Yuchen Sha, Xiao-Min Lin, Jens Niklas, Oleg G. Poluektov, Benjamin T. Diroll, Yulin Lin, Jianguo Wen, Zachary D. Hood, Aiwen Lei, Elena V. Shevchenko. Insights into the extraction of photogenerated holes from CdSe/CdS nanorods for oxidative organic catalysis. Journal of Materials Chemistry A 2021, 9 (21) , 12690-12699. https://doi.org/10.1039/D1TA01124C
    41. Yuanwei Li, Haixin Lin, Wenjie Zhou, Lin Sun, Devleena Samanta, Chad A. Mirkin. Corner-, edge-, and facet-controlled growth of nanocrystals. Science Advances 2021, 7 (3) https://doi.org/10.1126/sciadv.abf1410
    42. Qin Lei, Rongzhi Chen, Jihua Tan, Xinxin Long, Huanyu Chen, Xinming Wang, Jingfu Liu, Zhongfang Lei, Zhenya Zhang. Construction of a nanocavity structure with a carrier-selective layer for enhancement of photocatalytic hydrogen production performance. Sustainable Energy & Fuels 2020, 4 (5) , 2164-2173. https://doi.org/10.1039/C9SE00987F
    43. Xin Li, Jiaguo Yu, Chuanjia Jiang. Principle and surface science of photocatalysis. 2020, 1-38. https://doi.org/10.1016/B978-0-08-102890-2.00001-4
    44. Tatiana K Kormilina, Irina A Arefina, Evgeniia A Stepanidenko, Danil A Kurshanov, Sergei A Cherevkov, Aliaksei Dubavik, Aleksandr P Litvin, Alexander V Baranov, Elena V Ushakova, Anatoly V Fedorov. Luminescence enhancement of alloyed quantum dots bound to gold nanoparticles by mercaptocarboxylic acids in colloidal complexes. Nanotechnology 2019, 30 (46) , 465705. https://doi.org/10.1088/1361-6528/ab3bdc
    45. Freddy A. Rodríguez Ortiz, Benjamin J. Roman, Je-Ruei Wen, Noel Mireles Villegas, David F. Dacres, Matthew T. Sheldon. The role of gold oxidation state in the synthesis of Au-CsPbX 3 heterostructure or lead-free Cs 2 Au I Au III X 6 perovskite nanoparticles. Nanoscale 2019, 11 (39) , 18109-18115. https://doi.org/10.1039/C9NR07222E
    46. Xiaowei Shi, Sooyeon Kim, Mamoru Fujitsuka, Tetsuro Majima. In situ observation of NiS nanoparticles depositing on single TiO2 mesocrystal for enhanced photocatalytic hydrogen evolution activity. Applied Catalysis B: Environmental 2019, 254 , 594-600. https://doi.org/10.1016/j.apcatb.2019.05.031
    47. Soumyadip Bhunia, Pradipta Purkayastha. Transformation of 3D cubic CsPbBr3 nanocrystals to massive gold-embedded perovskite platelets using surfactant coated gold nanoclusters. Materials Letters 2019, 253 , 109-112. https://doi.org/10.1016/j.matlet.2019.06.049
    48. Peng Zhang, Sibo Wang, Bu Yuan Guan, Xiong Wen (David) Lou. Fabrication of CdS hierarchical multi-cavity hollow particles for efficient visible light CO 2 reduction. Energy & Environmental Science 2019, 12 (1) , 164-168. https://doi.org/10.1039/C8EE02538J
    49. Ji‐Eun Lee, Filipe Marques Mota, Chi Hun Choi, Ying‐Rui Lu, Ramireddy Boppella, Chung‐Li Dong, Ru‐Shi Liu, Dong Ha Kim. Plasmon‐Enhanced Electrocatalytic Properties of Rationally Designed Hybrid Nanostructures at a Catalytic Interface. Advanced Materials Interfaces 2019, 6 (2) https://doi.org/10.1002/admi.201801144
    50. Qingfeng Wu, Zhijun Wang, Feng He, Lilin Wang, Jie Luo, Junjie Li, Jincheng Wang. High Entropy Alloys: From Bulk Metallic Materials to Nanoparticles. Metallurgical and Materials Transactions A 2018, 49 (10) , 4986-4990. https://doi.org/10.1007/s11661-018-4802-1
    51. Yu Jin Kim, Byeongdu Lee. Unique p–n Heterostructured Water‐Borne Nanoparticles Exhibiting Impressive Charge‐Separation Ability. ChemSusChem 2018, 11 (10) , 1628-1638. https://doi.org/10.1002/cssc.201800091
    52. Bei Zhang, Olga V. Safonova, Stephan Pollitt, Giovanni Salassa, Annelies Sels, Rania Kazan, Yuming Wang, Günther Rupprechter, Noelia Barrabés, Thomas Bürgi. On the mechanism of rapid metal exchange between thiolate-protected gold and gold/silver clusters: a time-resolved in situ XAFS study. Physical Chemistry Chemical Physics 2018, 20 (7) , 5312-5318. https://doi.org/10.1039/C7CP08272J
    53. Gong Zhang, Zhang Wu, Huijuan Liu, Qinghua Ji, Jiuhui Qu, Jinghong Li. Photoactuation Healing of α‐FeOOH@g‐C 3 N 4 Catalyst for Efficient and Stable Activation of Persulfate. Small 2017, 13 (41) https://doi.org/10.1002/smll.201702225
    54. Xiaolin Liu, Ying Yang, Marek W. Urban. Stimuli‐Responsive Polymeric Nanoparticles. Macromolecular Rapid Communications 2017, 38 (13) https://doi.org/10.1002/marc.201700030
    55. Isabelle Poirier, Lauriane Kuhn, Arnaud Demortière, Boris Mirvaux, Philippe Hammann, Johana Chicher, Christelle Caplat, Marie Pallud, Martine Bertrand. Ability of the marine bacterium Pseudomonas fluorescens BA3SM1 to counteract the toxicity of CdSe nanoparticles. Journal of Proteomics 2016, 148 , 213-227. https://doi.org/10.1016/j.jprot.2016.07.021
    56. Yuval Ben-Shahar, Uri Banin. Hybrid Semiconductor–Metal Nanorods as Photocatalysts. Topics in Current Chemistry 2016, 374 (4) https://doi.org/10.1007/s41061-016-0052-0
    57. Peng-Cheng Chen, Xiaolong Liu, James L. Hedrick, Zhuang Xie, Shunzhi Wang, Qing-Yuan Lin, Mark C. Hersam, Vinayak P. Dravid, Chad A. Mirkin. Polyelemental nanoparticle libraries. Science 2016, 352 (6293) , 1565-1569. https://doi.org/10.1126/science.aaf8402
    58. Dominik Hinrichs, Michael Galchenko, Torben Kodanek, Suraj Naskar, Nadja C. Bigall, Dirk Dorfs. Chloride Ion Mediated Synthesis of Metal/Semiconductor Hybrid Nanocrystals. Small 2016, 12 (19) , 2588-2594. https://doi.org/10.1002/smll.201600430
    59. Khaled Mohamed AbouZeid, Mona Bakr Mohamed, M. Samy El-Shall. Self-organization of Au–CdSe hybrid nanoflowers at different length scales via bi-functional diamine linkers. Journal of Nanoparticle Research 2016, 18 (1) https://doi.org/10.1007/s11051-015-3299-4
    60. Yang Tian, Ligang Wang, Shanshan Yu, Weiwei Zhou. Heterostructure of Au nanocluster tipping on a ZnS quantum rod: controlled synthesis and novel luminescence. Nanotechnology 2015, 26 (32) , 325702. https://doi.org/10.1088/0957-4484/26/32/325702
    61. Kaifeng Wu, Qiuyang Li, Yongling Du, Zheyuan Chen, Tianquan Lian. Ultrafast exciton quenching by energy and electron transfer in colloidal CdSe nanosheet–Pt heterostructures. Chemical Science 2015, 6 (2) , 1049-1054. https://doi.org/10.1039/C4SC02994A
    62. Xin Li, Jiaguo Yu, Jingxiang Low, Yueping Fang, Jing Xiao, Xiaobo Chen. Engineering heterogeneous semiconductors for solar water splitting. Journal of Materials Chemistry A 2015, 3 (6) , 2485-2534. https://doi.org/10.1039/C4TA04461D
    63. Yang Tian, Weiwei Zhou, Hanqin Tang, Hongbing Fu, Ligang Wang. Heterostructure of AuAg nanoparticles tipping on Ag 2 S quantum tubes. Chemical Communications 2015, 51 (59) , 11818-11821. https://doi.org/10.1039/C5CC01525A
    64. Kun Jia, Liting Yuan, Xuefei Zhou, Lin Pan, Pan Wang, Wenjin Chen, Xiaobo Liu. One-pot synthesis of Au/Ag bimetallic nanoparticles to modulate the emission of CdSe/CdS quantum dots. RSC Advances 2015, 5 (72) , 58163-58170. https://doi.org/10.1039/C5RA08933F
    65. Philip Kalisman, Lothar Houben, Eran Aronovitch, Yaron Kauffmann, Maya Bar-Sadan, Lilac Amirav. The golden gate to photocatalytic hydrogen production. Journal of Materials Chemistry A 2015, 3 (39) , 19679-19682. https://doi.org/10.1039/C5TA05784A
    66. Jiangcong Zhou, Feng Huang, Ju Xu, Yuansheng Wang. Converting Ag 2 SCdS and Ag 2 SZnS into AgCdS and AgZnS Nanoheterostructures by Selective Extraction of Sulfur. Chemistry – An Asian Journal 2014, 9 (11) , 3287-3290. https://doi.org/10.1002/asia.201402729

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2014, 136, 6, 2342–2350
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja4092616
    Published January 21, 2014
    Copyright © 2014 American Chemical Society

    Article Views

    3300

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.