ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

All-Solid-State Lithium Organic Battery with Composite Polymer Electrolyte and Pillar[5]quinone Cathode

View Author Information
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) and State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, China
Key Laboratory of Renewable Energy & Gas Hydrate, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
Cite this: J. Am. Chem. Soc. 2014, 136, 47, 16461–16464
Publication Date (Web):November 10, 2014
https://doi.org/10.1021/ja507852t
Copyright © 2014 American Chemical Society

    Article Views

    14529

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    The cathode capacity of common lithium ion batteries (LIBs) using inorganic electrodes and liquid electrolytes must be further improved. Alternatively, all-solid-state lithium batteries comprising the electrode of organic compounds can offer much higher capacity. Herein, we successfully fabricated an all-solid-state lithium battery based on organic pillar[5]quinone (C35H20O10) cathode and composite polymer electrolyte (CPE). The poly(methacrylate) (PMA)/poly(ethylene glycol) (PEG)-LiClO4-3 wt % SiO2 CPE has an optimum ionic conductivity of 0.26 mS cm–1 at room temperature. Furthermore, pillar[5]quinine cathode in all-solid-state battery rendered an average operation voltage of ∼2.6 V and a high initial capacity of 418 mAh g–1 with a stable cyclability (94.7% capacity retention after 50 cycles at 0.2C rate) through the reversible redox reactions of enolate/quinonid carbonyl groups, showing favorable prospect for the device application with high capacity.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Synthesis of the solid polymer electrolytes. Experimental procedures and characterization data of P5Q. Electrochemical measurements of the assembled battery. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 366 publications.

    1. Tyler W. Hiltermann, Subhajit Sarkar, Venkataraman Thangadurai, Todd C. Sutherland. Diamino-Substituted Quinones as Cathodes for Lithium-Ion Batteries. ACS Applied Materials & Interfaces 2024, 16 (7) , 8580-8588. https://doi.org/10.1021/acsami.3c14123
    2. Jan Bitenc, Klemen Pirnat, Olivera Lužanin, Robert Dominko. Organic Cathodes, a Path toward Future Sustainable Batteries: Mirage or Realistic Future?. Chemistry of Materials 2024, 36 (3) , 1025-1040. https://doi.org/10.1021/acs.chemmater.3c02408
    3. Yong Lu, Youxuan Ni, Jun Chen. Reliable Organic Carbonyl Electrode Materials Enabled by Electrolyte and Interfacial Chemistry Regulation. Accounts of Chemical Research 2024, 57 (3) , 375-385. https://doi.org/10.1021/acs.accounts.3c00687
    4. Jaehwan Kim, Jianheng Ling, Yihuan Lai, Phillip J. Milner. Redox-Active Organic Materials: From Energy Storage to Redox Catalysis. ACS Materials Au 2024, Article ASAP.
    5. Shao-Zhong Zeng, Shuxiao Wang, Ling Bing Kong, Yuchao Tian, Bin He, Xiao Yu, Shuzhang Niu, Dongju Fu, Peigang Han. Low-Cost Organodisulfide Polymer for Ultrafast High-Capacity Cathode Materials. ACS Applied Energy Materials 2023, 6 (16) , 8479-8488. https://doi.org/10.1021/acsaem.3c01307
    6. Mengjie Li, Robert Paul Hicks, Zifeng Chen, Chao Luo, Juchen Guo, Chunsheng Wang, Yunhua Xu. Electrolytes in Organic Batteries. Chemical Reviews 2023, 123 (4) , 1712-1773. https://doi.org/10.1021/acs.chemrev.2c00374
    7. Shengnan Zhang, Kai Zhu, Yinyi Gao, Dianxue Cao. A Long Cycle Stability and High Rate Performance Organic Anode for Rechargeable Aqueous Ammonium-Ion Battery. ACS Energy Letters 2023, 8 (2) , 889-897. https://doi.org/10.1021/acsenergylett.2c01962
    8. Xiayue Fan, Cheng Zhong, Jie Liu, Jia Ding, Yida Deng, Xiaopeng Han, Lei Zhang, Wenbin Hu, David P. Wilkinson, Jiujun Zhang. Opportunities of Flexible and Portable Electrochemical Devices for Energy Storage: Expanding the Spotlight onto Semi-solid/Solid Electrolytes. Chemical Reviews 2022, 122 (23) , 17155-17239. https://doi.org/10.1021/acs.chemrev.2c00196
    9. Xuehan Wang, Xiangyue Kong, Jiawen Wang, Yilin Lin, Huimin Sun, Weiwei Huang. Design of Poly(siloxane) Electrolytes with Small Molecule Quinone Cathodes for Long-Cycle Lithium–metal Batteries. ACS Sustainable Chemistry & Engineering 2022, 10 (48) , 15760-15766. https://doi.org/10.1021/acssuschemeng.2c04273
    10. Yangmei Zhou, Xiuhui Huang, Xi Chen, Fangfang He, Di Chen, Xiujuan Sun, Songting Tan, Ping Gao. Ethynyl and Furyl Functionalized Porphyrin Complexes as New Organic Cathodes Enabling High Power Density and Long-Term Cycling Stability. ACS Applied Materials & Interfaces 2022, 14 (36) , 40862-40870. https://doi.org/10.1021/acsami.2c09649
    11. Weisheng Zhang, Hao Tian, Jiawen Wang, Huimin Sun, Jing Wang, Weiwei Huang. Quinone Electrode for Long Lifespan Potassium-Ion Batteries Based on Ionic Liquid Electrolytes. ACS Applied Materials & Interfaces 2022, 14 (34) , 38887-38894. https://doi.org/10.1021/acsami.2c10852
    12. Afshana Afroj Bristi, Alfred Junio Samson, Abinaya Sivakumaran, Shantel Butler, Venkataraman Thangadurai. Ionic Conductivity, Na Plating–Stripping, and Battery Performance of Solid Polymer Na Ion Electrolyte Based on Poly(vinylidene fluoride) and Poly(vinyl pyrrolidone). ACS Applied Energy Materials 2022, 5 (7) , 8812-8822. https://doi.org/10.1021/acsaem.2c01296
    13. Hui Gao, Alex R. Neale, Qiang Zhu, Mounib Bahri, Xue Wang, Haofan Yang, Yongjie Xu, Rob Clowes, Nigel D. Browning, Marc A. Little, Laurence J. Hardwick, Andrew I. Cooper. A Pyrene-4,5,9,10-Tetraone-Based Covalent Organic Framework Delivers High Specific Capacity as a Li-Ion Positive Electrode. Journal of the American Chemical Society 2022, 144 (21) , 9434-9442. https://doi.org/10.1021/jacs.2c02196
    14. Sahebrao S. More, Nageshwar D. Khupse, Jalindar D. Ambekar, Milind V. Kulkarni, Bharat B. Kale. Ionic Liquid-Supported Interpenetrating Polymer Network Flexible Solid Electrolytes for Lithium-Ion Batteries. Energy & Fuels 2022, 36 (9) , 4999-5008. https://doi.org/10.1021/acs.energyfuels.2c00551
    15. Hiroaki Kobayashi, Kotaro Oizumi, Takaaki Tomai, Itaru Honma. Graphene and Polyethyleneimine Bilayer Wrapping onto Quinone Molecular Crystal Cathode Materials for Aqueous Zinc-Ion Batteries. ACS Applied Energy Materials 2022, 5 (4) , 4707-4711. https://doi.org/10.1021/acsaem.2c00134
    16. Zongshuai Gong, Silin Zheng, Jin Zhang, Yueqin Duan, Zhiqiang Luo, Fengshi Cai, Zhihao Yuan. Cross-Linked PVA/HNT Composite Separator Enables Stable Lithium-Organic Batteries under Elevated Temperature. ACS Applied Materials & Interfaces 2022, 14 (9) , 11474-11482. https://doi.org/10.1021/acsami.1c23962
    17. Kosuke Sakano, Yasuhiko Igarashi, Hiroaki Imai, Shuntaro Miyakawa, Takaya Saito, Yoshiki Takayanagi, Koji Nishiyama, Yuya Oaki. Performance Predictors for Organic Cathodes of Lithium-Ion Battery. ACS Applied Energy Materials 2022, 5 (2) , 2074-2082. https://doi.org/10.1021/acsaem.1c03612
    18. Puttipong Pananusorn, Araya Ruengsuk, Andrew Docker, Korawit Khamphaijun, Kitima Sirivibulkovit, Mongkol Sukwattanasinitt, Jonggol Tantirungrotechai, Phoonthawee Saetear, Taweetham Limpanuparb, Thanthapatra Bunchuay. Selective Extraction, Recovery, and Sensing of Hydroquinone Mediated by a Supramolecular Pillar[5]quinone Quinhydrone Charge-Transfer Complex. ACS Applied Materials & Interfaces 2022, 14 (5) , 6810-6817. https://doi.org/10.1021/acsami.1c22583
    19. Lihong Zhao, Alae Eddine Lakraychi, Zhaoyang Chen, Yanliang Liang, Yan Yao. Roadmap of Solid-State Lithium-Organic Batteries toward 500 Wh kg–1. ACS Energy Letters 2021, 6 (9) , 3287-3306. https://doi.org/10.1021/acsenergylett.1c01368
    20. Danying Xu, Minxia Liang, Shuo Qi, Weiwei Sun, Li-Ping Lv, Fei-Hu Du, Baofeng Wang, Shuangqiang Chen, Yong Wang, Yan Yu. The Progress and Prospect of Tunable Organic Molecules for Organic Lithium-Ion Batteries. ACS Nano 2021, 15 (1) , 47-80. https://doi.org/10.1021/acsnano.0c05896
    21. Fang Hao, Yanliang Liang, Ye Zhang, Zhaoyang Chen, Jibo Zhang, Qing Ai, Hua Guo, Zheng Fan, Jun Lou, Yan Yao. High-Energy All-Solid-State Organic–Lithium Batteries Based on Ceramic Electrolytes. ACS Energy Letters 2021, 6 (1) , 201-207. https://doi.org/10.1021/acsenergylett.0c02227
    22. Jiaqi Wang, Youxuan Ni, Junxiang Liu, Yong Lu, Kai Zhang, Zhiqiang Niu, Jun Chen. Room-Temperature Flexible Quasi-Solid-State Rechargeable Na–O2 Batteries. ACS Central Science 2020, 6 (11) , 1955-1963. https://doi.org/10.1021/acscentsci.0c00849
    23. Qijiu Deng, Zongbin Luo, Rong Yang, Jingze Li. Toward Organic Carbonyl-Contained Small Molecules in Rechargeable Batteries: A Review of Current Modified Strategies. ACS Sustainable Chemistry & Engineering 2020, 8 (41) , 15445-15465. https://doi.org/10.1021/acssuschemeng.0c05884
    24. Jing Tong, Cuiping Han, Xiaorui Hao, Xiaolu Qin, Baohua Li. Conductive Polyacrylic Acid-Polyaniline as a Multifunctional Binder for Stable Organic Quinone Electrodes of Lithium-Ion Batteries. ACS Applied Materials & Interfaces 2020, 12 (35) , 39630-39638. https://doi.org/10.1021/acsami.0c10347
    25. Tianxiang Zhu, Dongyu Liu, Lei Shi, Shiyao Lu, Yiyang Gao, Dongyang Zhang, Heng Mao, Zehui Sun, Cheng-Yen Lao, Mingtao Li, Kai Xi, Shujiang Ding. Nitrogen-Doped Hierarchical Porous Carbon-Promoted Adsorption of Anthraquinone for Long-Life Organic Batteries. ACS Applied Materials & Interfaces 2020, 12 (31) , 34910-34918. https://doi.org/10.1021/acsami.0c08214
    26. Minami Kato, Hikaru Sano, Tetsu Kiyobayashi, Nobuhiko Takeichi, Masaru Yao. Improvement of the Battery Performance of Indigo, an Organic Electrode Material, Using PEDOT/PSS with d-Sorbitol. ACS Omega 2020, 5 (30) , 18565-18572. https://doi.org/10.1021/acsomega.0c00313
    27. Philippe Poizot, Joël Gaubicher, Stéven Renault, Lionel Dubois, Yanliang Liang, Yan Yao. Opportunities and Challenges for Organic Electrodes in Electrochemical Energy Storage. Chemical Reviews 2020, 120 (14) , 6490-6557. https://doi.org/10.1021/acs.chemrev.9b00482
    28. Zheyi Zou, Yajie Li, Ziheng Lu, Da Wang, Yanhua Cui, Bingkun Guo, Yuanji Li, Xinmiao Liang, Jiwen Feng, Hong Li, Ce-Wen Nan, Michel Armand, Liquan Chen, Kang Xu, Siqi Shi. Mobile Ions in Composite Solids. Chemical Reviews 2020, 120 (9) , 4169-4221. https://doi.org/10.1021/acs.chemrev.9b00760
    29. John J. Shea, Chao Luo. Organic Electrode Materials for Metal Ion Batteries. ACS Applied Materials & Interfaces 2020, 12 (5) , 5361-5380. https://doi.org/10.1021/acsami.9b20384
    30. Zhaohu Ba, Zhengxing Wang, Mo Luo, Hai-bei Li, Yingzhi Li, Tao Huang, Jie Dong, Qinghua Zhang, Xin Zhao. Benzoquinone-Based Polyimide Derivatives as High-Capacity and Stable Organic Cathodes for Lithium-Ion Batteries. ACS Applied Materials & Interfaces 2020, 12 (1) , 807-817. https://doi.org/10.1021/acsami.9b18422
    31. Limin Zhu, Guochun Ding, Lingling Xie, Xiaoyu Cao, Jianping Liu, Xuefeng Lei, Junxian Ma. Conjugated Carbonyl Compounds as High-Performance Cathode Materials for Rechargeable Batteries. Chemistry of Materials 2019, 31 (21) , 8582-8612. https://doi.org/10.1021/acs.chemmater.9b03109
    32. Wenxu Xiong, Weiwei Huang, Meng Zhang, Pandeng Hu, Huamin Cui, Qichun Zhang. Pillar[5]quinone–Carbon Nanocomposites as High-Capacity Cathodes for Sodium-Ion Batteries. Chemistry of Materials 2019, 31 (19) , 8069-8075. https://doi.org/10.1021/acs.chemmater.9b02601
    33. Dae Kyeum Lee, Chae Young Go, Ki Chul Kim. Li-Binding Thermodynamics and Redox Properties of BNOPS-Based Organic Compounds for Cathodes in Lithium-Ion Batteries. ACS Applied Materials & Interfaces 2019, 11 (35) , 31972-31979. https://doi.org/10.1021/acsami.9b09947
    34. Mikhail Miroshnikov, Keiko Kato, Ganguli Babu, Naresh Kumar Thangavel, Kiran Mahankali, Edward Hohenstein, Hsin Wang, Sitakanta Satapathy, Kizhmuri P. Divya, Harrison Asare, Pulickel M. Ajayan, Leela Mohana Reddy Arava, George John. Made From Henna! A Fast-Charging, High-Capacity, and Recyclable Tetrakislawsone Cathode Material for Lithium Ion Batteries. ACS Sustainable Chemistry & Engineering 2019, 7 (16) , 13836-13844. https://doi.org/10.1021/acssuschemeng.9b01800
    35. Qiang Li, Dongni Li, Haidong Wang, Heng-guo Wang, Yanhui Li, Zhenjun Si, Qian Duan. Conjugated Carbonyl Polymer-Based Flexible Cathode for Superior Lithium-Organic Batteries. ACS Applied Materials & Interfaces 2019, 11 (32) , 28801-28808. https://doi.org/10.1021/acsami.9b06437
    36. Xuan Wang, Peijie Zhang, Xingyu Tang, Junjie Guan, Xiaohuan Lin, Yajie Wang, Xiao Dong, Binbin Yue, Jinyuan Yan, Kuo Li, Haiyan Zheng, Ho-kwang Mao. Structure and Electrical Performance of Na2C6O6 under High Pressure. The Journal of Physical Chemistry C 2019, 123 (28) , 17163-17169. https://doi.org/10.1021/acs.jpcc.9b04610
    37. Xiaoli Zhan, Jiawen Zhang, Mingzhu Liu, Jianguo Lu, Qinghua Zhang, Fengqiu Chen. Advanced Polymer Electrolyte with Enhanced Electrochemical Performance for Lithium-Ion Batteries: Effect of Nitrile-Functionalized Ionic Liquid. ACS Applied Energy Materials 2019, 2 (3) , 1685-1694. https://doi.org/10.1021/acsaem.8b01733
    38. Ngong Kodiah Beyeh, Nonappa, Ville Liljeström, Joona Mikkilä, Antti Korpi, Davide Bochicchio, Giovanni M. Pavan, Olli Ikkala, Robin H. A. Ras, Mauri A. Kostiainen. Crystalline Cyclophane–Protein Cage Frameworks. ACS Nano 2018, 12 (8) , 8029-8036. https://doi.org/10.1021/acsnano.8b02856
    39. Xuewei Fu, Chunhui Li, Yu Wang, Lucas Paul Kovatch, Louis Scudiero, Jin Liu, and Weihong Zhong . Building Ion-Conduction Highways in Polymeric Electrolytes by Manipulating Protein Configuration. ACS Applied Materials & Interfaces 2018, 10 (5) , 4726-4736. https://doi.org/10.1021/acsami.7b17156
    40. Guang Yang, Hyukkeun Oh, Chalathorn Chanthad, and Qing Wang . Dumbbell-Shaped Octasilsesquioxanes Functionalized with Ionic Liquids as Hybrid Electrolytes for Lithium Metal Batteries. Chemistry of Materials 2017, 29 (21) , 9275-9283. https://doi.org/10.1021/acs.chemmater.7b03229
    41. Xue Zhang, Ting Liu, Shuofeng Zhang, Xin Huang, Bingqing Xu, Yuanhua Lin, Ben Xu, Liangliang Li, Ce-Wen Nan, and Yang Shen . Synergistic Coupling between Li6.75La3Zr1.75Ta0.25O12 and Poly(vinylidene fluoride) Induces High Ionic Conductivity, Mechanical Strength, and Thermal Stability of Solid Composite Electrolytes. Journal of the American Chemical Society 2017, 139 (39) , 13779-13785. https://doi.org/10.1021/jacs.7b06364
    42. Yan Wang, Yonghong Deng, Qunting Qu, Xueying Zheng, Jingyu Zhang, Gao Liu, Vincent S. Battaglia, and Honghe Zheng . Ultrahigh-Capacity Organic Anode with High-Rate Capability and Long Cycle Life for Lithium-Ion Batteries. ACS Energy Letters 2017, 2 (9) , 2140-2148. https://doi.org/10.1021/acsenergylett.7b00622
    43. Zhenxin Zhang, Satoshi Ishikawa, Masaki Kikuchi, Hirofumi Yoshikawa, Qi Lian, Heng Wang, Toshiaki Ina, Akihiro Yoshida, Masahiro Sadakane, Futoshi Matsumoto, and Wataru Ueda . High-Performance Cathode Based on Microporous Mo–V–Bi Oxide for Li Battery and Investigation by Operando X-ray Absorption Fine Structure. ACS Applied Materials & Interfaces 2017, 9 (31) , 26052-26059. https://doi.org/10.1021/acsami.7b07195
    44. Yong Lu, Qing Zhao, Licheng Miao, Zhanliang Tao, Zhiqiang Niu, and Jun Chen . Flexible and Free-Standing Organic/Carbon Nanotubes Hybrid Films as Cathode for Rechargeable Lithium-Ion Batteries. The Journal of Physical Chemistry C 2017, 121 (27) , 14498-14506. https://doi.org/10.1021/acs.jpcc.7b04341
    45. Debdyuti Mukherjee, Guruprasada Gowda Y. K, Harish Makri Nimbegondi Kotresh, and S. Sampath . Porous, Hyper-cross-linked, Three-Dimensional Polymer as Stable, High Rate Capability Electrode for Lithium-Ion Battery. ACS Applied Materials & Interfaces 2017, 9 (23) , 19446-19454. https://doi.org/10.1021/acsami.6b09575
    46. Dong Jun Kim, Keith R. Hermann, Aleksandrs Prokofjevs, Michael T. Otley, Cristian Pezzato, Magdalena Owczarek, J. Fraser Stoddart. Redox-Active Macrocycles for Organic Rechargeable Batteries. Journal of the American Chemical Society 2017, 139 (19) , 6635-6643. https://doi.org/10.1021/jacs.7b01209
    47. Lionel Fédèle, Frédéric Sauvage, Sébastien Gottis, Carine Davoisne, Elodie Salager, Jean-Noël Chotard, and Matthieu Becuwe . 2D-Layered Lithium Carboxylate Based on Biphenyl Core as Negative Electrode for Organic Lithium-Ion Batteries. Chemistry of Materials 2017, 29 (2) , 546-554. https://doi.org/10.1021/acs.chemmater.6b03524
    48. Xian-Xiang Zeng, Ya-Xia Yin, Nian-Wu Li, Wen-Cheng Du, Yu-Guo Guo, and Li-Jun Wan . Reshaping Lithium Plating/Stripping Behavior via Bifunctional Polymer Electrolyte for Room-Temperature Solid Li Metal Batteries. Journal of the American Chemical Society 2016, 138 (49) , 15825-15828. https://doi.org/10.1021/jacs.6b10088
    49. Tomoki Ogoshi, Tada-aki Yamagishi, and Yoshiaki Nakamoto . Pillar-Shaped Macrocyclic Hosts Pillar[n]arenes: New Key Players for Supramolecular Chemistry. Chemical Reviews 2016, 116 (14) , 7937-8002. https://doi.org/10.1021/acs.chemrev.5b00765
    50. Qing Zhao, Chunyang Guo, Yong Lu, Luojia Liu, Jing Liang, and Jun Chen . Rechargeable Lithium Batteries with Electrodes of Small Organic Carbonyl Salts and Advanced Electrolytes. Industrial & Engineering Chemistry Research 2016, 55 (20) , 5795-5804. https://doi.org/10.1021/acs.iecr.6b01462
    51. Binod Nepal and Steve Scheiner . Enhancing the Reduction Potential of Quinones via Complex Formation. The Journal of Organic Chemistry 2016, 81 (10) , 4316-4324. https://doi.org/10.1021/acs.joc.6b00755
    52. Gaihua Li, Hao Yang, Fengcai Li, Fangyi Cheng, Wei Shi, Jun Chen, and Peng Cheng . A Coordination Chemistry Approach for Lithium-Ion Batteries: The Coexistence of Metal and Ligand Redox Activities in a One-Dimensional Metal–Organic Material. Inorganic Chemistry 2016, 55 (10) , 4935-4940. https://doi.org/10.1021/acs.inorgchem.6b00450
    53. Joungphil Lee, Hoon Kim, and Moon Jeong Park . Long-Life, High-Rate Lithium-Organic Batteries Based on Naphthoquinone Derivatives. Chemistry of Materials 2016, 28 (7) , 2408-2416. https://doi.org/10.1021/acs.chemmater.6b00624
    54. Guoqiang Tan, Feng Wu, Chun Zhan, Jing Wang, Daobin Mu, Jun Lu, and Khalil Amine . Solid-State Li-Ion Batteries Using Fast, Stable, Glassy Nanocomposite Electrolytes for Good Safety and Long Cycle-Life. Nano Letters 2016, 16 (3) , 1960-1968. https://doi.org/10.1021/acs.nanolett.5b05234
    55. Dingchang Lin, Wei Liu, Yayuan Liu, Hye Ryoung Lee, Po-Chun Hsu, Kai Liu, and Yi Cui . High Ionic Conductivity of Composite Solid Polymer Electrolyte via In Situ Synthesis of Monodispersed SiO2 Nanospheres in Poly(ethylene oxide). Nano Letters 2016, 16 (1) , 459-465. https://doi.org/10.1021/acs.nanolett.5b04117
    56. Haegyeom Kim, Ji Eon Kwon, Byungju Lee, Jihyun Hong, Minah Lee, Soo Young Park, and Kisuk Kang . High Energy Organic Cathode for Sodium Rechargeable Batteries. Chemistry of Materials 2015, 27 (21) , 7258-7264. https://doi.org/10.1021/acs.chemmater.5b02569
    57. Beijun Cheng and Angel E. Kaifer . Cathodic Voltammetric Behavior of Pillar[5]quinone in Nonaqueous Media. Symmetry Effects on the Electron Uptake Sequence. Journal of the American Chemical Society 2015, 137 (31) , 9788-9791. https://doi.org/10.1021/jacs.5b05546
    58. Yanliang Liang, Zhihua Chen, Yan Jing, Yaoguang Rong, Antonio Facchetti, and Yan Yao . Heavily n-Dopable π-Conjugated Redox Polymers with Ultrafast Energy Storage Capability. Journal of the American Chemical Society 2015, 137 (15) , 4956-4959. https://doi.org/10.1021/jacs.5b02290
    59. Xin Su, Xiao-Pei Xu, Zhao-Qi Ji, Ji Wu, Fei Ma, Li-Zhen Fan. Polyethylene Oxide-Based Composite Solid Electrolytes for Lithium Batteries: Current Progress, Low-Temperature and High-Voltage Limitations, and Prospects. Electrochemical Energy Reviews 2024, 7 (1) https://doi.org/10.1007/s41918-023-00204-7
    60. Wenjie Zhou, Mingqiang Yang, Yingzhi Chen, Qihang Jing, Qinglin Fang, Yachao Yan, Lu-Ning Wang. Copper porphyrin within graphene hosts for high-performance lithium-ion battery cathodes. Journal of Materials Science & Technology 2024, 191 , 192-198. https://doi.org/10.1016/j.jmst.2023.11.061
    61. Linqi Cheng, Lan Chen, Jie Yu, Lina Zhao, Wanting Wang, Zexin Yang, Heng-guo Wang. A bipolar organic molecule towards the anion/cation-hosting cathode compatible with polymer electrolytes for quasi-solid-state dual-ion batteries. Journal of Colloid and Interface Science 2024, 663 , 656-664. https://doi.org/10.1016/j.jcis.2024.02.178
    62. Dongyang Chen, Jingshu Wu, Dongchu Chen, Jiaqi Xu. Pillar[5]arene-supported viologen networks with enhanced rate capability and cycling stability for rechargeable organic batteries. Electrochimica Acta 2024, 489 , 144262. https://doi.org/10.1016/j.electacta.2024.144262
    63. Pei Yu, Jiaxuan An, Zhongju Wang, Yongzhu Fu, Wei Guo. An Organic Molecular Cathode Composed of Naphthoquinones Bridged by Organodisulfide for Rechargeable Lithium Battery. Small 2024, 20 (14) https://doi.org/10.1002/smll.202308881
    64. Xuhui Ye, Hongyu Huang, Luzhuo Chen, Yi Wang, Mingcen Weng, Lina Zhang, Zhiling Luo. All-round supercapacitors: A rational design of sustainable hydrogel electrolyte utilizing calcium salts. Chemical Engineering Journal 2024, 483 , 149158. https://doi.org/10.1016/j.cej.2024.149158
    65. Chaoqiang Tan, Ziren Long, Shichao Zhang, Wei Zhong, Hao Cheng, Yingying Lu. Solid-state electrolytes for inhibiting active species crossover in lithium metal batteries: a review. Materials Chemistry Frontiers 2024, 8 (4) , 1036-1063. https://doi.org/10.1039/D3QM00850A
    66. Xiguang Gao, Yonglin Wang, Luke T. Menezes, Zhe Huang, Holger Kleinke, Yuning Li. Stable 2,5‐Dihydroxy‐1,4‐benzoquinone Based Organic Cathode Enabled by Coordination Polymer Formation and Binder Optimization. Advanced Functional Materials 2024, 66 https://doi.org/10.1002/adfm.202315669
    67. Hyunji Park, Hyojin Kye, Jong‐Sung Lee, Young‐Chang Joo, Dong Joo Min, Bong‐Gi Kim, Soo Young Park, Ji Eon Kwon. Indolocarbazole‐Based Small Molecule Cathode‐Active Material Exhibiting Double Redox for High‐Voltage Li‐Organic Batteries. ENERGY & ENVIRONMENTAL MATERIALS 2024, 16 https://doi.org/10.1002/eem2.12694
    68. Zhouqishuo Cai, Jinmeng Zhang, Zewen Lin, Yanan Zhao, Qianqian Yang, Xiaowen Qiu, Shumin Lin, Donghua Liu, Xiaolan Hu, Hua Bai. Low-cost p -benzoquinone-formaldehyde polymer/reduced graphene oxide composite films as a cathode material for rechargeable lithium-ion batteries. Journal of Materials Chemistry A 2024, 196 https://doi.org/10.1039/D4TA00450G
    69. Alessandro Innocenti, Henry Adenusi, Stefano Passerini. Assessing n‐type organic materials for lithium batteries: A techno‐economic review. InfoMat 2023, 5 (11) https://doi.org/10.1002/inf2.12480
    70. Boram Kim, Moon Jeong Park. All-solid-state lithium–sulfur batteries enabled by single-ion conducting binary nanoparticle electrolytes. Materials Horizons 2023, 10 (10) , 4139-4147. https://doi.org/10.1039/D3MH00913K
    71. Shicong Zhang, Xiaolin Zhao, Tao Li, Jianjun Liu, Fuqiang Huang, Tianquan Lin. Organic electrodes with multi-role natural amino acid groups for sodium-ion batteries with high-capacity and long-life. Science China Materials 2023, 66 (10) , 3817-3826. https://doi.org/10.1007/s40843-023-2545-y
    72. Saeid Darvishi, Erkan Senses. Interfacial polymer architecture can control nanoparticle dispersion and rheological behavior of nanocomposites. European Polymer Journal 2023, 196 , 112320. https://doi.org/10.1016/j.eurpolymj.2023.112320
    73. Sidra Mushtaq, Fancheng Meng, Zixing Zhang, Zhiheng Wang, Biao Jiang, Bai Xue, Fan Zhang. Fully sp 2 -carbon connected polymeric frameworks with rotatable conformation-enhanced lithium-storage performance. Journal of Materials Chemistry A 2023, 11 (32) , 17217-17225. https://doi.org/10.1039/D3TA02363J
    74. Shengnan Zhang, Kai Zhu, Yinyi Gao, Tianzeng Bao, Hongbin Wu, Dianxue Cao. A Potential Polycarbonyl Polyimide as Anode Material for Lithium‐Ion Batteries. Chemistry – An Asian Journal 2023, 18 (16) https://doi.org/10.1002/asia.202300439
    75. Junkai Yang, Xiaoru Zhao, Jixing Yang, Yunhua Xu, Yuesheng Li. High‐Performance Poly(1‐naphthylamine)/Mesoporous Carbon Cathode for Lithium‐Ion Batteries with Ultralong Cycle Life of 45000 Cycles at ‐15 °C. Advanced Science 2023, 10 (23) https://doi.org/10.1002/advs.202302490
    76. Kai Chen, Xiaolan Ma, Xiaoyan Han, Yingkui Yang. Graphene-sandwiched nitrogen-enriched π-conjugated molecules as redox-active cathodes for Li-ion batteries. Materials Advances 2023, 4 (15) , 3285-3291. https://doi.org/10.1039/D3MA00291H
    77. Manying Cui, Hongyang Zhao, Yanyang Qin, Shishi Zhang, Ruxin Zhao, Miao Zhang, Wei Yu, Guoxin Gao, Xiaofei Hu, Yaqiong Su, Kai Xi, Shujiang Ding. Regulation of Lithium‐Ion Flux by Nanotopology Lithiophilic Boron‐Oxygen Dipole in Solid Polymer Electrolytes for Lithium‐Metal Batteries. ENERGY & ENVIRONMENTAL MATERIALS 2023, 1839 https://doi.org/10.1002/eem2.12659
    78. Tiansheng Wang, Shunyou Hu, Yuanyuan Hu, Dong Wu, Hao Wu, Jinxu Huang, Hao Wang, Weiwei Zhao, Wen Yu, Mi Wang, Jie Xu, Jiaheng Zhang. Biologically inspired anthraquinone redox centers and biomass graphene for renewable colloidal gels toward ultrahigh-performance flexible micro-supercapacitors. Journal of Materials Science & Technology 2023, 151 , 178-189. https://doi.org/10.1016/j.jmst.2022.11.049
    79. Xiaotang Gan, Zihao Yang, Zhiping Song. Solid‐State Batteries Based on Organic Cathode Materials. Batteries & Supercaps 2023, 6 (6) https://doi.org/10.1002/batt.202300001
    80. Hanqing Yu, Susu Li, Jixing Yang, Yunhua Xu, Yuesheng Li. Towards high-performance anthraquinone-derived cathode material for lithium-ion batteries through rational molecular design. Chemical Engineering Journal 2023, 466 , 143316. https://doi.org/10.1016/j.cej.2023.143316
    81. Aidong Tan, Youwei Wen, Jinghua Huang, Kai Wan, Zhiyong Fu, Xinbo Zhang, Zhenxing Liang. Multiredox tripyridine-triazine molecular cathode for lithium-organic battery. Journal of Power Sources 2023, 567 , 232963. https://doi.org/10.1016/j.jpowsour.2023.232963
    82. Minami KATO, Nobuhiko TAKEICHI, Hikaru SANO. Lithium-Conducting Organic Solid Electrolyte for Organic Rechargeable Batteries: Boronated Benzoimidazole-Linked Polymer. Electrochemistry 2023, 91 (4) , 047004-047004. https://doi.org/10.5796/electrochemistry.23-00015
    83. Jiakui Xiong, Xiaorong Yan, Haiping Yu, Chuanguang Wu, Guoqing Zhao, Jianze Zhang, Yujie Dai, Xinyu Wang, Jiefeng Gao, Xiong Pu, Mingjun Hu, Jingru Liu, Jun Yang. Solvent-free synthesis of a naphthoquinone-based bipolar organic cathode towards practical durable lithium organic batteries. Journal of Materials Chemistry A 2023, 11 (15) , 8048-8056. https://doi.org/10.1039/D3TA00528C
    84. Yifang Zhu, Wei Jin, Haiguang Gao, Yanli Chen, Tai-Rui Wu, De-Yin Wu, Yucheng Huang, Dengfeng Guo, Zhidong Chen, Qinghong Huang, Jianyu Cao, Juan Xu. C3-symmetric trimeric imidazole naphthoquinone derivative with dual redox-active sites for high-performance cathodic lithium storage. Chemical Engineering Journal 2023, 462 , 142229. https://doi.org/10.1016/j.cej.2023.142229
    85. Chunhua Wang, Donglou Li, Na Liu, Guoliang Bai, Wenxiang He, Xuehua Zhou, Junwei Wang, Jianli Zhang, Xingjiang Liu. A novel polymer electrolyte with in situ polymerization and a high concentration of lithium salts for lithium metal batteries. Polymer Chemistry 2023, 14 (10) , 1094-1102. https://doi.org/10.1039/D2PY01208A
    86. Hyunji Park, Yoshiaki Shuku, Jihyun Lee, Kyunam Lee, Dong Joo Min, Byeong‐Kwan An, Kuino Awaga, Soo Young Park, Ji Eon Kwon. Isomeric Triptycene Triquinones as Universal Cathode Materials for High Energy Alkali Metal Batteries. Batteries & Supercaps 2023, 6 (3) https://doi.org/10.1002/batt.202200497
    87. Xiang Zhao, Xuan Qiu, Haodong Xue, Si Liu, Dingli Liang, Chuan Yan, Weinan Chen, Yonggang Wang, Gang Zhou. Conjugated and Non‐conjugated Polymers Containing Two‐Electron Redox Dihydrophenazines for Lithium‐Organic Batteries. Angewandte Chemie 2023, 135 (9) https://doi.org/10.1002/ange.202216713
    88. Xiang Zhao, Xuan Qiu, Haodong Xue, Si Liu, Dingli Liang, Chuan Yan, Weinan Chen, Yonggang Wang, Gang Zhou. Conjugated and Non‐conjugated Polymers Containing Two‐Electron Redox Dihydrophenazines for Lithium‐Organic Batteries. Angewandte Chemie International Edition 2023, 62 (9) https://doi.org/10.1002/anie.202216713
    89. Pingwei Cai, Kai Chen, Zhiwen Lu, Ritwik Mondal, Musthafa Ottakam Thotiyl, Zhenhai Wen. Aqueous OH − /H + Dual‐Ion Zn‐Based Batteries. ChemSusChem 2023, 16 (4) https://doi.org/10.1002/cssc.202201034
    90. Tomoki Hirohata, Susumu Kawauchi, Ikuyoshi Tomita, Shinsuke Inagi. A theoretical analysis of the reduction and lithiation of pillar[6]quinone. Journal of Electroanalytical Chemistry 2023, 930 , 117170. https://doi.org/10.1016/j.jelechem.2023.117170
    91. Yosef Nikodimos, Wei‐Nien Su, Bing Joe Hwang. Halide Solid‐State Electrolytes: Stability and Application for High Voltage All‐Solid‐State Li Batteries. Advanced Energy Materials 2023, 13 (3) https://doi.org/10.1002/aenm.202202854
    92. Zitong Liu, Ting Xu, Xianjiao Meng, Yali Zhao, Qing Lan, Yutao Liu, Zhiping Song, Jian Qin, Hui Zhan. Adjusting the Electrolyte Polarity to Address the Dissolution Issue of Organic Electrode. Batteries & Supercaps 2023, 6 (1) https://doi.org/10.1002/batt.202200436
    93. Zhao Zheng, Mu Li, Yuyan Lai, Youjin Cao, Panchao Yin. Decoupling Segmental Dynamics and Ionic Transport for Superionic Anhydrous Proton Conductors of Polyoxometalate‐poly(ethylene glycol) Nanocomposites. Macromolecular Rapid Communications 2023, 44 (1) https://doi.org/10.1002/marc.202200227
    94. Bangshuai Wei, Yan Hong, Wu Tang, Meichen Guo, Xuesong He, Chenbin Tang, Jiahui Hu, Cong Fan. Design of bipolar polymer electrodes for symmetric Li-dual-ion batteries. Chemical Engineering Journal 2023, 451 , 138773. https://doi.org/10.1016/j.cej.2022.138773
    95. Shuai Liu, Fei Peng, Yilin Lin, Wenjun Zhou, Weiwei Huang. Structural modification enhances the electrochemical performance for organic cathode materials. Chemical Engineering Journal 2023, 451 , 139076. https://doi.org/10.1016/j.cej.2022.139076
    96. Kang Li, Jie Yu, Zhenjun Si, Bo Gao, Heng-guo Wang, Yinghui Wang. One-dimensional π-d conjugated coordination polymer with double redox-active centers for all-organic symmetric lithium-ion batteries. Chemical Engineering Journal 2022, 450 , 138052. https://doi.org/10.1016/j.cej.2022.138052
    97. M. Pilar Vázquez-Tato, Francisco Meijide, Francisco Fraga, José Vázquez Tato, Julio A. Seijas. Pyrene-4,5,9,10-Tetrachalcogenone Derivatives: A Computational Study on Their Potential Use as Materials for Batteries. 2022, 76. https://doi.org/10.3390/ecsoc-26-13554
    98. Antonela Gallastegui, Ousmane Camara, Daniela Minudri, Nicolas Goujon, Nagaraj Patil, Fernando Ruipérez, Rebeca Marcilla, David Mecerreyes. Aging Effect of Catechol Redox Polymer Nanoparticles for Hybrid Supercapacitors. Batteries & Supercaps 2022, 5 (9) https://doi.org/10.1002/batt.202200155
    99. Weiwei Huang, Shuai Liu, Chaobo Li, Yilin Lin, Pandeng Hu, Zhaopeng Sun, Qichun Zhang. Calix[8]quinone: A new promising macrocyclic molecule as an efficient organic cathode in lithium ion batteries with a highly‐concentrated electrolyte. EcoMat 2022, 4 (5) https://doi.org/10.1002/eom2.12214
    100. Leixin Yang, Yihang Nie, Yizhou Liu, Yun Zheng, Dan Luo, Na Yang, Qianyi Ma, Mi Xu, Xiaohua Ma, Aiping Yu, Lingling Shui, Xin Wang, Zhongwei Chen. The plasticizer-free composite block copolymer electrolytes for ultralong lifespan all-solid-state lithium-metal batteries. Nano Energy 2022, 100 , 107499. https://doi.org/10.1016/j.nanoen.2022.107499
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect