ACS Publications. Most Trusted. Most Cited. Most Read
Detection and Differentiation of Neutral Organic Compounds by 19F NMR with a Tungsten Calix[4]arene Imido Complex
My Activity

Figure 1Loading Img
    Communication

    Detection and Differentiation of Neutral Organic Compounds by 19F NMR with a Tungsten Calix[4]arene Imido Complex
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
    Other Access OptionsSupporting Information (2)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2013, 135, 50, 18770–18773
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja4106804
    Published December 3, 2013
    Copyright © 2013 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Fluorinated tungsten calix[4]arene imido complexes were synthesized and used as receptors to detect and differentiate neutral organic compounds. It was found that the binding of specific neutral organic molecules to the tungsten centers induces an upfield shift of the fluorine atom appended on the arylimido group, the extent of which is highly dependent on electronic and steric properties. We demonstrate that the specific bonding and size-selectivity of calix[4]arene tungsten–imido complex combined with 19F NMR spectroscopy is a powerful new method for the analysis of complex mixtures.

    Copyright © 2013 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Experimental procedures and characterization data for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 44 publications.

    1. Haoliang Hao, Wei Zhang, Wenjie Zhu, Wenjing Bao, Guangxing Gu, Yanchuan Zhao. Hypervalent Iodine-Mediated Selective Monofunctionalization of Calix[4]arenes. Organic Letters 2025, 27 (18) , 4712-4717. https://doi.org/10.1021/acs.orglett.5c01121
    2. Ru-Qiang Lu, Weize Yuan, Haosheng Feng, Shao-Xiong Lennon Luo, You-Chi Mason Wu, Samuel I. Etkind, Mohanraja Kumar, Timothy M. Swager. Porous Polymers Containing Metallocalix[4]arene for the Extraction of Tobacco-Specific Nitrosamines. Chemistry of Materials 2022, 34 (23) , 10623-10630. https://doi.org/10.1021/acs.chemmater.2c02713
    3. Timothy M. Swager. Molecular Shape and Polar Order in Columnar Liquid Crystals. Accounts of Chemical Research 2022, 55 (20) , 3010-3019. https://doi.org/10.1021/acs.accounts.2c00452
    4. Mincheol Jang, Min Su Han. Ratiometric Strategy Based on Intramolecular Internal Standard for Reproducible and Simultaneous Fingerprint Recognition of Diols via 19F NMR Spectroscopy. Analytical Chemistry 2022, 94 (39) , 13455-13462. https://doi.org/10.1021/acs.analchem.2c02466
    5. Xu-Dong Gao, Yue Hu, Wei-Feng Wang, Xiao-Bo Zhao, Xin-Zhen Du, Yan-Ping Shi. Rapid and Selective 19F NMR-Based Sensors for Fingerprint Identification of Ribose. Analytical Chemistry 2022, 94 (33) , 11564-11572. https://doi.org/10.1021/acs.analchem.2c01832
    6. Zhenchuang Xu, Siyi Gu, Yipeng Li, Jian Wu, Yanchuan Zhao. Recognition-Enabled Automated Analyte Identification via 19F NMR. Analytical Chemistry 2022, 94 (23) , 8285-8292. https://doi.org/10.1021/acs.analchem.2c00642
    7. Ru-Qiang Lu, Weize Yuan, Robert G. Croy, John M. Essigmann, Timothy M. Swager. Metallocalix[4]arene Polymers for Gravimetric Detection of N-Nitrosodialkylamines. Journal of the American Chemical Society 2021, 143 (47) , 19809-19815. https://doi.org/10.1021/jacs.1c08739
    8. Xu-dong Gao, Xin-zhen Du, Yan-ping Shi. A Bisboronic Acid Sensor for Ultra-High Selective Glucose Assay by 19F NMR Spectroscopy. Analytical Chemistry 2021, 93 (19) , 7220-7225. https://doi.org/10.1021/acs.analchem.1c00262
    9. Juan F. Araneda, Thaís Mendonça Barbosa, Paul Hui, Matthew C. Leclerc, Jonathan Ma, Alexander F. G. Maier, Susanne D. Riegel. Incorporating Benchtop NMR Spectrometers in the Undergraduate Lab: Understanding Resolution and Circumventing Second-Order Effects. Journal of Chemical Education 2021, 98 (4) , 1227-1232. https://doi.org/10.1021/acs.jchemed.0c01182
    10. Chanjuan Dong, Zhenchuang Xu, Lixian Wen, Shengyuan He, Jian Wu, Qing-Hai Deng, Yanchuan Zhao. Tailoring Sensors and Solvents for Optimal Analysis of Complex Mixtures Via Discriminative 19F NMR Chemosensing. Analytical Chemistry 2021, 93 (5) , 2968-2973. https://doi.org/10.1021/acs.analchem.0c04768
    11. Takashi Sakamoto, Zhiyong Qiu, Miyu Inagaki, Kenzo Fujimoto. Simultaneous Amino Acid Analysis Based on 19F NMR Using a Modified OPA-Derivatization Method. Analytical Chemistry 2020, 92 (2) , 1669-1673. https://doi.org/10.1021/acs.analchem.9b05311
    12. Huan Meng, Lixian Wen, Zhenchuang Xu, Yipeng Li, Jian Hao, Yanchuan Zhao. Nonafluoro-tert-butoxylation of Diaryliodonium Salts. Organic Letters 2019, 21 (13) , 5206-5210. https://doi.org/10.1021/acs.orglett.9b01813
    13. Zhenchuang Xu, Chao Liu, Shujuan Zhao, Si Chen, Yanchuan Zhao. Molecular Sensors for NMR-Based Detection. Chemical Reviews 2019, 119 (1) , 195-230. https://doi.org/10.1021/acs.chemrev.8b00202
    14. Lin-E Guo, Yuan Hong, Shu-Ying Zhang, Miao Zhang, Xiao-Sheng Yan, Jin-Lian Cao, Zhao Li, Tony D. James, Yun-Bao Jiang. Proline-Based Boronic Acid Receptors for Chiral Recognition of Glucose. The Journal of Organic Chemistry 2018, 83 (24) , 15128-15135. https://doi.org/10.1021/acs.joc.8b02425
    15. Jörg Axthelm, Sven H. C. Askes, Martin Elstner, Upendar Reddy G, Helmar Görls, Peter Bellstedt, and Alexander Schiller . Fluorinated Boronic Acid-Appended Pyridinium Salts and 19F NMR Spectroscopy for Diol Sensing. Journal of the American Chemical Society 2017, 139 (33) , 11413-11420. https://doi.org/10.1021/jacs.7b01167
    16. Jörg Axthelm, Helmar Görls, Ulrich S. Schubert, and Alexander Schiller . Fluorinated Boronic Acid-Appended Bipyridinium Salts for Diol Recognition and Discrimination via 19F NMR Barcodes. Journal of the American Chemical Society 2015, 137 (49) , 15402-15405. https://doi.org/10.1021/jacs.5b10934
    17. Marie-Virgine Salvia, Giovanni Salassa, Federico Rastrelli, and Fabrizio Mancin . Turning Supramolecular Receptors into Chemosensors by Nanoparticle-Assisted “NMR Chemosensing”. Journal of the American Chemical Society 2015, 137 (35) , 11399-11406. https://doi.org/10.1021/jacs.5b06300
    18. Yanchuan Zhao and Timothy M. Swager . Simultaneous Chirality Sensing of Multiple Amines by 19F NMR. Journal of the American Chemical Society 2015, 137 (9) , 3221-3224. https://doi.org/10.1021/jacs.5b00556
    19. Marie-Virginie Salvia, Federico Ramadori, Sara Springhetti, Marta Diez-Castellnou, Barbara Perrone, Federico Rastrelli, and Fabrizio Mancin . Nanoparticle-Assisted NMR Detection of Organic Anions: From Chemosensing to Chromatography. Journal of the American Chemical Society 2015, 137 (2) , 886-892. https://doi.org/10.1021/ja511205e
    20. Yanchuan Zhao, Georgios Markopoulos, and Timothy M. Swager . 19F NMR Fingerprints: Identification of Neutral Organic Compounds in a Molecular Container. Journal of the American Chemical Society 2014, 136 (30) , 10683-10690. https://doi.org/10.1021/ja504110f
    21. Guangxing Gu, Chenyang Wang, Yanchuan Zhao. 19F-Labeled NMR Probes for the Detection and Discrimination of Nitrogen-Containing Analytes. Synthesis 2025, 57 (10) , 1671-1689. https://doi.org/10.1055/a-2435-5962
    22. Zhenchuang Xu, Yanchuan Zhao. 19 F‐Labeled Probes for Recognition‐Enabled Chromatographic 19 F NMR. The Chemical Record 2023, 23 (9) https://doi.org/10.1002/tcr.202300031
    23. Chengyuan Shao, Yani Zhao, Senkai Han, Fu Huang, Weijie Guo, Hua Jiang, Ying Wang. Guest differentiation and fingerprinting based on the conformational diversity of a dynamic corannulene-based cage. Organic Chemistry Frontiers 2023, 10 (6) , 1412-1422. https://doi.org/10.1039/D2QO02028A
    24. Ru‐Qiang Lu, Shao‐Xiong Lennon Luo, Qilin He, Alberto Concellón, Timothy M. Swager. Methane Detection with a Tungsten‐Calix[4]arene‐Based Conducting Polymer Embedded Sensor Array. Advanced Functional Materials 2021, 31 (6) https://doi.org/10.1002/adfm.202007281
    25. Peter M. Graham. Tungsten. 2021, 746-806. https://doi.org/10.1016/B978-0-12-409547-2.14926-1
    26. Chengyuan Shao, Yani Zhao, Senkai Han, Fu Huang, Hua Jiang, Ying Wang. Molecular Differentiation and Fingerprinting Based on the Conformational Diversity of Cage. SSRN Electronic Journal 2021, 39 https://doi.org/10.2139/ssrn.3906180
    27. Lin-E. Guo, Yu-Xin Tang, Shu-Ying Zhang, Yuan Hong, Xiao-Sheng Yan, Zhao Li, Yun-Bao Jiang. Balancing interactions in proline-based receptors for chiral recognition of l -/ d -DOPA. Organic & Biomolecular Chemistry 2020, 18 (24) , 4590-4598. https://doi.org/10.1039/D0OB00493F
    28. Santiago Alvarez. Coordinating Ability of Anions, Solvents, Amino Acids, and Gases towards Alkaline and Alkaline‐Earth Elements, Transition Metals, and Lanthanides. Chemistry – A European Journal 2020, 26 (19) , 4350-4377. https://doi.org/10.1002/chem.201905453
    29. Xubin Zheng, Ruiqing Fan, Haoyang Lu, Bowen Wang, Jingkun Wu, Ping Wang, Yulin Yang. A dual-emitting Tb( iii )&Yb( iii )-functionalized coordination polymer: a “turn-on” sensor for N -methylformamide in urine and a “turn-off” sensor for methylglyoxal in serum. Dalton Transactions 2019, 48 (38) , 14408-14417. https://doi.org/10.1039/C9DT02643F
    30. Yanyong Hu, Zichao Zhou, Feiping Zhao, Xiaoling Liu, Yanjun Gong, Wei Xiong, Mika Sillanpää. Fingerprint Detection and Differentiation of Gas-phase Amines Using a Fluorescent Sensor Array Assembled from Asymmetric Perylene Diimides. Scientific Reports 2018, 8 (1) https://doi.org/10.1038/s41598-018-28556-x
    31. Alessandro Pedrini, Federico Bertani, Enrico Dalcanale. Fluorinated Tetraphosphonate Cavitands. Molecules 2018, 23 (10) , 2670. https://doi.org/10.3390/molecules23102670
    32. Luca Gabrielli, Monica Carril, Daniel Padro, Fabrizio Mancin. Multimodal 19 F NMR Dopamine Detection and Imaging with a Nanoparticle‐Based Displacement Assay. Chemistry – A European Journal 2018, 24 (49) , 13036-13042. https://doi.org/10.1002/chem.201802482
    33. Shengjun Yang, Qingbin Zeng, Qianni Guo, Shizhen Chen, Hongbin Liu, Maili Liu, Michael T. McMahon, Xin Zhou. Detection and differentiation of Cys, Hcy and GSH mixtures by 19F NMR probe. Talanta 2018, 184 , 513-519. https://doi.org/10.1016/j.talanta.2018.03.039
    34. Nana Sun, Bing Yan. Fluorescence detection of urinary N-methylformamide for biomonitoring of human occupational exposure to N,N-dimethylformamide by Eu(III) functionalized MOFs. Sensors and Actuators B: Chemical 2018, 261 , 153-160. https://doi.org/10.1016/j.snb.2018.01.087
    35. Run Zhao, Kecheng Jie, Yujuan Zhou, Errui Li, Jiyong Liu, Feihe Huang. Clip[4]arene: synthesis, rigid acyclic C-shaped structure, and redox-controlled host–guest complexation. Tetrahedron Letters 2018, 59 (13) , 1204-1207. https://doi.org/10.1016/j.tetlet.2018.02.025
    36. Luca Gabrielli, Daniele Rosa-Gastaldo, Marie-Virginie Salvia, Sara Springhetti, Federico Rastrelli, Fabrizio Mancin. Detection and identification of designer drugs by nanoparticle-based NMR chemosensing. Chemical Science 2018, 9 (21) , 4777-4784. https://doi.org/10.1039/C8SC01283K
    37. Márcio Silva. Recent Advances in Multinuclear NMR Spectroscopy for Chiral Recognition of Organic Compounds. Molecules 2017, 22 (2) , 247. https://doi.org/10.3390/molecules22020247
    38. Marta Diez‐Castellnou, Marie‐Virginie Salvia, Sara Springhetti, Federico Rastrelli, Fabrizio Mancin. Nanoparticle‐Assisted Affinity NMR Spectroscopy: High Sensitivity Detection and Identification of Organic Molecules. Chemistry – A European Journal 2016, 22 (47) , 16957-16963. https://doi.org/10.1002/chem.201603578
    39. Yanchuan Zhao, Lily Chen, Timothy M. Swager. Simultaneous Identification of Neutral and Anionic Species in Complex Mixtures without Separation. Angewandte Chemie 2016, 128 (3) , 929-933. https://doi.org/10.1002/ange.201508085
    40. Yanchuan Zhao, Lily Chen, Timothy M. Swager. Simultaneous Identification of Neutral and Anionic Species in Complex Mixtures without Separation. Angewandte Chemie International Edition 2016, 55 (3) , 917-921. https://doi.org/10.1002/anie.201508085
    41. Yanchuan Zhao, Timothy M. Swager. Functionalized Metalated Cavitands via Imidation and Late‐Stage Elaboration. European Journal of Organic Chemistry 2015, 2015 (21) , 4593-4597. https://doi.org/10.1002/ejoc.201500714
    42. Adam J. Plaunt, Kasey J. Clear, Bradley D. Smith. 19 F NMR indicator displacement assay using a synthetic receptor with appended paramagnetic relaxation agent. Chem. Commun. 2014, 50 (72) , 10499-10501. https://doi.org/10.1039/C4CC04159C
    43. Xiao-Tong Li, Jing Li, Meng Li, Ying-Ying Liu, Shu-Yan Song, Jian-Fang Ma. An unusual lamellar framework constructed from a tetracarboxylatocalix[4]arene with highly efficient metal-ion exchange. CrystEngComm 2014, 16 (40) , 9520-9527. https://doi.org/10.1039/C4CE01463D
    44. Xin-Long Ni, Yanan Wu, Carl Redshaw, Takehiko Yamato. Direct evidence of a blocking heavy atom effect on the water-assisted fluorescence enhancement detection of Hg 2+ based on a ratiometric chemosensor. Dalton Trans. 2014, 43 (33) , 12633-12638. https://doi.org/10.1039/C4DT01310G

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2013, 135, 50, 18770–18773
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja4106804
    Published December 3, 2013
    Copyright © 2013 American Chemical Society

    Article Views

    3242

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.