ACS Publications. Most Trusted. Most Cited. Most Read
Anti-frameshifting Ligand Reduces the Conformational Plasticity of the SARS Virus Pseudoknot
My Activity

Figure 1Loading Img
    Communication

    Anti-frameshifting Ligand Reduces the Conformational Plasticity of the SARS Virus Pseudoknot
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
    National Institute for Nanotechnology, National Research Council, Edmonton, Alberta T6G 2M9, Canada
    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2014, 136, 6, 2196–2199
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja410344b
    Published January 21, 2014
    Copyright © 2014 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Programmed −1 ribosomal frameshifting (−1 PRF) stimulated by mRNA pseudoknots regulates gene expression in many viruses, making pseudoknots potential targets for anti-viral drugs. The mechanism by which pseudoknots trigger −1 PRF, however, remains controversial, with several competing models. Recent work showed that high −1 PRF efficiency was linked to high pseudoknot conformational plasticity via the formation of alternate conformers. We tested whether pseudoknots bound with an anti-frameshifting ligand exhibited a similar correlation between conformational plasticity and −1 PRF efficiency by measuring the effects of a ligand that was found to inhibit −1 PRF in the SARS coronavirus on the conformational dynamics of the SARS pseudoknot. Using single-molecule force spectroscopy to unfold pseudoknots mechanically, we found that the ligand binding effectively abolished the formation of alternate conformers. This result extends the connection between −1 PRF and conformational dynamics and, moreover, suggests that targeting the conformational dynamics of pseudoknots may be an effective strategy for anti-viral drug design.

    Copyright © 2014 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Materials and methods, Eqns S1–S3, and Table S1. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 60 publications.

    1. Olga Fedorova, Michelle Luo, G. Erik Jagdmann, Jr, Michael C. Van Zandt, Luke Sisto, Anna Marie Pyle. Novel Quinazoline Derivatives Inhibit Splicing of Fungal Group II Introns. ACS Chemical Biology 2025, 20 (2) , 378-385. https://doi.org/10.1021/acschembio.4c00631
    2. Jaskirat Kaur, Akanksha Sharma, Poonam Mundlia, Vikas Sood, Ankur Pandey, Gurpal Singh, Ravi Pratap Barnwal. RNA–Small-Molecule Interaction: Challenging the “Undruggable” Tag. Journal of Medicinal Chemistry 2024, 67 (6) , 4259-4297. https://doi.org/10.1021/acs.jmedchem.3c01354
    3. Avijit Mainan, Susmita Roy. Dynamic Counterion Condensation Model Decodes Functional Dynamics of RNA Pseudoknot in SARS-CoV-2: Control of Ion-Mediated Pierced Lasso Topology. The Journal of Physical Chemistry Letters 2023, 14 (46) , 10402-10411. https://doi.org/10.1021/acs.jpclett.3c02755
    4. Mo Yang, Feyisola P. Olatunji, Curran Rhodes, Sumirtha Balaratnam, Kara Dunne-Dombrink, Srinath Seshadri, Xiao Liang, Christopher P. Jones, Stuart F. J. Le Grice, Adrian R. Ferré-D’Amaré, John S. Schneekloth, Jr.. Discovery of Small Molecules Targeting the Frameshifting Element RNA in SARS-CoV-2 Viral Genome. ACS Medicinal Chemistry Letters 2023, 14 (6) , 757-765. https://doi.org/10.1021/acsmedchemlett.3c00051
    5. Sigitas Mikutis, Maria Rebelo, Eliza Yankova, Muxin Gu, Cong Tang, Ana R. Coelho, Mo Yang, Madoka E. Hazemi, Marta Pires de Miranda, Maria Eleftheriou, Max Robertson, George S. Vassiliou, David J. Adams, J. Pedro Simas, Francisco Corzana, John S. Schneekloth, Jr., Konstantinos Tzelepis, Gonçalo J. L. Bernardes. Proximity-Induced Nucleic Acid Degrader (PINAD) Approach to Targeted RNA Degradation Using Small Molecules. ACS Central Science 2023, 9 (5) , 892-904. https://doi.org/10.1021/acscentsci.3c00015
    6. Viktoriya S. Anokhina, Benjamin L. Miller. Targeting Ribosomal Frameshifting as an Antiviral Strategy: From HIV-1 to SARS-CoV-2. Accounts of Chemical Research 2021, 54 (17) , 3349-3361. https://doi.org/10.1021/acs.accounts.1c00316
    7. Christina Roman, Anna Lewicka, Deepak Koirala, Nan-Sheng Li, Joseph A. Piccirilli. The SARS-CoV-2 Programmed −1 Ribosomal Frameshifting Element Crystal Structure Solved to 2.09 Å Using Chaperone-Assisted RNA Crystallography. ACS Chemical Biology 2021, 16 (8) , 1469-1481. https://doi.org/10.1021/acschembio.1c00324
    8. Tamar Schlick, Qiyao Zhu, Abhishek Dey, Swati Jain, Shuting Yan, Alain Laederach. To Knot or Not to Knot: Multiple Conformations of the SARS-CoV-2 Frameshifting RNA Element. Journal of the American Chemical Society 2021, 143 (30) , 11404-11422. https://doi.org/10.1021/jacs.1c03003
    9. Javier Bonet‐Aleta, Tomoaki Maehara, Benjamin A. Craig, Gonçalo J. L. Bernardes. Small Molecule RNA Degraders. Angewandte Chemie 2024, 136 (47) https://doi.org/10.1002/ange.202412925
    10. Javier Bonet‐Aleta, Tomoaki Maehara, Benjamin A. Craig, Gonçalo J. L. Bernardes. Small Molecule RNA Degraders. Angewandte Chemie International Edition 2024, 63 (47) https://doi.org/10.1002/anie.202412925
    11. Elinore A. VanGraafeiland, Diego M. Arévalo, Benjamin L. Miller. Approaches to the Identification of Molecules Altering Programmed Ribosomal Frameshifting in Viruses. 2024, 253-279. https://doi.org/10.1002/9783527840458.ch10
    12. Justin Aruda, Scott L. Grote, Silvi Rouskin. Untangling the pseudoknots of SARS-CoV-2: Insights into structural heterogeneity and plasticity. Current Opinion in Structural Biology 2024, 88 , 102912. https://doi.org/10.1016/j.sbi.2024.102912
    13. Yuanzhe Zhou, Shi-Jie Chen. Advances in machine-learning approaches to RNA-targeted drug design. Artificial Intelligence Chemistry 2024, 2 (1) , 100053. https://doi.org/10.1016/j.aichem.2024.100053
    14. Luke Trinity, Ulrike Stege, Hosna Jabbari, . Tying the knot: Unraveling the intricacies of the coronavirus frameshift pseudoknot. PLOS Computational Biology 2024, 20 (5) , e1011787. https://doi.org/10.1371/journal.pcbi.1011787
    15. Kodai Machida, Rin Tanaka, Seraya Miki, Shotaro Noseda, Mayumi Yuasa-Sunagawa, Hiroaki Imataka. High-Throughput Screening for a SARS-CoV-2 Frameshifting Inhibitor Using a Cell-Free Protein Synthesis System. BioTechniques 2024, 76 (4) , 161-168. https://doi.org/10.2144/btn-2023-0102
    16. Chris H. Hill, Ian Brierley. Structural and Functional Insights into Viral Programmed Ribosomal Frameshifting. Annual Review of Virology 2023, 10 (1) , 217-242. https://doi.org/10.1146/annurev-virology-111821-120646
    17. Gregory Mathez, Valeria Cagno. Small Molecules Targeting Viral RNA. International Journal of Molecular Sciences 2023, 24 (17) , 13500. https://doi.org/10.3390/ijms241713500
    18. Panagiotis Poulis, Frank Peske, Marina V. Rodnina. The many faces of ribosome translocation along the mRNA: reading frame maintenance, ribosome frameshifting and translational bypassing. Biological Chemistry 2023, 404 (8-9) , 755-767. https://doi.org/10.1515/hsz-2023-0142
    19. Thomas Kenderdine, Dan Fabris. The multifaceted roles of mass spectrometric analysis in nucleic acids drug discovery and development. Mass Spectrometry Reviews 2023, 42 (4) , 1332-1357. https://doi.org/10.1002/mas.21766
    20. Luke Trinity, Ian Wark, Lance Lansing, Hosna Jabbari, Ulrike Stege, . Shapify: Paths to SARS-CoV-2 frameshifting pseudoknot. PLOS Computational Biology 2023, 19 (2) , e1010922. https://doi.org/10.1371/journal.pcbi.1010922
    21. Tamar Schlick, Shuting Yan. Modeling and Simulating RNA: Combining Structural, Dynamic, and Evolutionary Perspectives for Coronavirus Applications. 2023, 886-894. https://doi.org/10.1016/B978-0-12-821978-2.00118-5
    22. Matthew T.J. Halma, Jack A. Tuszynski, Gijs J.L. Wuite. Optical tweezers for drug discovery. Drug Discovery Today 2023, 28 (1) , 103443. https://doi.org/10.1016/j.drudis.2022.103443
    23. Shuting Yan, Qiyao Zhu, Swati Jain, Tamar Schlick. Length-dependent motions of SARS-CoV-2 frameshifting RNA pseudoknot and alternative conformations suggest avenues for frameshifting suppression. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-31353-w
    24. Maclean Bassett, Marco Salemi, Brittany Rife Magalis. Lessons Learned and Yet-to-Be Learned on the Importance of RNA Structure in SARS-CoV-2 Replication. Microbiology and Molecular Biology Reviews 2022, 86 (3) https://doi.org/10.1128/mmbr.00057-21
    25. Stefan Buck, Lukas Pekarek, Neva Caliskan. POTATO: Automated pipeline for batch analysis of optical tweezers data. Biophysical Journal 2022, 121 (15) , 2830-2839. https://doi.org/10.1016/j.bpj.2022.06.030
    26. Martina Zafferani, Dhanasheel Muralidharan, Nadeska I. Montalvan, Amanda E. Hargrove. RT-qPCR as a screening platform for mutational and small molecule impacts on structural stability of RNA tertiary structures. RSC Chemical Biology 2022, 3 (7) , 905-915. https://doi.org/10.1039/D2CB00015F
    27. Ke Tang, Jorjethe Roca, Rong Chen, Anjum Ansari, Jie Liang. Thermodynamics of unfolding mechanisms of mouse mammary tumor virus pseudoknot from a coarse-grained loop-entropy model. Journal of Biological Physics 2022, 48 (2) , 129-150. https://doi.org/10.1007/s10867-022-09602-2
    28. Yuanzhe Zhou, Yangwei Jiang, Shi‐Jie Chen. RNA –ligand molecular docking: Advances and challenges. WIREs Computational Molecular Science 2022, 12 (3) https://doi.org/10.1002/wcms.1571
    29. Sneha Munshi, Krishna Neupane, Sandaru M. Ileperuma, Matthew T. J. Halma, Jamie A. Kelly, Clarissa F. Halpern, Jonathan D. Dinman, Sarah Loerch, Michael T. Woodside. Identifying Inhibitors of −1 Programmed Ribosomal Frameshifting in a Broad Spectrum of Coronaviruses. Viruses 2022, 14 (2) , 177. https://doi.org/10.3390/v14020177
    30. Zhiguo Wang, Baofeng Yang. Polypharmacology in Drug Design and Discovery—Basis for Rational Design of Multitarget Drugs. 2022, 397-533. https://doi.org/10.1007/978-3-031-04998-9_12
    31. Lewis Rolband, Damian Beasock, Yang Wang, Yao-Gen Shu, Jonathan D. Dinman, Tamar Schlick, Yaoqi Zhou, Jeffrey S. Kieft, Shi-Jie Chen, Giovanni Bussi, Abdelghani Oukhaled, Xingfa Gao, Petr Šulc, Daniel Binzel, Abhjeet S. Bhullar, Chenxi Liang, Peixuan Guo, Kirill A. Afonin. Biomotors, viral assembly, and RNA nanobiotechnology: Current achievements and future directions. Computational and Structural Biotechnology Journal 2022, 20 , 6120-6137. https://doi.org/10.1016/j.csbj.2022.11.007
    32. Anuja Kibe, Walid A. M. Elgaher, Ulfert Rand, Matthias M. Zimmer, Andreas M. Kany, Jennifer Hermann, Rolf Müller, Luka Cicin-Sain, Anna K. H. Hirsch, Neva Caliskan. Screening of Natural Products and Small Molecules Uncovers Novel Coronavirus 1a/1b Frameshifting Inhibitors with Antiviral Properties. SSRN Electronic Journal 2022, 11 https://doi.org/10.2139/ssrn.4157446
    33. Krishna Neupane, Meng Zhao, Aaron Lyons, Sneha Munshi, Sandaru M. Ileperuma, Dustin B. Ritchie, Noel Q. Hoffer, Abhishek Narayan, Michael T. Woodside. Structural dynamics of single SARS-CoV-2 pseudoknot molecules reveal topologically distinct conformers. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-25085-6
    34. Luke Trinity, Lance Lansing, Hosna Jabbari, Ulrike Stege. SARS-CoV-2 Ribosomal Frameshifting Pseudoknot: Detection of Inter-viral Structural Similarity. 2021, 451-460. https://doi.org/10.1109/ICHI52183.2021.00080
    35. Chiung-Fang Hsu, Kai-Chun Chang, Yi-Lan Chen, Po-Szu Hsieh, An-I Lee, Jui-Yun Tu, Yu-Ting Chen, Jin-Der Wen. Formation of frameshift-stimulating RNA pseudoknots is facilitated by remodeling of their folding intermediates. Nucleic Acids Research 2021, 49 (12) , 6941-6957. https://doi.org/10.1093/nar/gkab512
    36. Jessica Sook Yuin Ho, Zeyu Zhu, Ivan Marazzi. Unconventional viral gene expression mechanisms as therapeutic targets. Nature 2021, 593 (7859) , 362-371. https://doi.org/10.1038/s41586-021-03511-5
    37. Martina Zafferani, Amanda E. Hargrove. Small molecule targeting of biologically relevant RNA tertiary and quaternary structures. Cell Chemical Biology 2021, 28 (5) , 594-609. https://doi.org/10.1016/j.chembiol.2021.03.003
    38. Ramya Rangan, Andrew M Watkins, Jose Chacon, Rachael Kretsch, Wipapat Kladwang, Ivan N Zheludev, Jill Townley, Mats Rynge, Gregory Thain, Rhiju Das. De novo 3D models of SARS-CoV-2 RNA elements from consensus experimental secondary structures. Nucleic Acids Research 2021, 49 (6) , 3092-3108. https://doi.org/10.1093/nar/gkab119
    39. Tamar Schlick, Qiyao Zhu, Swati Jain, Shuting Yan. Structure-altering mutations of the SARS-CoV-2 frameshifting RNA element. Biophysical Journal 2021, 120 (6) , 1040-1053. https://doi.org/10.1016/j.bpj.2020.10.012
    40. Jamie A. Kelly, Michael T. Woodside, Jonathan D. Dinman. Programmed −1 Ribosomal Frameshifting in coronaviruses: A therapeutic target. Virology 2021, 554 , 75-82. https://doi.org/10.1016/j.virol.2020.12.010
    41. Sara Ibrahim Omar, Meng Zhao, Rohith Vedhthaanth Sekar, Sahar Arbabi Moghadam, Jack A. Tuszynski, Michael T. Woodside, . Modeling the structure of the frameshift-stimulatory pseudoknot in SARS-CoV-2 reveals multiple possible conformers. PLOS Computational Biology 2021, 17 (1) , e1008603. https://doi.org/10.1371/journal.pcbi.1008603
    42. Kai-Chun Chang, Jin-Der Wen. Programmed −1 ribosomal frameshifting from the perspective of the conformational dynamics of mRNA and ribosomes. Computational and Structural Biotechnology Journal 2021, 19 , 3580-3588. https://doi.org/10.1016/j.csbj.2021.06.015
    43. Matthew T. J. Halma, Dustin B. Ritchie, Michael T. Woodside. Conformational Shannon Entropy of mRNA Structures from Force Spectroscopy Measurements Predicts the Efficiency of − 1 Programmed Ribosomal Frameshift Stimulation. Physical Review Letters 2021, 126 (3) https://doi.org/10.1103/PhysRevLett.126.038102
    44. Krishna Neupane, Sneha Munshi, Meng Zhao, Dustin B. Ritchie, Sandaru M. Ileperuma, Michael T. Woodside. Anti-Frameshifting Ligand Active against SARS Coronavirus-2 Is Resistant to Natural Mutations of the Frameshift-Stimulatory Pseudoknot. Journal of Molecular Biology 2020, 432 (21) , 5843-5847. https://doi.org/10.1016/j.jmb.2020.09.006
    45. Ai-Ming Yu, Young Hee Choi, Mei-Juan Tu. RNA Drugs and RNA Targets for Small Molecules: Principles, Progress, and Challenges. Pharmacological Reviews 2020, 72 (4) , 862-898. https://doi.org/10.1124/pr.120.019554
    46. Jamie A. Kelly, Alexandra N. Olson, Krishna Neupane, Sneha Munshi, Josue San Emeterio, Lois Pollack, Michael T. Woodside, Jonathan D. Dinman. Structural and functional conservation of the programmed −1 ribosomal frameshift signal of SARS coronavirus 2 (SARS-CoV-2). Journal of Biological Chemistry 2020, 295 (31) , 10741-10748. https://doi.org/10.1074/jbc.AC120.013449
    47. Matthew T. J. Halma, Dustin B. Ritchie, Tonia R. Cappellano, Krishna Neupane, Michael T. Woodside. Complex dynamics under tension in a high-efficiency frameshift stimulatory structure. Proceedings of the National Academy of Sciences 2019, 116 (39) , 19500-19505. https://doi.org/10.1073/pnas.1905258116
    48. A. Di Giorgio, M. Duca. Synthetic small-molecule RNA ligands: future prospects as therapeutic agents. MedChemComm 2019, 10 (8) , 1242-1255. https://doi.org/10.1039/C9MD00195F
    49. Bo Wu, Haibo Zhang, Ruirui Sun, Sijia Peng, Barry S Cooperman, Yale E Goldman, Chunlai Chen. Translocation kinetics and structural dynamics of ribosomes are modulated by the conformational plasticity of downstream pseudoknots. Nucleic Acids Research 2018, 46 (18) , 9736-9748. https://doi.org/10.1093/nar/gky636
    50. Katherine Deigan Warner, Christine E. Hajdin, Kevin M. Weeks. Principles for targeting RNA with drug-like small molecules. Nature Reviews Drug Discovery 2018, 17 (8) , 547-558. https://doi.org/10.1038/nrd.2018.93
    51. Thomas E. Dever, Jonathan D. Dinman, Rachel Green. Translation Elongation and Recoding in Eukaryotes. Cold Spring Harbor Perspectives in Biology 2018, 10 (8) , a032649. https://doi.org/10.1101/cshperspect.a032649
    52. Dustin B. Ritchie, Tonia R. Cappellano, Collin Tittle, Negar Rezajooei, Logan Rouleau, William K.A. Sikkema, Michael T. Woodside. Conformational dynamics of the frameshift stimulatory structure in HIV-1. RNA 2017, 23 (9) , 1376-1384. https://doi.org/10.1261/rna.061655.117
    53. Yu-Ting Chen, Kai-Chun Chang, Hao-Teng Hu, Yi-Lan Chen, You-Hsin Lin, Chiung-Fang Hsu, Cheng-Fu Chang, Kung-Yao Chang, Jin-Der Wen. Coordination among tertiary base pairs results in an efficient frameshift-stimulating RNA pseudoknot. Nucleic Acids Research 2017, 45 (10) , 6011-6022. https://doi.org/10.1093/nar/gkx134
    54. Thomas Hermann. Viral RNA Targets and Their Small Molecule Ligands. 2017, 111-134. https://doi.org/10.1007/7355_2016_20
    55. Thomas Hermann. Small molecules targeting viral RNA. WIREs RNA 2016, 7 (6) , 726-743. https://doi.org/10.1002/wrna.1373
    56. Eric Jan, Ian Mohr, Derek Walsh. A Cap-to-Tail Guide to mRNA Translation Strategies in Virus-Infected Cells. Annual Review of Virology 2016, 3 (1) , 283-307. https://doi.org/10.1146/annurev-virology-100114-055014
    57. Colleen M. Connelly, Michelle H. Moon, John S. Schneekloth. The Emerging Role of RNA as a Therapeutic Target for Small Molecules. Cell Chemical Biology 2016, 23 (9) , 1077-1090. https://doi.org/10.1016/j.chembiol.2016.05.021
    58. Koen Visscher. −1 Programmed Ribosomal Frameshifting as a Force-Dependent Process. 2016, 45-72. https://doi.org/10.1016/bs.pmbts.2015.11.003
    59. Dustin B Ritchie, Michael T Woodside. Probing the structural dynamics of proteins and nucleic acids with optical tweezers. Current Opinion in Structural Biology 2015, 34 , 43-51. https://doi.org/10.1016/j.sbi.2015.06.006
    60. Megan C. Engel, Dustin B. Ritchie, Daniel A. N. Foster, Kevin S. D. Beach, Michael T. Woodside. Reconstructing Folding Energy Landscape Profiles from Nonequilibrium Pulling Curves with an Inverse Weierstrass Integral Transform. Physical Review Letters 2014, 113 (23) https://doi.org/10.1103/PhysRevLett.113.238104

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2014, 136, 6, 2196–2199
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja410344b
    Published January 21, 2014
    Copyright © 2014 American Chemical Society

    Article Views

    2811

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.